
International Journal of Computer Applications (0975 – 8887)

Volume 185 – No. 30, August 2023

36

Web Application Top 10 OWASP Attacks and Defence

Mechanism

Madhuri N. Gedam
Research Scholar

Deptt. of Computer Engineering
Veermata Jijabai Technological Institute (VJTI),

Mumbai, India

Bandu B. Meshram
Professor

Deptt. of Computer Engineering
Veermata Jijabai Technological Institute (VJTI),

Mumbai, India

ABSTRACT

Enterprise Security API (ESAPI) is a security framework

developed by the Open Web Application Security Project

(OWASP) to help developers to build secure applications.

ESAPI can generally help in securing web applications against

various types of vulnerabilities. By incorporating ESAPI into

web application development, developers can leverage its

secure coding practices, libraries, and APIs to address various

vulnerabilities that may be part of the OWASP Top 10 2023

attacks. The research explores the development of web based

application with vulnerabilities and then OWASP Top 10

Attacks are made on it. The same web application is recoded

by embedding ESAPI and the Top 10 attacks are made on this

application. It is found that due to security provided into the

web applications, attacks can not be made on the web

application. However, it's important to stay updated with the

latest security guidelines and recommendations from OWASP

to ensure maximum protection against emerging threats.

Keywords

Software Development Life Cycle, OWASP Enterprise

Security API, SQL injection, Cross-Site Scripting.

1. INTRODUCTION
Web application security is a major concern in today’s digital

era. Web applications are a popular target for attackers. It

necessitates protection of a website from intrusion to avoid loss

of business data and reputation of an organization. The non-

profit organization Open Web Application Security Project

(OWASP) Top 10 coverage implementation is necessary to

fight against various kinds of attacks [2]. It has developed

Enterprise Security API (ESAPI) framework which contains a

set of security controls and utilities designed to help developers

protect web applications from common vulnerabilities. The

framework benefits from the collective knowledge and

experience of the OWASP community, ensuring that it

incorporates best practices and undergoes rigorous testing and

scrutiny. It takes care of mitigation of common vulnerabilities,

integration with other security tools and it is platform as well

as language independent framework.

The OWASP ESAPI framework provides a set of security

controls, functions, and guidelines that help to protect the

application against various vulnerabilities identified by

OWASP. By integrating and utilizing ESAPI within the

application's architecture, developers can implement measures

to mitigate these vulnerabilities and enhance the overall

security of the application. ESAPI is designed to work well

with other security tools and libraries. It can be integrated with

vulnerability scanners, static analysis tools, and security

frameworks, enhancing the overall security posture of the

application and enabling a more holistic security approach.

ESAPI addresses common web application security

vulnerabilities such as SQL Injection (SQLI), Cross-Site

Scripting (XSS), Cross-Site Request Forgery (CSRF), Session

Hijacking and many more. By utilizing the framework's

features and controls, developers can significantly reduce the

risk of these vulnerabilities and strengthen the security posture

of their applications.

The research work involves designing a web application

without web security in the first phase. Then it will be exposed

to ethical hacking of the web site by attacking a system. Next

work will be to protect the proposed system using ESAPI

framework. Finally, security testing for all Top 10 attacks is

carried out to check for secure application.

The paper is organized as follows. Section 2 describes detailed

literature survey of ESAPI framework, OWASP Top Ten

attacks. Section 3 presents proposed framework for securing

web application. Section 4 concludes the paper and gives

direction to the future work.

2. LITERATURE SURVEY
The detailed literature survey on OWASP Enterprise Security

API (ESAPI) framework has been carried out and elaborated

below.

2.1 ESAPI
The ESAPI framework is a set of APIs containing security

controls and utilities to protect web applications from common

vulnerabilities. Additionally, it will limit the use of new classes

of vulnerabilities and stop zero day attacks that use known

exploits [14].

2.2 Software Architecture for Application

Design Using ESAPI
ESAPI's integration into application design is demonstrated in

the Figure 1.

International Journal of Computer Applications (0975 – 8887)

Volume 185 – No. 30, August 2023

37

Fig 1: Application Design with ESAPI

The community support provided by OWASP and ESAPI is

quite beneficial. In addition to Java Logging, JCE, and Adobe

Commons FileUpload, the ESAPI class library also builds on

other superior security libraries. It takes concepts from other

security packages, including ACEGI, Apache Commons

Validator, Microsoft's AntiXSS library, and many more. For

enterprise developers, this library offers a single, easy interface

to security functions [14].

The ESAPI provides various interfaces to be used for security

of the web application as listed in the Table 1.

Table 1. ESAPI Interfaces

Sr.

No
Interface names Purpose

1
Authenticator

control
Authentication

2 AccessController Role based access control

3 HTTPUtilities
To provide HTTP specific

handler

4 Encoder HTML/XML encoding

5 Encryptor Encryption of the data

6 Executor Protection of OS commands

7 IntrusionDetector
Detection of security bypass

activities

8 Randomizer

To generate random numbers

or strings using

cryptography.

9 Validator
Data validation in the

application

2.3 OWASP Top Ten Coverage
ESAPI has sufficient features to offer security against the

majority of the OWASP Top Ten attacks when used

appropriately. The insecure communications category is

typically not under the developer's control and it is the only

significant exception [15]. The mapping of various ESAPI

interfaces with OWASP Top Ten attacks is done as shown in

Figure 2.

Fig 2: ESAPI mapping with Top Ten vulnerabilities

ESAPI Security control interfaces addresses Top Ten

vulnerability as detailed below.

1. AccessController

public interface AccessController

This interface is a collection of methods and used to provide

centralized access control in various application layers. The

roles or permissions assigned to current User object (from

Authenticator.getCurrentUser()) will be determined by this

object. The assertAuthorizedForFunction() rule is

recommended to be implemented using hasPrivilege() or

isUserInRole() methods. Access control uses

assertAuthorized() to make it simple to use and verify.

Here is a code of ESAPI implementation for access control

check.

try

{

ESAPI.accessController().assertAuthorized("businessFunction

", runtimeData);

 // execution of the business function

 }

catch (AccessControlException ace)

{

 // attack performed

}

The rendering of particular controls in the user interface layer

can be controlled using access control checks. Those are not

considered as attacks because they are expected to fail if an

unauthorized user signs in. Both the data and business logic

layers must implement access control checks [21].

<%if(ESAPI.accessController().isAuthorized(

"businessFunction", runtimeData)) { %>

ADMIN

International Journal of Computer Applications (0975 – 8887)

Volume 185 – No. 30, August 2023

38

<%} else {%>

NORMAL

<% } %>

Methods

(a) isAuthorized

boolean

isAuthorized(Obj

ect key, Object

runtimeParameter

)

It is used to run the

AccessControlRule, which is listed in

the resources/ESAPI-

AccessControlPolicy.xml file and is

identified by key. It also controls

execution flow.

Input:

Key: key maps to

<AccessControlPolicy><AccessContr

olRules><AccessControlRule

name="key"

(b)

isAuthorizedForD

ata

boolean

isAuthorizedForD

ata(String action,

Object data)

It is used to determine if the current

user has permission to view the data

that is referenced and is represented as

an Object.

Input:

action – It is used to determine

whether an access control option like a

role, or an action like Read, Write,

etc. is being performed on the object.

data - The actual object being

accessed, an object identifier, or a

reference to the object being accessed.

Output:

if the data has been allowed, it is true

2. AccessReferenceMap

public interface AccessReferenceMap<K>

extends Serializable

The AccessReferenceMap interface maps a set of internal

direct object references to a set of secure indirect references

that can be exposed to the public. Filenames, database keys,

and other direct object references need to be protected.

Developers should generally avoid exposing their direct object

references to prevent attacks. Indirect references are handled as

strings to make it easier to utilize in HTML. Indirect references

may be produced by implementations that use simple integers

or more complex random character strings. Implementations

would most likely provide a constructor that accepts a set of

direct references.

It becomes difficult for an intruder to guess random strings as

indirect object references, compared to simple integers. This

interface will be helpful to prevent Cross-Site Request Forgery

(CSRF) attacks [11].

Set fileSet = new HashSet();

fileSet.addAll(...); // add direct references (e.g. File objects)

AccessReferenceMap map = new AccessReferenceMap(

fileSet);

 // store the map somewhere safe - like the session!

 String indRef = map.getIndirectReference(file1);

 String href = "http://www.aspectsecurity.com/esapi?file=" +

indRef);

 ...

 // if the indirect reference doesn't exist, it's likely an attack

 // getDirectReference throws an AccessControlException

 // you should handle as appropriate

 String indref = request.getParameter("file");

 File file = (File)map.getDirectReference(indref);

Methods

(a)

getIndirectRefere

nce

<T> K

getIndirectRefere

nce(T

directReference)

It is used to fetch a safe indirect

reference to critical direct object

reference. This call should be used by

developers for creating URLs, form

fields, hidden fields, etc.

Input:

directReference - direct reference

Output:

indirect reference

3. Authenticator

public interface Authenticator

The Authenticator interface specifies different methods for

producing and maintaining account credentials and session IDs

in order to safeguard credentials. A thread local variable is used

to store current user's identity. The application calls

setCurrentUser() whenever HTTP request is received. The

value of getCurrentUser() is used at many places in this API.

Hence user object need not required to be passed to methods

throughout the library. It simplifies authentication process with

the current request and parameter names like username and

password. The password needs to be verified before creating a

session and setting the current user [12].

public void doPost(ServletRequest request, ServletResponse

response) {

 try

 {

 User user = ESAPI.authenticator().login(request, response);

 // continue with authenticated user

 }

catch (AuthenticationException e)

{

 // handle failed authentication (it's already been logged)

 }

Methods

(a) verifyPassword

boolean verifyPassword(User user, String password)

It is essential to store passwords in a hash format for security

purpose. The password verification is done through this

method. When performing the most sensitive operations, such

as transactions, altering an email address, and modifying other

account information, "reauthentication" is sometimes required.

International Journal of Computer Applications (0975 – 8887)

Volume 185 – No. 30, August 2023

39

This class's hashPassword(password, accountName) method is

used for this purpose.

Input:

user - the user who needs to be authenticated, password - the

hashed password of user-supplied value

Output:

It returns true in case the password is correct for the specified

user

(b) createUser

User createUser(String accountName, String password1, String

password2)

throws AuthenticationException

This method is used to create a new user with supplied

information variables in the proper format and strength with

verifyAccountNameStrength(String),

verifyPasswordStrength(String, String). The entry of password

is required to be done twice through user interface and need to

be checked for similarity.

Input:

accountName - the account name of the new user

password1 - the first time entered password in the user creation

form.

password2 - the second time entered password of the new user

in the user creation form to check for similarity.

Output:

New User gets created

4. Encoder

public interface Encoder

This interface is used to perform input decoding and output

encoding using various methods. Double encoding needs to be

avoided by using canonicalization to prevent encoded attacks.

A "whitelist" or "positive" security model must be applied to

every method.

Encoding and decoding through this interface is done through

the functions that depend on a group of codecs contained in the

org.owasp.esapi.codecs package [13].

Methods

a)

encodeForHTML

String

encodeForHTML

(String input)

Utilise HTML

entity encoding to

encode data for

usage in HTML.

Input:

the text to encode for HTML

Output:

input encoded for HTML

b) encodeForSQL

String

encodeForSQL(C

odec codec,

String input)

For use in a SQL

query, encode

input. The

recommended

codec - a Codec that declares name of

the database being used like MySQL,

Oracle, etc.

Input: text to be encoded for SQL

Output: encoded output for use in SQL

method is to

utilize the

PreparedStatemen

t interface.

(c)

encodeForURL

String

encodeForURL(S

tring input)

throws

EncodingExcepti

on

This method is

used to perform

URL encoding of

the full string.

Input:

input - the text to be encoded for use in

a URL

Output: input encoded for use in a

URL

Throws:

EncodingException – on failure of

encoding

5. Encryptor

public interface Encryptor

Common hashing, random number generation, and encryption

operations can be carried out using a variety of methods

supported by the Encryptor interface. An efficient

cryptographic implementation, such JCE or BouncyCastle,

should be used in implementations. ESAPI.Encryptor, a

property in ESAPI.properties is the main property determining

which implementation class is used. These properties are

allowed to select the encryption algorithms, the preferred JCE

provider, etc. Encryptor.MasterKey and Encryptor.MasterSalt

must be set before using ESAPI encryption and

'setMasterKey.sh' help to set these two properties[15].

Methods

(a) Hash

String hash(String

plaintext, String

salt)

throws

EncryptionExcept

ion

Input:

plaintext – the string to encrypt in a

plain text format.

salt - the salt to be added in the string

in a plain text format before hashing

Output:

The plaintext is saved as the

encrypted hash in a string format.

Throws: EncryptionException

whenever desired hash algorithm is

not available or some other problem

is faced in hashing.

(b) Encrypt

CipherTextencryp

t(PlainText

plaintext)

throws

EncryptionExcept

ion

It applies the cypher transformation

defined by the property Encryptor on

the provided plaintext bytes to encrypt

them.

(c) Decrypt

PlainText

decrypt(CipherTe

xt ciphertext)

throws

EncryptionExcept

ion

Input: The cipher text input is supplied

Output: the plain text is provided as

the output by decrypting provided

cipher text.

Throws:EncryptionException

6. Executor

public interface Executor

With very little risk, an OS command can be run via this

interface. Implementations should consider precautions to

International Journal of Computer Applications (0975 – 8887)

Volume 185 – No. 30, August 2023

40

minimise the chance of injection into the command or the

parameters. Specific time-out period should be implemented

for the prevention of DoS attacks [16].

Methods

(a)

executeSystemCo

mmand

ExecuteResult

executeSystemCo

mmand(File

executable, List

params)

throws

ExecutorExceptio

n

Input:

executable - command to be executed

params - the parameters to be passed

to the command for execution

Throws:

ExecutorException

7. HTTPUtilities

public interface HTTPUtilities

Additional security for HTTP requests, responses, sessions,

cookies, headers, and logging is provided through the methods

in this interface [17].

Methods

(a)

assertSecureRequ

est

void

assertSecureRequ

est()

throws

AccessControlEx

ception

Calls assertSecureRequest with the

current request.

(b)

encryptHiddenFie

ld

String

encryptHiddenFie

ld(String value)

throws

EncryptionExcept

ion

Encrypts a hidden

field value for use

in HTML.

Input:

value - the plain text value of the

hidden field

Output:

encrypted value of the hidden field

8. IntrusionDetector

public interface IntrusionDetector

It is used to monitor security-related events and detect attack

patterns supporting both custom events and exceptions [18].

Methods

(a) addEvent

Void

addEvent(String

eventName,

String

logMessage)

throws

IntrusionExceptio

n

Input:

eventName - name of the event to add

logMessage - logging the message

with the event

Throws:

IntrusionException - the intrusion

exception

The event should be logged to IntrusionDetector for logging

purposes. The event should be saved at some place to check

the security exception threshold limit. The User object is the

suggested place to store the security event for the current user.

The required security action can be executed and logged if the

User successfully meets a security threshold.

9. Logger

public interface Logger

The security related events can be logged with this interface.

According to the severity of the events, it allows for different

levels of logging, like fatal being the highest value, error,

warning, info, debug, and trace being the lowest value.

Implementors should make use of a well-known logging library

because building a high-performance logger is quite difficult.

The always() method logs a message regardless of the log level

on each iteration.

Methods

(a) setLevel

void setLevel(int

level)

Input:

level - to define the log level.

(b) Always

void

always(Logger.E

ventType type,

String message)

Log an event

regardless of what

logging level is

enabled.

Input:

type - the type of the event

message - the message to log

10. Randomizer

public interface Randomizer

This interface is used to generate cryptographically random

numbers and string. Weak sources of randomization can

compromise the effectiveness of numerous security

solutions.The JCE or BouncyCastle are two examples of robust

cryptographic implementations that implementers should

employ. In ESAPI.properties, the specific algorithm utilized

can be customized [20].

Methods

(a)

getRandomString

String

getRandomString

(int length, char[]

characterSet)

Returns:

the random string

A cryptographically strong pseudo-random number generation

is provided by java.security SecureRandom.

Input:

length - the length of the string

characterSet - the set of characters to include in the created

random string

Output:

random string

11. SecurityConfiguration

public interface SecurityConfiguration

International Journal of Computer Applications (0975 – 8887)

Volume 185 – No. 30, August 2023

41

extends EsapiPropertyLoader

All configuration data necessary to regulate how the ESAPI

implementation operates is contained in the

SecurityConfiguration interface. Use the operating system's

access restrictions to limit access to the location or locations

where the configuration data is stored [21].

Methods

(a)

getApplicationNa

me

@Deprecated

String

getApplicationNa

me()

Output:

the name of the current application

12. User

A user account can be created, disabled, expired, or unlocked

using this interface. Administrators enable the account, which

can be locked due to failed logins or expire after a specified

date. Enabled, unlocked, and unlocked accounts pass

authentication. For authentication to succeed, the User must be

unlocked, enabled, and not expired. [22].

Methods

(a)

getLastHostAddr

ess

String

getLastHostAddr

ess()

Output:

to get last host address of the user

(b)

incrementFailedL

oginCount

void

incrementFailedL

oginCount()

Output:

Increment failed login count.

(c)

isSessionAbsolut

eTimeout

boolean

isSessionAbsolut

eTimeout()

Output:

true, on exceeding session time out of

the user

13. Validator

public interface Validator

This interface contains many methods to validate untrusted

input and gives boolean output. Implementation should use a

"whitelist" validation technique that matches specific patterns

to stop bypasses through encoding or other means [23].

Methods

boolean validateInput(String context, String userInput, String

inputType, int maxInputLength, boolean allowEmpty)

throws IntrusionException

(a) isValidInput

boolean isValidInput(String context,

String input, String type, int

maxLength, boolean allowNull)

throws IntrusionException

Calls isValidInput and returns true if

no exceptions are thrown.

(b)

isValidCreditCar

d

boolean isValidCreditCard(String

context, String input, boolean

allowNull)

throws IntrusionException

Calls getValidCreditCard and returns

true if no exceptions are thrown.

3. PROPOSED FRAMEWORK FOR

SECURING WEB APPLICATION
The proposed work on web security involves two main parts (i)

Web application development without security and attacks on

it (ii) Development of same web applications using Enterprise

Security API. The OWASP Top 10 attacks are made on secure

applications and found that OWASP Top 10 attacks can not be

made on the secure web application. The aim of the proposed

work is to implement secure web applications using ESAPI.

The objectives of the work are as follows

1. To implement the web application using web technology

without web security.

2. To do OWASP Top 10 attack on web Application.

3. To provide the security to the web application using OWASP

ESAPI framework

4. To test the secure web application by performing OWASP

Top 10 attack.

3.1 Secure Environmental Settings
The web application is made available in the public domain.

The network defenses like firewall, intrusion prevention system

is used as shown in Figure 3.

Fig 3: Firewall and IPS

Zero-day vulnerabilities are those that are discovered in the

proprietary code of specific web applications but are not yet

known to security defense systems. These vulnerabilities are

easily exploitable by an experienced attacker.

Hardware Requirements: The minimum hardware

specifications which can be used for implementing the system

are: Processor: Intel Core i7, RAM: 16 GB, Hard disk: 1 TB

Software Requirements: Operating System: Windows 10 (64

bit), Database: MySQL, Technologies Used: Java (JDK

1.7), HTML, JSP and Java Servlet for web application.

Other Tools: Apache Tomcat, Net Beans IDE, Any Web

Browser (Google Chrome/MozillaFirefox, etc.), Enterprise

Security API.

ESAPI: It is a free, open source framework containing security

control libraries helping to write lower-risk existing as well as

new applications.

3.2 Proposed Defense Mechanism

Implementation
In this section, authors have done experimentation for attacks

and proposed the security mechanism to show how security

International Journal of Computer Applications (0975 – 8887)

Volume 185 – No. 30, August 2023

42

shall be implemented against these attacks on the web

application with illustrative screenshots.

3.2.1 A1- SQL INJECTION
In SQL injection attack, a SQL query is injected into the

program through the client's input field [3]. This attack is able

to extract, modify sensitive data from the database, execute

catastrophic operations such as shutdown the database, recover

the content of the database file system and can execute

commands to the operating system.

Fig 4a: SQL Injection Attack

Fig 4b: SQL Injection Prevention

As shown in Figure 4a, the vulnerable input field is used as an

entry point to exploit using WHERE condition which will

always return true and expose the critical data [15]. The

proposed SQL injection prevention implementation is as shown

below:

Codec ORACLE_CODEC = new OracleCodec();

String query="select name from users where id="+

ESAPI.encoder().encodeForSQL(ORACLE_CODEC,

validateUserId)) and date_created>='"+

ESAPI.encoder().encodeForSQL(ORACLE_CODEC,

validatedStartDate)+"'";

For prevention of SQL Injection (Figure 4b), ESAPI’s encoder

for SQL can be used. It will transform any injection query to a

statement which is safe to be executed on SQL database

preventing SQL injection attack. With the use of ESAPI

encoder for SQL, the Injection attack was repelled by the

application.

3.2.2 A2- Cross-Site Scripting (XSS) Attack
It occurs when a malicious script is sent or executed from the

victim's browser without proper validation in web applications

[24]. The result of XSS attack is the user may be sent to

malicious websites, user sessions may be stolen, or websites

may be defaced.

Fig 5a: Cross-Site Scripting Attack

Fig 5b: Cross-Site Scripting Prevention

The javascript used to reveal the cookie of an user is as shown

in Figure 5b.

 Cross-Site Scripting Prevention

<script>alert(document.cookie)</script>

XSS attack can be prevented by using ESAPI’s validator. The

validator can be used to validate any user input such as user

name, email_id , SSN, etc.

Validator.Email=^[A-Za-z0-9._%-]+@[A-Za-z0-9.-]+\\.[a-

zA-Z]{2,4}$1

Validator.IPAddress=^(?:(?:25[0-5]|2[0-4][0-9]|[01]?[0-9][0-

9]?)\\.){3}(?:25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)$

Validator.URL=^(ht|f)tp(s?)\\:\\/\\/[0-9a-zA-Z]([-.\\w]*[0-9a-

zA-Z])*(:(0-9)*)*(\\/?)([a-zA-Z0-9\\-

\\.\\?\\,\\:\\'\\/\\\\\\+=&%\\&language\\$#_]*)?$

If the properties available in validator.properties aren’t

sufficient for the application, then developers can define their

own validators by writing custom registry expressions. The

XSS attack is prevented using ESAPI’s validator.

3.2.3 A3- Broken Authentication and Session

Management
Due to wrong implementation of authentication and session

management, the web application is prone to allow attackers

to compromise user session tokens and user passwords [6].

International Journal of Computer Applications (0975 – 8887)

Volume 185 – No. 30, August 2023

43

This is an example of a vulnerable code which leads to broken

authentication. The user is not properly authenticated before

log in. This kind of programming is unfortunately surprisingly

common in systems nowadays.

Fig 6a: Session Attack

Fig 6b: Broken Authentication Prevention

Session Attack is an example of bad session management as

shown in Figure 6a. As shown in Figure 6b, the session id is

included in the URL. If a user shares this URL with someone,

then their session id will also be shared and other users will get

this session id and other details such as credit card details.

session.setAttribute("csrfToken",

ESAPI.randomizer().getRandomString(20, DefaultEncoder));

The above mentioned code is an example of a good

authentication method, which uses ESAPI encoder to prevent

injection attacks and authenticates user if and only if username

and password combination is correct. The session id is stored

in HTTP session which is stored at the server end. So, URLs

will not consist of session variables. Broken Authentication

Prevention is shown in Figure 6b. It shows how URL is

displayed in address bar of a browser with proper session

management. It is seen that there are no session variables

showing up in the URL.

3.2.4 A4- Insecure Direct Object References
Due to wrong implementation of security configurations,

database object such as directory, file or database key is

exposed to the attackers. It can result into access of

unauthorized data due to lack of an access control check or

other security measure.

Fig 7a: Insecure Direct Object References Attack

Fig 7b: Insecure Direct Object References Prevention
UI

Figure 7b is an example of direct object reference. On the

holdings page, the information is shown of the user id provided

in the URL. If the id is changed to any other id, then the details

of that particular user (if exists) will be displayed.

protected static String getIndirectReference(String userID)

{

AccessReferenceMap map new RandomAccesaReferenceMap

();

String indirectReference map.addDirectReference

(userID).toString();

 return indirectReference;

}

To prevent direct object reference, ESAPI reference maps can

be used. It is used by binding the user ids that are stored in the

database with a random string. So that an attacker cannot guess

other users’ ids.

3.2.5 A5- Cross Site Request Forgery (CSRF)
A victim of a CSRF attack is forced to send a fake HTTP

request to a vulnerable website while logged in, replete with the

victim's session cookie and any other automatically included

authentication credentials. As a result, the attacker can direct

the victim's browser to transmit commands that the vulnerable

program will see as originating from the user in a legitimate

manner.

Fig 8a: Cross-Site Request Forgery Attack

If a user clicks on any vulnerable link (Figure 8a), automatic

request will send to server results into execution of code.

session.setAttribute("csrfToken",

ESAPI.randomizer().getRandomString(20, DefaultEncoder));

As shown in the above code, CSRF attack can be prevented by

using a token which can be made required for every secure

transaction. This token can be generated by using ESAPI token

generators.

3.2.6 A6- Security Misconfiguration
The security configurations need to be applied in application,

frameworks, application server, web server, database server

since beginning as default configurations are mainly known by

attackers. This involves keeping the most current releases of all

programs, including any code libraries utilized by the

application. To prevent Security Misconfiguration -a) Identify

all components and the versions, along with all dependencies,

b) Monitor the these components security , c)create security

guideline for component use, d) When necessary, take into

account enclosing components in security wrappers to

deactivate unnecessary functionality.

3.2.7 A7- Insecure Cryptographic Storage
Proper encryption or hashing is often not used by web

applications to protect sensitive data, such as credit card

numbers, SSNs, and authentication credentials.

Fig 9a: Insecure Cryptographic Storage vulnerability

International Journal of Computer Applications (0975 – 8887)

Volume 185 – No. 30, August 2023

44

Fig 9b: Insecure Cryptographic Storage Prevention

Figure 9a is an example of insecure cryptographic storage. As

shown in image, the passwords are stored in plaintext. If the

database is compromised then attacker will easily get all the

users’ passwords. Figure 9b is another example of insecure

cryptographic storage. Here, the passwords are hashed without

using a salt. So, same passwords will be hashed to the exact

same string.

Fig 9c: Insecure Cryptographic Storage Prevention

As shown in the above code, Insecure Cryptographic Storage

Prevention is a good example of storing passwords. Here, the

passwords are concatenated with a random string called as

‘salt’, and then hashed. This results into different hashes of the

same passwords. In this case, attackers would require 3000

years to brute force the passwords.

3. CONCLUSION
ESAPI provides secure alternatives to prevent common

injection attacks like SQL injection and Command injection. It

offers validated input and output encoding methods to prevent

malicious input from being executed as code. ESAPI includes

output encoding techniques to sanitize user-supplied data,

preventing it from being interpreted as malicious scripts by web

browsers. It also helps in proper contextual output encoding to

protect against DOM-based Cross-Site Scripting (XSS) using

Authenticator, Encoder and Validaor interfaces. ESAPI

provides Cross-Site Request Forgery (CSRF) token

management to help prevent unauthorized actions by ensuring

that requests originate from trusted sources. It validates the

tokens in incoming requests to detect and prevent CSRF

attacks. ESAPI offers secure session management

functionalities like session timeout handling, secure cookie

management, and protection against session fixation attacks. It

also provides authentication modules and methods to ensure

secure user authentication processes. Thus Authentication and

Session Management vulnerability is patched using

Authenticator control interface. ESAPI namely

AccessController interface helps enforce proper access controls

by providing methods for role-based access control (RBAC),

authorization checks, and proper handling of permissions and

privileges. Thus Access Control is secured from attacker.

ESAPI assists in implementing secure access controls using

AccessController interface to prevent unauthorized access to

sensitive or private resources by ensuring that direct object

references are properly protected. Thus Insecure Direct Object

References vulnerability can also be mitigated. It also provides

default security configurations such as Encryptor interface and

best practices to help developers secure their applications. It

includes settings related to encryption, logging, error handling,

and more. However administrator should do proper

configuration of web server, application server, operating

systems and data base configuration. ESAPI offers secure file

upload and download functionalities with built-in protection

like HTTPUtilities upload interface against path traversal

attacks and verification of file types and sizes. Thus Secure

File Handling protects the files from download or upload or any

modifications. ESAPI promotes secure error handling and

logging practices using Logger interface to prevent information

leakage that can be exploited by attackers. ESAPI provides a

set of cryptographic functions and utilities such as Randomizer

for securely handling sensitive data, such as encryption,

hashing, and secure random number generation. Thus by

incorporating ESAPI into web application development,

developers can leverage its secure coding practices, libraries,

and APIs to address various vulnerabilities that may be part of

the OWASP Top 10 2023 attacks.

There are various vulnerabilities in web technology

components like HTML, Java script, JSP, JAVA and backend

Oracle database that have been used for the development of

web application. Hence apart from ESAPI, secure coding can

be written by the developers. The author’s research is marching

towards this goal.

4. REFERENCES
[1] Elder, S. E., Zahan, N., Kozarev, V., Shu, R., Menzies, T.,

and Williams, L. 2021. Structuring a Comprehensive

Software Security Course Around the OWASP

Application Security Verification Standard. IEEE/ACM

43rd International Conference on Software Engineering:

Software Engineering Education and Training

(ICSESEET), 95-104.

[2] Marchand-Melsom, A., and Mai, D. B. N. 2020.

Automatic repair of OWASP Top 10 security

vulnerabilities: A survey. IEEE/ACM 42nd International

Conference on Software Engineering Workshops

(ICSEW’20), Seoul, 23-30.

[3] Spoto, F., Burato, E., Ernst, M. D., Ferrara, P., Lovato, A.,

Macedonio, D., Spiridon, C. 2019. Static Identification of

Injection Attacks in Java. ACM Transactions on

Programming Languages and Systems, Vol. 41, No. 3, 18-

58.

[4] Gedam, M. N., and Meshram, B. B. 2022. Proposed

Secure 3-Use Case Diagram. International Journal of

Systems and Software Security and Protection, Volume

13, Issue 1, IGI Global.

[5] Gedam, M. N., and Meshram, B. B. 2019. Vulnerabilities

& Attacks in SRS for Object-Oriented Software

Development. Lecture Notes in Engineering and

Computer Science: Proceedings of The World Congress

on Engineering and Computer Science, 94-99.

[6] Lala, S. K., Kumar, A., Subbulakshmi, T. 2021. Secure

Web development using OWASP Guidelines.

International Conference on Intelligent Computing and

Control Systems(ICICCS), 323-332.

[7] Brown, L. D., Hua, H., and Gao, C. 2003. A widget

framework for augmented interaction in SCAPE.

[8] Ingle, D.R., and Meshram, B. B. 2012. Attacks on Web

Based Software And Modelling Defence Mechanisms.

International Journal of UbiComp.

[9] Chavan, S. B., and Meshram, B. B. 2013. Classification of

web application vulnerabilities. International Journal of

Engineering Science and Innovative Technology

(IJESIT).

International Journal of Computer Applications (0975 – 8887)

Volume 185 – No. 30, August 2023

45

[10] Khochare, N., Chalurkar, S., and Meshram, B. B. 2012.

Survey on Web Application Vulnerabilities Prevention

Tools. International Journal of Managment, IT and

Engineering.

[11] Available Online -

https://www.javadoc.io/doc/org.owasp.esapi/esapi/2.0.1/

org/owasp/esapi/AccessReferenceMap.html

[12] Available Online -

https://www.javadoc.io/static/org.owasp.esapi/esapi/2.0.1

/index.html?org/owasp/esapi/Authenticator.html

[13] Interface Encoder, Jeff Williams (2007) -

https://www.javadoc.io/doc/org.owasp.esapi/esapi/2.0.1/

org/owasp/esapi/Encoder.html

[14] OWASP Enterprise Security API -

https://owasp.org/www-project-enterprise-security-api/

[15] Interface Encrypter, Jeff Williams (2007) -

https://javadoc.io/doc/org.owasp.esapi/esapi/2.0.1/org/o

wasp/esapi/Encryptor.html

[16] Interface Executor, Jeff Williams (2007) -

https://javadoc.io/doc/org.owasp.esapi/esapi/2.1.0/org/o

wasp/esapi/Executor.html

[17] Interface HTTPUtilities, Jeff Williams (2007) -

https://www.javadoc.io/doc/org.owasp.esapi/esapi/2.0.1/

org/owasp/esapi/HTTPUtilities.html

[18] Interface IntrusionDetector, Jeff Williams (2007) -

https://javadoc.io/doc/org.owasp.esapi/esapi/2.0.1/org/o

wasp/esapi/IntrusionDetector.html

[19] Available Online -

https://www.javadoc.io/doc/org.owasp.esapi/esapi/2.1.0/

org/owasp/esapi/Logger.html

[20] Interface Randomizer, Jeff Williams (2007) -

https://javadoc.io/doc/org.owasp.esapi/esapi/2.0.1/org/o

wasp/esapi/Randomizer.html

[21] Interface SecurityConfiguration, Jeff Williams (2007) -

https://www.javadoc.io/doc/org.owasp.esapi/esapi/2.1.0.

1/org/owasp/esapi/SecurityConfiguration.html

[22] Interface User, Jeff Williams (2007) -

https://www.javadoc.io/doc/org.owasp.esapi/esapi/2.0.1/

org/owasp/esapi/User.html

[23] Interface Validator, Jeff Williams (2007) -

https://www.javadoc.io/doc/org.owasp.esapi/esapi/2.0.1/

org/owasp/esapi/Validator.html

[24] Rodríguez, G. E., Torres, J. G., Flores, P., and Benavides,

D. 2019. Cross-site scripting (XSS) attacks and

mitigation: A survey. Elsevier.

[25] Gedam, M. N., and Meshram, B. B. 2019. Proposed

Secure Content Modeling of Web Software Model.

NCRIEST, Nashik.

[26] Available Online -

https://javadoc.io/doc/org.owasp.esapi/esapi/2.0.1/org/o

wasp/esapi/AccessController.html

IJCATM : www.ijcaonline.org

