
International Journal of Computer Applications (0975 – 8887)

Volume 185 – No. 31, August 2023

38

An NLP approach for Identification and Detection of Self-

admitted Technical Debt: A Review of existing

Techniques

Adelaide Anim-Annor
University of Ghana

Department of Computer Science
Legon, Ghana

Fredrick Boafo
Lancaster University Ghana

Department of Computer science
Tantra Hill, Ghana

Solomon Mensah
University of Ghana

Department of Computer Science
Legon, Ghana

ABSTRACT

Programmers tend to leave deficient, non-permanent bypass

and demented codes that require rework in software

development and such phenomenon is referred to as Self-

admitted Technical Debt (SATD). Previous studies have shown

that SATD is common in released software artefacts and is

mostly found in source code comments. SATD negatively

affects software project development and incurs high

maintenance overheads. In this study, the authors seek to

identify plausible approaches utilized by researchers to identify

and detect SATD prone tasks in software artefacts prior to

release to the market or clients. Accordingly, a literature review

is carried out to perform this investigative study. Two popular

approaches were found for identifying and detecting SATD

prone tasks from a pool of SATD related research papers,

namely manual and text mining approach.

Keywords

Self-admitted Technical Debt; Textual indicators; Source code

comment; Lines of Code; Text Mining

1. INTRODUCTION
Self-admitted technical debt refers to the temporary

workarounds, temporary fixes, buggy codes, shortcuts left in

codes, and codes that require rework which are intentionally

left by developers prior to software release [1][2]. Due to

expediting pressures from clients, developers normally commit

codes that are not quite right to clients. Thus, various patches

and shortcuts are used to make the software product ready for

release to clients. After a period of usage of the released

software products, the clients normally face a series of issues

with respect to component malfunctioning, unexpected flaws in

components, inactive buttons, issues with logins, etc. These are

reported back to the developers for them to rework. It should

be noted that these unexpected issues or challenges faced are a

result of the developers using shortcuts and temporary fixes to

get the software product ready for release to clients. This

phenomenon is referred to as self-admitted technical debt

[1][2][3]. According to Mensah et al. [1], these deficient and

imperfect traits in software development prior to project release

will have to be paid in the near future as an uncontrolled

maintenance cost.

Cunningham [4] describes the presence of not quite right code

or code smell during development as technical debt. Potdar and

Shihab [2] coined the term self-admitted technical debt (SATD)

from Cunningham’s technical debt metaphor because SATD is

intentional on the side of the development team. Thus, the

developers know that the shortcuts and temporary fixes they are

using are not quite right but due to pressure from clients and

project managers, there is no option than to find themselves

introducing SATD. Aside the expediting pressure from clients

and project managers, the level of experience counts in the

introduction of SATD. Thus, if a developer has less experience

in programming, the person may not be able to fully address all

the challenges faced during the software development and

hence, might have no choice than to patch faulty codes with

temporary fixes. This was found to be true based on an

exploratory study by Potdar and Shihab [2] where the authors

found out that developers with more experience tend to

introduce SATD during coding as compared to those with less

experience.

Self-admitted technical debt emanates from software

development and maintenance, with a negative effect on

software and has lately been a focus for more research studies

[5][1][2][6]. SATD is becoming a research focus. Researchers

aim to find results for reducing developers’ errors and avoid

producing less quality software. This misconduct in

development is sometimes based on resolutions that prioritize

functionality over quality [7].

The challenging question that arises among project managers

prior to the release of software products, should managers meet

short-term business objectives and release the product as soon

as possible or take time and fix the codes before release. From

either point of view, a loss can be incurred. Even though not all

bugs can be fixed before deployment of the software product,

there is the need for the majority of these bugs to be resolved

to lessen the issues of clients reporting back problems about the

software product usage. This study seeks to examine previous

studies that have attempted to classify the identified technical

debts that were considered self-admitted into various classes.

For example, a study by Maldonado and Shihab [8], introduced

a classification scheme for SATD. These five classes are

Requirement debt, Design debt, Testing debt, Defect debt and

Documentation debt. The study will also consider other

classification schemes introduced by other researchers in the

Literature review (LR). Several writers have proposed

approaches to spontaneously identify SATD comments [11].

Thus, in this study, we perform an in-depth analysis of existing

works to examine the various approaches introduced in the

literature to identify and detect SATD prone tasks during

software development.

2. RELATED WORKS ON SELF-

ADMITTED TECHNICAL DEBT

The term Self-admitted technical debt (SATD) was first coined

by Potdar and Shihab [2] in their exploratory study using

manual inspection to detect SATD. The term SATD came up

after Potdar and Shihab [2] had identified that technical debts

were intentionally introduced by software developers to speed

International Journal of Computer Applications (0975 – 8887)

Volume 185 – No. 31, August 2023

39

up their work or meet deadlines. The authors used manual

inspection techniques on four large open-source projects to

detect SATD, namely Eclipse, Chromium OS, ArgoUML and

Apache HTTP Server. One of the results from their study stated

that 62 different commented patterns were indicated as SATD

tasks after manually reading through 101,762 code comments.

The authors identified that 2.4% - 31.0% of open-source files

had SATD. Experienced developers were likely to introduce

SATD and it was introduced throughout the development

stages. The authors added that release pressure was not a major

reason for SATD because less than 15% of SATD was

introduced within a month of the latest release.

One of the most recent detection techniques was based on

natural language processing (NLP) proposed by Maldonado et

al. [9]. This was an automatic approach to identifying the types

of SATD. In their work, the authors used a maximum entropy

classifier based on NLP to identify the most common types of

SATD which were SATD on design and SATD on requirement.

Another approach was introduced by Huang et al. [6] using text

mining to automatically detect SATD in source code

comments. In this approach, a selection of useful features for

classifier training was used in addition to sub-classifiers from

different source projects to build a composite classifier to

predict accurately. At the end of the study, their approach

improved the F1-score by 24.92% on average for each project

without the classifier's vote and provided excellent

performance while reducing the amount of data needed to train.

The text mining approach used eight open-source codes that

contained 212,413 comments to detect technical debt. It

outperformed the approach introduced by Potdar and Shihab

[2] in terms of F1- score. When compared to the manual

approach, it improved the F1- score by 58.4% and the natural

language processing used by Maldonado et al.[9] was 27.95%.

This section of the study is about the types of SATD. In recent

studies by Maldonado and Shihab[8], the authors quantified the

different types of SATD as design debt, defect debt,

documentation debt, requirement debt and test debt. The

authors used five well-commented open-source projects

namely Apache Ant, Apache Jmeter, ArgoUML, Columba and

JFreeChart. The authors examined more than 166,000

comments which after filtering, resulted in a dataset of 33,093.

The authors manually analysed and classified them into the five

different types of SATD. The study also stated the most

common type of SATD was the design debt which is 42% to

84% in all the classified comments. Maldonado and Shihab [8]

explained the types of SATD.

Self-admitted design debt is a comment that shows a problem

with the design of the code and the developer sometimes states

what needs to be done to improve the design of the code. It can

be comments about misplaced codes, long methods, and

workarounds. Examples of such comments include “this

method is too complex; I hate this so much even before I start

writing it”. Self-admitted defect debt states which part of the

code is defective. An example of defect debt comments is “bug

in the above method, the output stream version of this doesn’t

work”. Self-admitted documentation debt is when there is no

proper documentation supporting that part of the program.

Examples include “this function needs documentation,

document the reason for this”. Self-admitted requirement debt

expresses incompleteness of method and class. Examples

include “no methods yet for getClassname, no method for

newInstance using a reserve-classloader”. Self-admitted test

debt states the need for improvement of the current test.

Examples include “need a lot more test, enable some proper

test”. The study of Maldonado and Shihab[8] showed that the

percentage of the most common type of SATD was design debt

with 42% to 84% across the projects. The second most common

type is requirement debt which is 5% to 45%. The rest of the

types have low frequency with 10%.

Another study by Bavota and Russo [3] mined over 2 billion

source code comments of 159 Java open-source projects and

identified 51 SATD instances per project. In their manual

categorization of SATD, the authors adopted an open coding

process inspired by the Grounded theory principles [10]. The

authors identified the types of SATD which were code debt,

design debt, documentation debt, defect debt, test debt and

requirement debt. The authors highlighted that the most

frequent type was code debt with 30% of the open-source

projects, followed by defect and requirement debt with 20%

each and design debt with 13%. The authors also found out that

in most cases 63% of the developers who introduced the debt

were the same fixing the debt. The phase in the software
development lifecycle which had the highest technical debt was

design with 39.34% followed by test with 23.70% and project

convention with 15.64% Silva et al. [11].

This section is about the removal of SATD after it has been

identified. Recent studies by Maldonado et al. [9] stated that

after the analysis of five case projects, 40.5% to 90.6% of

identified SATD were removed. The study showed that on

average, 54.4% of SATD tasks were self-removed meaning that

developers who introduced it were the same people who did the

removal and on the median, 61.0% were self-removed. This

study further showed that the amount of time SATD remains in

a project before removal ranges between 18.2 to 172.8 days on

median and 82 to 613.2 days on average. Developers mostly

remove SATD when they are fixing bugs or adding new

features. Zampetti et al. [12] proposed an in-depth quantitative

and qualitative empirical study on the removal of SATD which

was built on the previous work of Maldonado et al [9]. The

authors' study indicated that 25% to 60% of SATD comments

were removed due to full class or method removals. Moreover,

33% to 63% of SATD was removed due to a change in method

and 8% of SATD removal was documented in commit

messages. Their paper further stated that 55% of SATD
comments were removed while improving features. Bavota

and Russo[3] showed that 57% of SATD were removed during

the change history of software and 63% of SATD were self-

removed. Potdar and Shihab [2] showed that 26.25% to 63.45%

of SATD were removed either in the next immediate release or

over multiple releases. Even though SATD is not an optimal

solution, organizations have embraced technical debt into

project plans knowing vividly the risk to software quality and

maintenance (Krutchen et al. [13]). Properly managed SATD

can add value to the software but poorly managed SATD can

affect the software [13].

The last section is the repayment and prioritization of SATD.

Mensah et al. [1] introduced a six(6) step prioritization scheme

that aimed to inspect SATD in classifying them by how

urgently they needed to be addressed and estimated the rework

effort they require. The authors implemented a text mining

algorithm on four open-source projects that were AgroUML,

Chromium OS, Eclipse, and Apache HTTP Server and

presented an empirical finding showing that 31% to 39% of

SATD comments were major tasks and 58% to 69% were

minor. The major task was difficult for developers to resolve.

There has been much research into the area of detection,

comprehension, repayment and management techniques.

Although SATD is not an optimal solution, it must be

considered in the preparation of a balance sheet. The aftermath

International Journal of Computer Applications (0975 – 8887)

Volume 185 – No. 31, August 2023

40

of delaying development activity would be cost-effective so

that it would aid software project managers to have a fair

understanding of the financial status of the software

organization. SATD should be considered a financial

obligation. According to Akbarinasaji and Bener [14],

technical debt listed as a liability gives a realistic insight into

the liability of the corporation, provides a better overview of

the business’s finances and aids in getting more accurate

financial information for the income statement. It helps in good

decision-making whether the organization should improve

profits or go into investment because liabilities and their values

are visible on the balance sheet. It will also make managers

aware of their debt and how it increases or decreases.

Relegating technical debt as a liability might cause

misinterpretation of the financial ratio. Akbarinasaji and Bener

[14], further stated that companies that neglect technical debt

would affect the total liability of the organization and deceive

the gauge of earning power and financial condition. To append

technical debt as a liability, all technical debt associated with

the company’s product should be extracted by specialists and

quantified. Since technical debt is abstract, there is no

consensus on how to measure its monetary value, but a balance

sheet includes intangible assets such as goodwill. An approach

to quantifying the intangible has been developed by

accountants. Thus, technical debt can be fixed under intangible

assets. This depicts the essence of appending technical debt in

the balance sheet.

The review task seeks to identify and detect SATD prone tasks

based on existing works [1][3][2][15][16]. The authors first

perform an investigative study to an exploratory study by

Potdar and Shihab [2] who extracted a pool of 62 textual

indicators from four datasets, namely Eclipse, Apache,

Chromium and ArgoUML. These textual indicators were

considered as a baseline for the identification of SATD prone

tasks in studies by Mensah et al. [1], and Bavota and Russo [3].

Thus, after the exploratory study analysis [2], the authors

moved on to a study by Maldonado et al. [8] who identified five

levels or classes of SATD prone tasks based on the textual

indicators exploratory study [2]. This was followed by a study

by Mensah et al. [1] who introduced an NLP approach based

on a 5-step prioritization scheme for prioritizing SATD prone

tasks and estimating the rework effort for such SATD tasks. It

should be noted that Shihab and Potdar [2] were the first to

introduce the SATD concept in 2014.

3. METHODOLOGY
The literature review (LR) approach has been adopted for the

identification and detection of SATD in the reviewed papers.

According to Kitchenham et al. [17], SLR is the systematic

mode of reporting the outcomes extracted from the literature.

SLR method offers a way of classifying, exploring and

examining the present studies connected to any questions of

interest and research areas. Kitchenham [18], classifies SLR

into three main phases, i.e. planning the review, conducting the

review and reporting the review. The SLR protocol is the

outcome of the planning phase.

3.1 Research Questions (RQ)
RQ1: What are the methods used to identify and detect SATD

prone tasks?

Motivation: There is a need to identify and detect SATD prone

tasks to assist software engineers in implementing various

approaches to detecting SATD prone tasks. The SATD

metaphor has been given attention by most researchers, hence

assisting with effective tools and methods will provide the

software engineering team to ameliorate the SATD prone tasks

in software development.

Approach: This RQ is complemented by the various tools and

techniques that have been used by researchers to identify and

detect SATD. We read 19 SATD and TD papers to identify the

methods of detection that have been used over the years. These

papers were focused on the detection, comprehension and

repayment of SATD. Since this paper is on detection, the focus

of the 19 papers was drawn to the methods used. After several

analyses of each detection paper, we identified the two main

types of detection methods that have been adopted. Some

papers used both manual and text mining as a detection

technique. The manual approach is the first method used in

SATD detection [2]. This technique reads all the source code

comments and LOC manually. The text mining was the second

novel approach which automated the process of manual

inspection [7]. Text mining was to improve the results at a

faster rate [1]. Other papers used both approaches in their

methodology.

RQ2: Where are SATD prone tasks identified in software

artefacts?

Motivation: This RQ seeks to identify plausible software

artefacts or projects that researchers have been using to detect

SATD prone tasks. Hence, a review of the literature will assist

practitioners and researchers in knowing which artefacts to use

for identifying SATD prone tasks.

Approach: An extensive LR is conducted to identify software

artefacts prone to SATD tasks from literature. We read through

19 SATD papers and all these papers used open-source projects

and SATD prone tasks were mainly identified from source code

comments or LOCs. The source code comments are remarks

the developers write at the end of the code. Most papers that

were reviewed used the comments to identify SATD prone

tasks.

RQ3: Which tools are used for data (source code comments

or LOCs) extraction in SATD?

Motivation: This RQ seeks to identify extraction tools that

researchers have been using to extract source code comments

or LOCs in SATD. Therefore, a review of the literature will aid

practitioners and researchers in knowing which extraction tools

to use.

Approach: An extensive SLR is conducted to identify all

extraction tools. The SATD papers considered in this work

used a variety of extraction tools. These extraction tools are

used to sunder out source code comments which are SATD

instances from source files or projects. The extraction tools

used were srcML, Jdeodorant, NLP, WEKA, Python-based

tool, Eclipse plugin and Java-based tool. Most papers

considered two of the tools mentioned together to extract

source code comments to make their analysis.

RQ4: Which open-source projects are used in the detection

and identification of SATD?

Motivation: This RQ strives after the open-source projects that

have been used by researchers. Thus, a review of the literature

will enlighten practitioners and researchers to know the

projects to use.

Approach: An extensive SLR was conducted on all the

reviewed papers. The source code comments were identified

from the open-source projects. There were 20 open-source

projects used in the papers reviewed. Most papers used more

than one project.

3.2 Datasets
Four well-commented open-source projects were made

available at openhub.net and extracted by Potdar and Shihab

[1] for studying SATD. The four projects are ArgoUML,

International Journal of Computer Applications (0975 – 8887)

Volume 185 – No. 31, August 2023

41

Chromium OS, Apache HTTP Server and Eclipse Platform

project. The description of the open-source projects is

presented in Table 1. In each project, the authors used metrics

such as the total number of Lines of Codes (LOC), number of

commented lines, dates of software release, estimated effort in

person-months and contributors or developers for each sampled

open-source project.

Table 1. Description of Sampled Projects

Metric

Sampled Open-Source Projects

ArgoUML Chromium Eclipse Apache

LOC 122575 107706 659231 192333

Comment 115713 37889 437640 54295

Date Dec 2011 Nov 2009 Jun,2013 Jul 2013

Effort 3024 47856 8760 6000

Developers 53 1784 221 145

Version 0.34 30 4.3 2.4.6

From the text mining analysis, the authors observed that these

projects were developed using several programming languages

with the dominant ones being Java, C++, C and XM. With

respect to the ArgoUML project, a majority of 39.3% was

written in Java, 31.9% in XML, 14.1% in HTML, 11.0% in

XSL Transformation, 1.5% in CSS and less than 1% each in

Modula-2, JavaScript, shell-script, DOS batch script,

MetaFont, Pearl and SQL. In relation to the Chromium project,

a majority of 89.0% was written in C, 4.8% in C++, 2.4% in

Assembly, 2.2% in Python and the remaining less than 1% in

XML, Make, shell script, HTML and Java. For the Eclipse

project, a majority of 80.2% was written in Java, 10.5% in

XML, 5.5% in HTML, 2.7% in C and the remaining in C++,

CSS, MetaFont and JavaScript. Lastly, a majority of 55.5% of

Apache HTTP Server was written in XML32.4% in C, 8.2% in

Forth, 1.1% in XSL Transformation and the remaining in

HTML, Autoconf, shell script, CSS, JavaScript, C++, IDL/PV-

WAVE/GDL, Pearl, AWK, CMake and Make.

3.3 Extraction of Self-Admitted Technical

Debt Textual Indicators
A study by Potdar and Shihab [2] performed a manual

exploratory study by reading through source code comments

from four datasets, namely Eclipse, Apache, Chromium OS and

ArgoUML to identify SATD textual indicators. This was to

assist researchers in building a text mining algorithm or NLP

approach so that the process of SATD extraction can be

automated to increase the possibility of its use in practice. The

source code comments from each dataset were examined by

Potdar and Shihab [2], and the key indicators contributing to

the various classes of SATD were extracted. This study

presents a sample of the source code comments prone to SATD

below.

* TODO: REMOVE ME BEFORE PRODUCTION (????) *

* Ready to revalidate, pretend we were never here *

* Not removed and not expired yet, we’re done iterating *

* TODO: Add directive for tuning the update interval *

* Something is wrong here but the result is what we wanted

* Strictly speaking, this is a design error *

* DESIGN ERROR: a mix of repositories *

* Alternative: just load unresolved locks *

* Note: this shouldn’t happen, but just be sure... *

* Hmm. this doesn’t feel like the right place or thing to do *

* Open the thing lazily *

* If we’ve never heard of this object bail out *

* Give up because the parent is still not materialized *

* TODO: this isn’t quite right but is ok for now *

* Yuck, this is awkward to use *

* Macro is ugly but makes the tests pretty *

* TODO: analyze why we have such a bad bail out here! *

* FINISHME: This is wrong. The constant value field

should…*

* Detect dead code, nuke it, and calculate again for new change

*

* FINISHME: This hack makes writing to … *

* Skip the stupid Microsoft UTF-8 Byte order marks *

*Ignore any errors and continue with index0 if there is a

problem*

This list of textual indicators formed a dictionary of words

which was used in a proposed text-mining approach by Mensah

et al. and realized that most of the SATD comments with their

respective indicators were similar across projects [1]. The

authors observed that most of these indicators were common

for most of the five classes and based on previous work [8].

Thus, present the five levels or classes of categorizing the

SATD prone tasks as follows:

Class of SATD Class

Requirement debt 1

Design debt 2

Test debt 3

Defect debt 4

Documentation debt 5

The explanation with examples of the classes of SATD is

elaborated in the study by Maldonado and Shihab [8].

Text classification is the process of labelling a set of text

documents into several classes or categories from a predefined

set [19]. The features are the developers and source code

comments which correspond to the terms or words in a text

document. Dilara et al. [20] define these features as bag-of-

words. With a pool of dictionary of indicators from these bag-

of-words, previous studies [16][1][3] were able to perform the

text classification analysis on SATD prone tasks.

3.4 Text Mining Technique
Mensah et al. [1] proposed a text-mining technique for mining

source code comments of open-source projects and extracting

key terms on SATD. This technique plays a significant role in

transforming source code comments into numeric counts based

on the assignment of term weights for easy modelling of the

SATD source code comments. The text mining technique for

commented source code projects is divided into four phases

which are the pre-processing phase of the project datasets,

extraction of code comments containing technical debts

specifically SATD from the overall source code comment,

International Journal of Computer Applications (0975 – 8887)

Volume 185 – No. 31, August 2023

42

Computation of term weights for SATD, and computation of

rework effort for each class of SATD.

Data Pre-processing Phase: Pre-processing is an important

phase in text mining and text classification. For efficient

regular expression matching, the authors per-processed the

extracted open-source code comments based on the following

as elaborated by Kotsiantis et al. [21] and Torunoglu et al. [20].

Data Cleaning: The authors used the proposed text mining

approach to remove punctuation marks in the form of ~! @, -

#$%^*] [|\ from the corpus of source code comments. Again,

the authors filtered out noise in the form of blank lines and

white spaces within strings from each project dataset. Typical

examples of white spaces within strings were “FIX ME” and

“TO DO” which it was realized that most developers used in

various comments compared to “FIXME” and “TODO”. This

was addressed by the proposed text mining technique (using the

grepl function). This filter approach enabled the pattern

recognition process to obtain desired searched patterns during

the text mining.

Data Reduction: The authors applied a stratified sampling

method to divide the total instances in each corpus into k strata

(partitions) and eliminated blank lines and comments that were

not prone to SATD.

Stopword Filtering: Here, common words occurring frequently

such as and, this, the, or, of, am, it, on, at were removed since

they less contributed to the text mining and classification

process. These words and other related words that frequently

occurred in the source code comments were searched and

removed from all the sampled projects based on a similar

approach by Fazli et al. [22].

Term Weighting: Based on the proposed technique, the authors

assigned term weights to the various SATD source code

comments in all cases of the sampled OS projects. This enabled

the authors to know the frequency at which the SATD

indicators occurred in the source code comments. The

assignment of term weight values was done based on term

frequency-inverse document frequency (tf-idf) [23][24], which

is a well-known ranking function in text mining and

information retrieval [25]. This function assigns numeric

weights to significant and frequently occurring terms in

documents [25]. Tf-idf weight is composed of the product of

the term frequency (tf) and the inverse document frequency

(idf). The authors defined these two terms in (1) and (2) with

respect to each project dataset.

,
(,) (1)

t d

d

f
tf t d d D

m
=  

(,) log (2)e

t

D
tdf t D

N
=

(, ,) (,) (,) (3)tftdf t d D tf t d idf t D= 

where

 ft,d = frequency of term (t) in an SATD comment (d)

 md = number of terms in a given SATD comment

 D = total number of SATD comments

 Nt = number of SATD comments with a given term (t)

A simple example to illustrate the computation of weights for

the tf-idf is given as follows. Consider a sample project with a

finite number of commented LOC considered in the authors'

case as documents. Assuming a document contains 6 terms free

from stopping words whereby the term error appears 2 times.

The tf for error is then (2/6) = 0.333. Assuming there is 10,000

documents and the term error appears 100 times, then the

idf(error) is calculated as log (10,000/100) = 4.605. Thus, the

tfidf weight is the product of these two quantities: 0.333 × 4.605

= 1.533.

4. RESULTS AND DISCUSSION
This section discusses the findings obtained from this study

based on the postulated four research questions (RQs).

RQ1: What are the methods used to identify and detect SATD

prone tasks?

In the 19 reviewed SATD papers there was a realization that

there were two popular methods used for SATD detection

manual inspection and text mining. The manual inspection

introduced by [2] manually inspected comments using

grounded theory principles and the text mining approach

introduced by [1], used this approach to extract SATD prone

tasks from the studied projects. In the authors' findings, the

most used method was text mining which was 26.1% and 5.3%

used manual inspection whereas 10.5% used both methods.

These two methods fall under two categories which are pattern-

based and machine learning-based. The result concluded that

15.8% were pattern-based and 26.1% were machine learning-

based. Table 2 shows the various approaches and its frequency

and percentage.

RQ 2: Where are SATD prone tasks identified from in

software artefacts?

From the 19 reviewed SATD papers the authors found that

SATD prone tasks are identified from source code comments

and Lines of codes (LOCs). The total frequency for LOCs and

source code comments is 9 where LOCs had 0, source code

comments had 6, source code comments and LOCs had 3 which

implies some papers identified SATD prone tasks from both

LOCs and source code comments. Thus, in the reviewed 19

SATD papers no SATD prone task was identified from LOCs.

In the reviewed papers 66.67% identified SATD prone

instances from source code comments and 33.33% were from

both LOCs and source code comments as indicated in Figure 1.

Table 2. Approaches for SATD identification and

detection

APPROACH

FREQUENCY

=19

PERCENTA

GE

Manual 1 5.263157895

Text mining 5 26.31578947

Manual & text

mining 2 10.52631579

Pattern-based 3 15.78947368

Machine learning

based 5 26.31578947

International Journal of Computer Applications (0975 – 8887)

Volume 185 – No. 31, August 2023

43

Fig 1: Frequency of comment extracted from source code

and LOCs in percentage

RQ3: Which tools are used for data (source code comments

or LOCs) extraction in SATD?

There was a realization from the 19 reviewed papers that the

extraction tools mostly used were srcML, Jdeodorant, NLP,

WEKA, Python-based tool, Eclipse plugin and Java-based tool.

The frequently used tool was srcML with 22.22% and the

others all had 11.11% as indicated in Figure 2.

Fig 2: Percentages of extraction tools used

RQ4: Which open-source projects are used in the detection

and identification of SATD?

The open-source projects used in the reviewed papers were

Eclipse, Apache HTTP Server, Chromium OS, ArgoUML,

Cassandra, Tomcat, EMF, Camel, Log4j, Hadoop, Jmeter, Ant,

Gerrit, Jruby, Spark, Hibernate, JEdit, Columba, JFreeChart

and Squirrel. The percentage of each open-source project used

in SATD identification and detection is shown in Figure 3.

Fig 3: Open-source projects used in SATD identification

and detection

5. CONCLUSION AND FUTURE

REMARKS
Self-admitted Technical Debt (SATD) refers to the tendency of

programmers to leave inadequate, temporary bypass, and

insane codes that need to be rewritten in software development.

Previous research has demonstrated that SATD is typically

found in source code comments and is present in many released

software artefacts. Software project development is negatively

impacted by SATD, which also has high maintenance costs. In

this study, the authors looked for conceivable methods that

academics have used to identify and detect SATD-prone jobs

in software artefacts before releasing them to customers or the

market. As a result, a literature review is done in order to

conduct this research. From a collection of SATD-related

research papers, two popular methods for identifying and

detecting SATD-prone tasks were discovered, namely natural

language processing/ text mining and manual classification.

Future works could consider machine learning, deep learning

or state-of-the-art techniques and approaches for the

identification and detection of self-admitted technical debt.

6. ACKNOWLEDGMENTS
Our thanks to the experts who have contributed towards the

development of this study.

7. REFERENCES
[1] S. Mensah, J. Keung, J. Svajlenko, K. E. Bennin, and Q.

Mi, “On the value of a prioritization scheme for resolving

Self-admitted technical debt,” J. Syst. Softw., vol. 135, pp.

37–54, 2018, doi: 10.1016/j.jss.2017.09.026.

[2] A. Potdar and E. Shihab, “An exploratory study on self-

admitted technical debt,” Proc. - 30th Int. Conf. Softw.

Maint. Evol. ICSME 2014, pp. 91–100, 2014, doi:

10.1109/ICSME.2014.31.

[3] G. Bavota and B. Russo, “A large-scale empirical study

on self-admitted technical debt,” Proc. - 13th Work. Conf.

Min. Softw. Repos. MSR 2016, pp. 315–326, 2016, doi:

10.1145/2901739.2901742.

[4] W. Cunningham, “The WyCash Portfolio Management

System,” 1992.

[5] S. Wehaibi, E. Shihab, and L. Guerrouj, “Examining the

impact of self-admitted technical debt on software

quality,” 2016 IEEE 23rd Int. Conf. Softw. Anal. Evol.

Reengineering, SANER 2016, vol. 1, pp. 179–188, 2016,

doi: 10.1109/SANER.2016.72.

[6] Q. Huang, E. Shihab, X. Xia, D. Lo, and S. Li,

“Identifying self-admitted technical debt in open source

projects using text mining,” Empir. Softw. Eng., vol. 23,

no. 1, pp. 418–451, 2018, doi: 10.1007/s10664-017-9522-

4.

[7] C. Fern and J. Garbajosa, “A Framework to Aid in

Decision Making for Technical Debt Management,” pp.

69–76, 2015.

[8] E. D. S. Maldonado and E. Shihab, “Detecting and

quantifying different types of self-admitted technical

Debt,” 2015 IEEE 7th Int. Work. Manag. Tech. Debt,

MTD 2015 - Proc., pp. 9–15, 2015, doi:

10.1109/MTD.2015.7332619.

[9] S. Maldonado, E. Shihab, and N. Tsantalis, “Using nutural

language to Automatically Detect Self-Admitted

Technical Debt,” vol. 43, no. 11, pp. 1044–1062, 2017.

0

50

100

Source code
comments

Sourcecode &LOCs

FREQUENCY OF COMMENT
EXTRACTED

PERCENTAGE

0

5

10

15

20

25

EXTRACTION TOOLS USED

PERCENTAGE

0

10

20

Ec
lip

se

A
rg
o
…

EM
F

H
ad
…

G
er

ri
t

H
ib
e…

JF
re
…

OPEN SOURCE PROJECTS USED IN SATD
IDENTIFICATION AND DETECTION

PERCENTAGE

International Journal of Computer Applications (0975 – 8887)

Volume 185 – No. 31, August 2023

44

[10] J. M. Corbin and A. Strauss, “Grounded theory research:

Procedures, canons, and evaluative criteria,” Qual.

Sociol., vol. 13, no. 1, pp. 3–21, 1990, doi:

10.1007/BF00988593.

[11] M. C. O. Silva, M. T. Valente, and R. Terra, “Does

technical debt lead to the rejection of pull requests?,”

SBSI 2016 - 12th Brazilian Symp. Inf. Syst. Inf. Syst.

Cloud Comput. Era, Proc., no. ii, pp. 248–254, 2016, doi:

10.5753/sbsi.2016.5969.

[12] F. Zampetti, A. Serebrenik, and M. Di Penta, “Was self-

admitted technical debt removal a real removal?: An in-

depth perspective,” Proc. - Int. Conf. Softw. Eng., pp.

526–536, 2018, doi: 10.1145/3196398.3196423.

[13] A. Martini and J. Bosch, “Towards Prioritizing

Architecture Technical Debt : Information Needs of

Architects and Product Owners,” pp. 422–429, 2015, doi:

10.1109/SEAA.2015.78.

[14] S. Akbarinasaji and A. Bener, “Adjusting the Balance

Sheet by Appending Technical Debt,” Proc. - 2016 IEEE

8th Int. Work. Manag. Tech. Debt, MTD 2016, pp. 36–39,

2016, doi: 10.1109/MTD.2016.14.

[15] G. Sierra, A. Tahmid, E. Shihab, and N. Tsantalis, “Is

Self-Admitted Technical Debt a Good Indicator of

Architectural Divergences?,” SANER 2019 - Proc. 2019

IEEE 26th Int. Conf. Softw. Anal. Evol. Reengineering,

pp. 534–543, 2019, doi: 10.1109/SANER.2019.8667999.

[16] M. Yan, X. Xia, E. Shihab, D. Lo, J. Yin, and X. Yang,

“Automating Change-level Self-admitted Technical Debt

Determination,” vol. 5589, no. c, pp. 1–18, 2018, doi:

10.1109/TSE.2018.2831232.

[17] B. Kitchenham, O. Pearl Brereton, D. Budgen, M. Turner,

J. Bailey, and S. Linkman, “Systematic literature reviews

in software engineering - A systematic literature review,”

Inf. Softw. Technol., vol. 51, no. 1, pp. 7–15, 2009, doi:

10.1016/j.infsof.2008.09.009.

[18] B. Kitchenham and S. Charters, “Guidelines for

performing Systematic Literature Reviews in SE,” pp. 1–

44, 2007, doi: 10.1145/1134285.1134500.

[19] F. Sebastiani, “Machine Learning in Automated Text

Categorization,” ACM Comput. Surv., vol. 34, no. 1, pp.

1–47, 2002, doi: 10.1145/505282.505283.

[20] D. Toruno, E. Çak, M. C. Ganiz, S. Akyoku, and M. Z.

Gürbüz, “Analysis of Preprocessing Methods on

Classification of Turkish Texts,” pp. 112–117, 2011.

[21] S. B. Kotsiantis, D. Kanellopoulos, and P. E. Pintelas,

“Data Preprocessing for Supervised Leaning,” vol. 1, no.

2, pp. 111–117, 2006.

[22] X. Liu, “Full-Text Citation Analysis : A New Method to

Enhance,” J. Am. Soc. Inf. Sci. Technol., vol. 64, no. July,

pp. 1852–1863, 2013, doi: 10.1002/asi.

[23] G. Salton, “1988_Salton, G. and Buckley, C., 1988. Term-

weighting approaches in automatic text

retrieval._7896.pdf.” 1988.

[24] H. Sch, “Introduction to Information Retrieval IIR 8 :

Evaluation & Result Summaries Recap Unranked

evaluation Ranked evaluation,” Evaluation, 2008.

[25] M. Baena-garc, “TF-SIDF : Term Frequency , Sketched

Inverse Document Frequency,” pp. 1044–1049, 2011.

IJCATM : www.ijcaonline.org

