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ABSTRACT 

Programmers tend to leave deficient, non-permanent bypass 

and demented codes that require rework in software 

development and such phenomenon is referred to as Self-

admitted Technical Debt (SATD). Previous studies have shown 

that SATD is common in released software artefacts and is 

mostly found in source code comments. SATD negatively 

affects software project development and incurs high 

maintenance overheads. In this study, the authors seek to 

identify plausible approaches utilized by researchers to identify 

and detect SATD prone tasks in software artefacts prior to 

release to the market or clients. Accordingly, a literature review 

is carried out to perform this investigative study. Two popular 

approaches were found for identifying and detecting SATD 

prone tasks from a pool of SATD related research papers, 

namely manual and text mining approach.  
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1. INTRODUCTION 
Self-admitted technical debt refers to the temporary 

workarounds, temporary fixes, buggy codes, shortcuts left in 

codes, and codes that require rework which are intentionally 

left by developers prior to software release [1][2]. Due to 

expediting pressures from clients, developers normally commit 

codes that are not quite right to clients. Thus, various patches 

and shortcuts are used to make the software product ready for 

release to clients. After a period of usage of the released 

software products, the clients normally face a series of issues 

with respect to component malfunctioning, unexpected flaws in 

components, inactive buttons, issues with logins, etc. These are 

reported back to the developers for them to rework. It should 

be noted that these unexpected issues or challenges faced are a 

result of the developers using shortcuts and temporary fixes to 

get the software product ready for release to clients. This 

phenomenon is referred to as self-admitted technical debt 

[1][2][3]. According to Mensah et al. [1], these deficient and 

imperfect traits in software development prior to project release 

will have to be paid in the near future as an uncontrolled 

maintenance cost. 

Cunningham [4] describes the presence of not quite right code 

or code smell during development as technical debt. Potdar and 

Shihab [2] coined the term self-admitted technical debt (SATD) 

from Cunningham’s technical debt metaphor because SATD is 

intentional on the side of the development team. Thus, the 

developers know that the shortcuts and temporary fixes they are 

using are not quite right but due to pressure from clients and 

project managers, there is no option than to find themselves 

introducing SATD. Aside the expediting pressure from clients 

and project managers, the level of experience counts in the 

introduction of SATD. Thus, if a developer has less experience 

in programming, the person may not be able to fully address all 

the challenges faced during the software development and 

hence, might have no choice than to patch faulty codes with 

temporary fixes. This was found to be true based on an 

exploratory study by Potdar and Shihab [2] where the authors 

found out that developers with more experience tend to 

introduce SATD during coding as compared to those with less 

experience.  

Self-admitted technical debt emanates from software 

development and maintenance, with a negative effect on 

software and has lately been a focus for more research studies 

[5][1][2][6]. SATD is becoming a research focus. Researchers 

aim to find results for reducing developers’ errors and avoid 

producing less quality software. This misconduct in 

development is sometimes based on resolutions that prioritize 

functionality over quality [7]. 

The challenging question that arises among project managers 

prior to the release of software products, should managers meet 

short-term business objectives and release the product as soon 

as possible or take time and fix the codes before release. From 

either point of view, a loss can be incurred. Even though not all 

bugs can be fixed before deployment of the software product, 

there is the need for the majority of these bugs to be resolved 

to lessen the issues of clients reporting back problems about the 

software product usage. This study seeks to examine previous 

studies that have attempted to classify the identified technical 

debts that were considered self-admitted into various classes. 

For example, a study by Maldonado and Shihab [8], introduced 

a classification scheme for SATD. These five classes are 

Requirement debt, Design debt, Testing debt, Defect debt and 

Documentation debt. The study will also consider other 

classification schemes introduced by other researchers in the 

Literature review (LR). Several writers have proposed 

approaches to spontaneously identify SATD comments [11]. 

Thus, in this study, we perform an in-depth analysis of existing 

works to examine the various approaches introduced in the 

literature to identify and detect SATD prone tasks during 

software development.  

2. RELATED WORKS ON SELF-

ADMITTED TECHNICAL DEBT 

The term Self-admitted technical debt (SATD) was first coined 

by Potdar and Shihab [2] in their exploratory study using 

manual inspection to detect SATD. The term SATD came up 

after Potdar and Shihab [2] had identified that technical debts 

were intentionally introduced by software developers to speed 
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up their work or meet deadlines. The authors used manual 

inspection techniques on four large open-source projects to 

detect SATD, namely Eclipse, Chromium OS, ArgoUML and 

Apache HTTP Server. One of the results from their study stated 

that 62 different commented patterns were indicated as SATD 

tasks after manually reading through 101,762 code comments. 

The authors identified that 2.4% - 31.0% of open-source files 

had SATD. Experienced developers were likely to introduce 

SATD and it was introduced throughout the development 

stages. The authors added that release pressure was not a major 

reason for SATD because less than 15% of SATD was 

introduced within a month of the latest release. 

One of the most recent detection techniques was based on 

natural language processing (NLP) proposed by Maldonado et 

al. [9]. This was an automatic approach to identifying the types 

of SATD. In their work, the authors used a maximum entropy 

classifier based on NLP to identify the most common types of 

SATD which were SATD on design and SATD on requirement. 

Another approach was introduced by Huang et al. [6] using text 

mining to automatically detect SATD in source code 

comments. In this approach, a selection of useful features for 

classifier training was used in addition to sub-classifiers from 

different source projects to build a composite classifier to 

predict accurately. At the end of the study, their approach 

improved the F1-score by 24.92% on average for each project 

without the classifier's vote and provided excellent 

performance while reducing the amount of data needed to train. 

The text mining approach used eight open-source codes that 

contained 212,413 comments to detect technical debt. It 

outperformed the approach introduced by Potdar and Shihab 

[2]  in terms of F1- score. When compared to the manual 

approach, it improved the F1- score by 58.4% and the natural 

language processing used by Maldonado et al.[9] was 27.95%. 

This section of the study is about the types of SATD. In recent 

studies by Maldonado and Shihab[8], the authors quantified the 

different types of SATD as design debt, defect debt, 

documentation debt, requirement debt and test debt. The 

authors used five well-commented open-source projects 

namely Apache Ant, Apache Jmeter, ArgoUML, Columba and 

JFreeChart. The authors examined more than 166,000 

comments which after filtering, resulted in a dataset of 33,093. 

The authors manually analysed and classified them into the five 

different types of SATD. The study also stated the most 

common type of SATD was the design debt which is 42% to 

84% in all the classified comments. Maldonado and Shihab [8] 

explained the types of SATD.  

Self-admitted design debt is a comment that shows a problem 

with the design of the code and the developer sometimes states 

what needs to be done to improve the design of the code. It can 

be comments about misplaced codes, long methods, and 

workarounds. Examples of such comments include “this 

method is too complex; I hate this so much even before I start 

writing it”. Self-admitted defect debt states which part of the 

code is defective. An example of defect debt comments is “bug 

in the above method, the output stream version of this doesn’t 

work”. Self-admitted documentation debt is when there is no 

proper documentation supporting that part of the program. 

Examples include “this function needs documentation, 

document the reason for this”. Self-admitted requirement debt 

expresses incompleteness of method and class. Examples 

include “no methods yet for getClassname, no method for 

newInstance using a reserve-classloader”. Self-admitted test 

debt states the need for improvement of the current test. 

Examples include “need a lot more test, enable some proper 

test”. The study of  Maldonado and Shihab[8]  showed that the 

percentage of the most common type of SATD was design debt 

with 42% to 84% across the projects. The second most common 

type is requirement debt which is 5% to 45%. The rest of the 

types have low frequency with 10%. 

Another study by Bavota and Russo [3] mined over 2 billion 

source code comments of 159 Java open-source projects and 

identified 51 SATD instances per project. In their manual 

categorization of SATD, the authors adopted an open coding 

process inspired by the Grounded theory principles [10]. The 

authors identified the types of SATD which were code debt, 

design debt, documentation debt, defect debt, test debt and 

requirement debt. The authors highlighted that the most 

frequent type was code debt with 30% of the open-source 

projects, followed by defect and requirement debt with 20% 

each and design debt with 13%. The authors also found out that 

in most cases 63% of the developers who introduced the debt 

were the same fixing the debt. The phase in the software 
development lifecycle which had the highest technical debt was 

design with 39.34% followed by test with 23.70% and project 

convention with 15.64% Silva et al. [11]. 

This section is about the removal of SATD after it has been 

identified. Recent studies by Maldonado et al. [9] stated that 

after the analysis of five case projects, 40.5% to 90.6% of 

identified SATD were removed. The study showed that on 

average, 54.4% of SATD tasks were self-removed meaning that 

developers who introduced it were the same people who did the 

removal and on the median, 61.0% were self-removed. This 

study further showed that the amount of time SATD remains in 

a project before removal ranges between 18.2 to 172.8 days on 

median and 82 to 613.2 days on average. Developers mostly 

remove SATD when they are fixing bugs or adding new 

features. Zampetti et al. [12] proposed an in-depth quantitative 

and qualitative empirical study on the removal of SATD which 

was built on the previous work of Maldonado et al [9]. The 

authors' study indicated that 25% to 60% of SATD comments 

were removed due to full class or method removals. Moreover, 

33% to 63% of SATD was removed due to a change in method 

and 8% of SATD removal was documented in commit 

messages. Their paper further stated that 55% of SATD 
comments were removed while improving features. Bavota 

and Russo[3] showed that 57% of SATD were removed during 

the change history of software and 63% of SATD were self-

removed. Potdar and Shihab [2] showed that 26.25% to 63.45% 

of SATD were removed either in the next immediate release or 

over multiple releases. Even though SATD is not an optimal 

solution, organizations have embraced technical debt into 

project plans knowing vividly the risk to software quality and 

maintenance (Krutchen et al. [13]). Properly managed SATD 

can add value to the software but poorly managed SATD can 

affect the software [13]. 

The last section is the repayment and prioritization of SATD. 

Mensah et al. [1]  introduced a six(6) step prioritization scheme 

that aimed to inspect SATD in classifying them by how 

urgently they needed to be addressed and estimated the rework 

effort they require. The authors implemented a text mining 

algorithm on four open-source projects that were AgroUML, 

Chromium OS, Eclipse, and Apache HTTP Server and 

presented an empirical finding showing that 31% to 39% of 

SATD comments were major tasks and 58% to 69% were 

minor. The major task was difficult for developers to resolve.  

There has been much research into the area of detection, 

comprehension, repayment and management techniques. 

Although SATD is not an optimal solution, it must be 

considered in the preparation of a balance sheet. The aftermath 
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of delaying development activity would be cost-effective so 

that it would aid software project managers to have a fair 

understanding of the financial status of the software 

organization. SATD should be considered a financial 

obligation. According to Akbarinasaji and Bener [14],  

technical debt listed as a liability gives a realistic insight into 

the liability of the corporation, provides a better overview of 

the business’s finances and aids in getting more accurate 

financial information for the income statement. It helps in good 

decision-making whether the organization should improve 

profits or go into investment because liabilities and their values 

are visible on the balance sheet. It will also make managers 

aware of their debt and how it increases or decreases. 

Relegating technical debt as a liability might cause 

misinterpretation of the financial ratio. Akbarinasaji and Bener 

[14], further stated that companies that neglect technical debt 

would affect the total liability of the organization and deceive 

the gauge of earning power and financial condition. To append 

technical debt as a liability, all technical debt associated with 

the company’s product should be extracted by specialists and 

quantified. Since technical debt is abstract, there is no 

consensus on how to measure its monetary value, but a balance 

sheet includes intangible assets such as goodwill. An approach 

to quantifying the intangible has been developed by 

accountants. Thus, technical debt can be fixed under intangible 

assets. This depicts the essence of appending technical debt in 

the balance sheet. 

The review task seeks to identify and detect SATD prone tasks 

based on existing works [1][3][2][15][16]. The authors first 

perform an investigative study to an exploratory study by 

Potdar and Shihab [2] who extracted a pool of 62 textual 

indicators from four datasets, namely Eclipse, Apache, 

Chromium and ArgoUML. These textual indicators were 

considered as a baseline for the identification of SATD prone 

tasks in studies by Mensah et al. [1], and Bavota and Russo [3]. 

Thus, after the exploratory study analysis [2], the authors 

moved on to a study by Maldonado et al. [8] who identified five 

levels or classes of SATD prone tasks based on the textual 

indicators exploratory study [2]. This was followed by a study 

by Mensah et al. [1] who introduced an NLP approach based 

on a 5-step prioritization scheme for prioritizing SATD prone 

tasks and estimating the rework effort for such SATD tasks. It 

should be noted that Shihab and Potdar [2] were the first to 

introduce the SATD concept in 2014.  

3. METHODOLOGY 
The literature review (LR) approach has been adopted for the 

identification and detection of SATD in the reviewed papers. 

According to Kitchenham et al. [17], SLR is the systematic 

mode of reporting the outcomes extracted from the literature. 

SLR method offers a way of classifying, exploring and 

examining the present studies connected to any questions of 

interest and research areas. Kitchenham [18], classifies SLR 

into three main phases, i.e. planning the review, conducting the 

review and reporting the review. The SLR protocol is the 

outcome of the planning phase. 

3.1 Research Questions (RQ) 
RQ1: What are the methods used to identify and detect SATD 

prone tasks? 

Motivation: There is a need to identify and detect SATD prone 

tasks to assist software engineers in implementing various 

approaches to detecting SATD prone tasks. The SATD 

metaphor has been given attention by most researchers, hence 

assisting with effective tools and methods will provide the 

software engineering team to ameliorate the SATD prone tasks 

in software development.  

Approach: This RQ is complemented by the various tools and 

techniques that have been used by researchers to identify and 

detect SATD. We read 19 SATD and TD papers to identify the 

methods of detection that have been used over the years. These 

papers were focused on the detection, comprehension and 

repayment of SATD. Since this paper is on detection, the focus 

of the 19 papers was drawn to the methods used. After several 

analyses of each detection paper, we identified the two main 

types of detection methods that have been adopted. Some 

papers used both manual and text mining as a detection 

technique. The manual approach is the first method used in 

SATD detection [2]. This technique reads all the source code 

comments and LOC manually. The text mining was the second 

novel approach which automated the process of manual 

inspection [7]. Text mining was to improve the results at a 

faster rate [1]. Other papers used both approaches in their 

methodology. 

RQ2: Where are SATD prone tasks identified in software 

artefacts? 

Motivation: This RQ seeks to identify plausible software 

artefacts or projects that researchers have been using to detect 

SATD prone tasks. Hence, a review of the literature will assist 

practitioners and researchers in knowing which artefacts to use 

for identifying SATD prone tasks. 

Approach: An extensive LR is conducted to identify software 

artefacts prone to SATD tasks from literature. We read through 

19 SATD papers and all these papers used open-source projects 

and SATD prone tasks were mainly identified from source code 

comments or LOCs. The source code comments are remarks 

the developers write at the end of the code. Most papers that 

were reviewed used the comments to identify SATD prone 

tasks. 

RQ3: Which tools are used for data (source code comments 

or LOCs) extraction in SATD? 

Motivation: This RQ seeks to identify extraction tools that 

researchers have been using to extract source code comments 

or LOCs in SATD. Therefore, a review of the literature will aid 

practitioners and researchers in knowing which extraction tools 

to use. 

Approach: An extensive SLR is conducted to identify all 

extraction tools. The SATD papers considered in this work 

used a variety of extraction tools. These extraction tools are 

used to sunder out source code comments which are SATD 

instances from source files or projects. The extraction tools 

used were srcML, Jdeodorant, NLP, WEKA, Python-based 

tool, Eclipse plugin and Java-based tool. Most papers 

considered two of the tools mentioned together to extract 

source code comments to make their analysis. 

RQ4: Which open-source projects are used in the detection 

and identification of SATD? 

Motivation: This RQ strives after the open-source projects that 

have been used by researchers. Thus, a review of the literature 

will enlighten practitioners and researchers to know the 

projects to use. 

Approach: An extensive SLR was conducted on all the 

reviewed papers. The source code comments were identified 

from the open-source projects. There were 20 open-source 

projects used in the papers reviewed. Most papers used more 

than one project. 

3.2 Datasets 
Four well-commented open-source projects were made 

available at openhub.net and extracted by Potdar and Shihab  

[1] for studying SATD. The four projects are ArgoUML, 



International Journal of Computer Applications (0975 – 8887) 

Volume 185 – No. 31, August 2023 

41 

Chromium OS, Apache HTTP Server and Eclipse Platform 

project. The description of the open-source projects is 

presented in Table 1. In each project, the authors used metrics 

such as the total number of Lines of Codes (LOC), number of 

commented lines, dates of software release, estimated effort in 

person-months and contributors or developers for each sampled 

open-source project. 

Table 1. Description of Sampled Projects 

 

Metric 

Sampled Open-Source Projects 

ArgoUML Chromium Eclipse Apache 

LOC 122575 107706 659231 192333 

Comment 115713 37889 437640 54295 

Date Dec 2011 Nov 2009 Jun,2013 Jul 2013 

Effort 3024 47856 8760 6000 

Developers 53 1784 221 145 

Version 0.34 30 4.3 2.4.6 

 

From the text mining analysis, the authors observed that these 

projects were developed using several programming languages 

with the dominant ones being Java, C++, C and XM.  With 

respect to the ArgoUML project, a majority of 39.3% was 

written in Java, 31.9% in XML, 14.1% in HTML, 11.0% in 

XSL Transformation, 1.5% in CSS and less than 1% each in 

Modula-2, JavaScript, shell-script, DOS batch script, 

MetaFont, Pearl and SQL. In relation to the Chromium project, 

a majority of 89.0% was written in C, 4.8% in C++, 2.4% in 

Assembly, 2.2% in Python and the remaining less than 1% in 

XML, Make, shell script, HTML and Java. For the Eclipse 

project, a majority of 80.2% was written in Java, 10.5% in 

XML, 5.5% in HTML, 2.7% in C and the remaining in C++, 

CSS, MetaFont and JavaScript. Lastly, a majority of 55.5% of 

Apache HTTP Server was written in XML32.4% in C, 8.2% in 

Forth, 1.1% in XSL Transformation and the remaining in 

HTML, Autoconf, shell script, CSS, JavaScript, C++, IDL/PV-

WAVE/GDL, Pearl, AWK, CMake and Make. 

3.3 Extraction of Self-Admitted Technical 

Debt Textual Indicators  
A study by Potdar and Shihab [2] performed a manual 

exploratory study by reading through source code comments 

from four datasets, namely Eclipse, Apache, Chromium OS and 

ArgoUML to identify SATD textual indicators. This was to 

assist researchers in building a text mining algorithm or NLP 

approach so that the process of SATD extraction can be 

automated to increase the possibility of its use in practice. The 

source code comments from each dataset were examined by 

Potdar and Shihab [2], and the key indicators contributing to 

the various classes of SATD were extracted. This study 

presents a sample of the source code comments prone to SATD 

below.        

* TODO: REMOVE ME BEFORE PRODUCTION (????) *  

* Ready to revalidate, pretend we were never here *    

* Not removed and not expired yet, we’re done iterating *              

* TODO: Add directive for tuning the update interval *       

* Something is wrong here but the result is what we wanted  

* Strictly speaking, this is a design error *  

* DESIGN ERROR: a mix of repositories *         

* Alternative: just load unresolved locks *  

* Note: this shouldn’t happen, but just be sure... *       

* Hmm. this doesn’t feel like the right place or thing to do * 

* Open the thing lazily *       

* If we’ve never heard of this object   bail out *               

* Give up because the parent is still not materialized *     

* TODO: this isn’t quite right but is ok for now *        

* Yuck, this is awkward to use *  

* Macro is ugly but makes the tests pretty *                         

* TODO: analyze why we have such a bad bail out here! *      

* FINISHME: This is wrong. The constant value field 

should…*       

* Detect dead code, nuke it, and calculate again for new change 

*                   

* FINISHME: This hack makes writing to … * 

* Skip the stupid Microsoft UTF-8 Byte order marks *                       

*Ignore any errors and continue with index0 if there is a 

problem*                                 

This list of textual indicators formed a dictionary of words 

which was used in a proposed text-mining approach by Mensah 

et al. and realized that most of the SATD comments with their 

respective indicators were similar across projects [1]. The 

authors observed that most of these indicators were common 

for most of the five classes and based on previous work [8]. 

Thus, present the five levels or classes of categorizing the 

SATD prone tasks as follows:   

Class of SATD             Class 

Requirement debt   1 

Design debt   2 

Test debt                   3 

Defect debt   4 

Documentation debt  5 

The explanation with examples of the classes of SATD is 

elaborated in the study by Maldonado and Shihab [8].  

Text classification is the process of labelling a set of text 

documents into several classes or categories from a predefined 

set [19]. The features are the developers and source code 

comments which correspond to the terms or words in a text 

document. Dilara et al. [20] define these features as bag-of-

words. With a pool of dictionary of indicators from these bag-

of-words, previous studies [16][1][3] were able to perform the 

text classification analysis on SATD prone tasks.  

3.4 Text Mining Technique  
Mensah et al. [1] proposed a text-mining technique for mining 

source code comments of open-source projects and extracting 

key terms on SATD. This technique plays a significant role in 

transforming source code comments into numeric counts based 

on the assignment of term weights for easy modelling of the 

SATD source code comments.  The text mining technique for 

commented source code projects is divided into four phases 

which are the pre-processing phase of the project datasets, 

extraction of code comments containing technical debts 

specifically SATD from the overall source code comment, 
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Computation of term weights for SATD, and computation of 

rework effort for each class of SATD. 

Data Pre-processing Phase: Pre-processing is an important 

phase in text mining and text classification. For efficient 

regular expression matching, the authors per-processed the 

extracted open-source code comments based on the following 

as elaborated by Kotsiantis et al. [21] and Torunoglu et al. [20]. 

Data Cleaning: The authors used the proposed text mining 

approach to remove punctuation marks in the form of ~! @, -

#$%^*] [|\ from the corpus of source code comments. Again, 

the authors filtered out noise in the form of blank lines and 

white spaces within strings from each project dataset. Typical 

examples of white spaces within strings were “FIX ME” and 

“TO DO” which it was realized that most developers used in 

various comments compared to “FIXME” and “TODO”. This 

was addressed by the proposed text mining technique (using the 

grepl function). This filter approach enabled the pattern 

recognition process to obtain desired searched patterns during 

the text mining.   

Data Reduction: The authors applied a stratified sampling 

method to divide the total instances in each corpus into k strata 

(partitions) and eliminated blank lines and comments that were 

not prone to SATD.  

Stopword Filtering: Here, common words occurring frequently 

such as and, this, the, or, of, am, it, on, at were removed since 

they less contributed to the text mining and classification 

process. These words and other related words that frequently 

occurred in the source code comments were searched and 

removed from all the sampled projects based on a similar 

approach by Fazli et al. [22]. 

Term Weighting: Based on the proposed technique, the authors 

assigned term weights to the various SATD source code 

comments in all cases of the sampled OS projects. This enabled 

the authors to know the frequency at which the SATD 

indicators occurred in the source code comments. The 

assignment of term weight values was done based on term 

frequency-inverse document frequency (tf-idf) [23][24], which 

is a well-known ranking function in text mining and 

information retrieval [25]. This function assigns numeric 

weights to significant and frequently occurring terms in 

documents [25]. Tf-idf weight is composed of the product of 

the term frequency (tf) and the inverse document frequency 

(idf). The authors defined these two terms in (1) and (2) with 

respect to each project dataset. 

,
( , ) (1)

t d

d

f
tf t d d D

m
=  

 

( , ) log (2)e

t

D
tdf t D

N
=

 

( , , ) ( , ) ( , ) (3)tftdf t d D tf t d idf t D=   

where 

          ft,d = frequency of term (t) in an SATD comment (d) 

          md = number of terms in a given SATD comment  

          D = total number of SATD comments 

          Nt = number of SATD comments with a given term (t)  

A simple example to illustrate the computation of weights for 

the tf-idf is given as follows. Consider a sample project with a 

finite number of commented LOC considered in the authors' 

case as documents. Assuming a document contains 6 terms free 

from stopping words whereby the term error appears 2 times. 

The tf for error is then (2/6) = 0.333. Assuming there is 10,000 

documents and the term error appears 100 times, then the 

idf(error) is calculated as log (10,000/100) = 4.605. Thus, the 

tfidf weight is the product of these two quantities: 0.333 × 4.605 

= 1.533. 

4.  RESULTS AND DISCUSSION 
This section discusses the findings obtained from this study 

based on the postulated four research questions (RQs). 

 

RQ1: What are the methods used to identify and detect SATD 

prone tasks? 

In the 19 reviewed SATD papers there was a realization that 

there were two popular methods used for SATD detection 

manual inspection and text mining. The manual inspection 

introduced by [2] manually inspected comments using 

grounded theory principles and the text mining approach 

introduced by [1], used this approach to extract SATD prone 

tasks from the studied projects. In the authors' findings, the 

most used method was text mining which was 26.1% and 5.3% 

used manual inspection whereas 10.5% used both methods. 

These two methods fall under two categories which are pattern-

based and machine learning-based. The result concluded that 

15.8% were pattern-based and 26.1% were machine learning-

based. Table 2 shows the various approaches and its frequency 

and percentage. 

 

RQ 2: Where are SATD prone tasks identified from in 

software artefacts? 

From the 19 reviewed SATD papers the authors found that 

SATD prone tasks are identified from source code comments 

and Lines of codes (LOCs). The total frequency for LOCs and 

source code comments is 9 where LOCs had 0, source code 

comments had 6, source code comments and LOCs had 3 which 

implies some papers identified SATD prone tasks from both 

LOCs and source code comments. Thus, in the reviewed 19 

SATD papers no SATD prone task was identified from LOCs. 

In the reviewed papers 66.67% identified SATD prone 

instances from source code comments and 33.33% were from 

both LOCs and source code comments as indicated in Figure 1. 

Table 2. Approaches for SATD identification and 

detection 

APPROACH  

FREQUENCY

=19 

PERCENTA

GE 

Manual  1 5.263157895 

Text mining 5 26.31578947 

Manual & text 

mining  2 10.52631579 

Pattern-based 3 15.78947368 

Machine learning 

based 5 26.31578947 
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Fig 1: Frequency of comment extracted from source code 

and LOCs in percentage 

RQ3: Which tools are used for data (source code comments 

or LOCs) extraction in SATD? 

There was a realization from the 19 reviewed papers that the 

extraction tools mostly used were srcML, Jdeodorant, NLP, 

WEKA, Python-based tool, Eclipse plugin and Java-based tool. 

The frequently used tool was srcML with 22.22% and the 

others all had 11.11% as indicated in Figure 2. 

 

 
Fig 2: Percentages of extraction tools used 

RQ4: Which open-source projects are used in the detection 

and identification of SATD? 

The open-source projects used in the reviewed papers were 

Eclipse, Apache HTTP Server, Chromium OS, ArgoUML, 

Cassandra, Tomcat, EMF, Camel, Log4j, Hadoop, Jmeter, Ant, 

Gerrit, Jruby, Spark, Hibernate, JEdit, Columba, JFreeChart 

and Squirrel. The percentage of each open-source project used 

in SATD identification and detection is shown in Figure 3. 

 
Fig 3: Open-source projects used in SATD identification 

and detection 

 

5. CONCLUSION AND FUTURE 

REMARKS 
Self-admitted Technical Debt (SATD) refers to the tendency of 

programmers to leave inadequate, temporary bypass, and 

insane codes that need to be rewritten in software development. 

Previous research has demonstrated that SATD is typically 

found in source code comments and is present in many released 

software artefacts. Software project development is negatively 

impacted by SATD, which also has high maintenance costs. In 

this study, the authors looked for conceivable methods that 

academics have used to identify and detect SATD-prone jobs 

in software artefacts before releasing them to customers or the 

market. As a result, a literature review is done in order to 

conduct this research. From a collection of SATD-related 

research papers, two popular methods for identifying and 

detecting SATD-prone tasks were discovered, namely natural 

language processing/ text mining and manual classification. 

Future works could consider machine learning, deep learning 

or state-of-the-art techniques and approaches for the 

identification and detection of self-admitted technical debt. 
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