
International Journal of Computer Applications (0975 – 8887)

Volume 185 – No. 33, September 2023

56

A Comprehensive Analysis of Game Hacking through

Injectors: Exploits, Defenses and Beyond

Francis Martinson
Computer Science

North Dakota State University
Fargo, North Dakota

Dylan Rangel
Computer Science

North Dakota State University
Fargo, North Dakota

ABSTRACT

The emergence and rapid adoption of online gaming have

resulted in massive multiplayer games and virtual landscapes

that enable players to interact in real-time within a digital

ecosystem. Competitive gaming has led some players to

succumb to the temptation of employing illegitimate methods

to achieve an unfair advantage over others, thereby

compromising the gaming experience's authenticity and

fairness. Game hacking is a pervasive problem that challenges

the industry and raises crucial questions about the extent and

the implications of such behavior in the gaming community.

One of the most common methods employed by hackers is the

use of injectors to compromise a game's code and modify its

structure. As sophisticated software defenses evolve, questions

arise as to how effectively developers can deter and combat

hackers.

This research discusses the mechanisms behind injectors, their

methods of exploitation, and the potential strategies employed

by game developers and anti-cheat systems to prevent hacking.

General Terms

Injectors, Exploits, Game Hacking, Defense Mechanisms,

Software Development, Game Security, Anti-Cheating

Measures, Code Injection, Cybersecurity.

Keywords

Consoles, injectors, dynamic link libraries, hackers,

developers, modding, Real Money Trade (RMT), Piracy,

Game Hacking.

1. INTRODUCTION
From the text-based MUD associated with the creation of

ARPANET in the 1980s to modern-day graphics like World of

Warcraft and League of Legends, online gaming has

dramatically evolved over the past decades (Newzoo, 2018).

This evolution was systematically fostered during the internet

explosion in the late 90s and the rise of technology in the early

2000s (Rouse, 2020).Online gaming has evolved considerably

since its inception in the early 1990s. The rapid proliferation of

the internet and computing technologies has resulted in

unprecedented growth within the industry, leading to

mainstream adoption via platforms such as consoles, PCs, and

smartphones. Concurrently, this evolution has urged users

seeking an unfair advantage to develop innovative ways of

hacking game code. One such method, "injectors," enables

hackers to modify the data or code of a game, thereby allowing

them to cheat and gain an unfair advantage over other players.

The evolution brought alongside several instances of

exploitation. Gaming platforms became rich hunting grounds

for cybercriminals who capitalized on users' vulnerable

security defenses to steal delicate account information.

Exploitation is poisoned with phishing schemes, malware

threats, and other avenues for identity theft (Gramigna, 2019).

Overwhelmed by the wave of exploitation and its impact on the

gaming community, developers engendered rigorous security

protocols to thwart these threats.

The usage of injectors dates back to the 1980s, with the

emergence of computer viruses and worms designed to

infiltrate and compromise the integrity of systems. These initial

attempts at injection laid the foundation for interference in

secure domains and the unauthorized extraction of confidential

data (Mansfield-Devine, 2009). Hackers use software injectors

to modify a game’s code and give themselves unfair advantages

(Cimpanu, 2019). For example, in a shooting game, hackers can

use injectors to manipulate aim, speed, and immortality,

destroying the game's integrity.

To combat these exploitations, game developers have dedicated

substantial resources to enhance game security and mitigate

exploitation and hacking risks. Anti-cheat software becomes

the first line of defense to guard against game hacking,

translating into more secure gaming environments and a more

level playing field for participants (Gizmodo, 2018).

2. BACKGROUND
Injectors have become an indispensable tool in modern gaming,

as they serve to enhance, customize, or manipulate game

content, thus providing players with a remarkable gaming

experience.

This section reviews injectors in games, the wide variety of

uses and techniques employed, the benefits and drawbacks

associated with their use, and how they have paved the way for

innovation and creativity within the gaming community.

2.1 Mechanics of Injectors
Injectors are a form of hacking tool that manipulates and injects

code into the memory space of a specific target process (i.e.,

the game software). Game injectors work by modifying the

assembly instructions or game code executed by the central

processing unit (CPU). The injected code can alter the game's

behavior by manipulating existing code and function calls, or

otherwise “injecting” arbitrary code, providing the hacker with

advantages, such as invincibility, infinite resources, or

accelerated movement. This code injection process typically

occurs during the loading and execution of the game software.

The injectors can be standalone executables or dynamic link

libraries (DLL) that contain functionality enabling the insertion

of foreign code into the targeted game's memory space.]

2.2 Exploitation and Application
There are various techniques that injectors use to exploit a

game's software. A prevalent method is the injection of DLLs,

which involves utilizing Windows-specific features that allow

International Journal of Computer Applications (0975 – 8887)

Volume 185 – No. 33, September 2023

57

DLLs to be loaded and executed in the game's memory space.

Hackers use tools called "loaders" to execute the DLL injector,

which subsequently loads the target DLL file into the game

process. Another less-known method is the use of "hooks,"

where the hacker intercepts and alters the code flow of the

target process, essentially changing the game's behavior at

predetermined points.

Regardless of the injection method used, once the foreign code

is injected and executed within the game's memory, it can alter

the game's flow or logic, providing the hacker with an unfair

advantage. However, the degree of the unfair advantage varies,

depending on the injected code's extent and sophistication.

Some injectors may grant superficial benefits, such as those

stated before, while others might result in destructive and

disruptive activities, such as crashing game servers or flagrant,

pervasive malicious hacking affecting user accounts.

2.3 Defenses and Strategies
As game hacking persists as a pressing concern, developers

continuously aim to devise innovative anti-cheating

mechanisms that prevent injectors' exploitation. Various

standard practices include the use of code obfuscation, which

conceals the game's code to make it more challenging for

hackers to reverse-engineer or understand. Developers may

also use integrity checks that evaluate and verify the game's

software throughout its execution to confirm that no

unauthorized code or data manipulations have tampered with

the software.

Additionally, developers utilize real-time monitoring and

anomaly detection techniques to track and flag suspicious

activities within a game. This process enables the developers to

detect and react to signs of injectors and other hacking activities

during gameplay, safeguarding the experience for non-cheating

players.

One notable example of a sophisticated anti-cheat system is

"Vanguard" by Riot Games. Vanguard not only detects

standard cheating techniques but also employs a kernel-level

driver that operates at the operating system's most secure level.

This driver scans and blocks potential hacking tools and

techniques before they can inject or alter the game process.

2.4 Wide Variety and Uses of Techniques
There exist several techniques that hackers utilize when

employing injectors. One such method is SQL (Structured

Query Language) injection, a technique used by hackers to

manipulate the data in a target's databases by injecting

malicious SQL queries (Halfond, Viegas & Orso, 2006). This

allows hackers to steal sensitive data from an organization or

individual databases.

Injecting code into games can be accomplished in several ways,

some of which include Dynamic-link library (DLL) injection,

which entails a third-party DLL being forced to load into the

game process, with the injector executing the code contained

within the DLL to induce desired effects. This method allows

the hacker to execute arbitrary code within the context of the

target program, effectively gaining unauthorized access and

control over the system (Arefin, Islam & Chy, 2018). Memory

manipulation, which is where a game's memory addresses is

altered to modify variables in the game, such as character

health, currency, or speed. Script injectors: LUA, C#, C++ or

Python injectors, like JASS or Pythonista, can be utilized to

create scripts that enable custom game modifications.

2.5 Piracy , Exploits and Modding
Game hackers use cheats and exploits to gain unfair advantages

over other players, often in competitive online games. These

hacks can include Aimbots, which automatically target enemies

for the player, wallhacks, which reveal enemy positions

through walls and other objects, and speedhacks, which allow

the player to move faster than intended (Bohannon, 2010). The

use of these hacks can significantly diminish the enjoyment of

other players and undermine the competitive nature of the

game.

Game hackers may be involved in cracking games, bypassing

copyright protection, and sharing the games for free,

undermining the financial interests of developers and

publishers (Yar, 2005). Some game hackers engage in

modifying or "modding" existing video games to alter their

content, graphics, sound, or other aspects of the game. While

some mods enhance the gaming experience or provide

entertainment, others create unwanted or inappropriate content

that may harm the game’s reputation or violate the developer's

intellectual property rights (Postigo, 2007).

Real money trade involves the buying and selling of virtual

items, currencies, and accounts for real-world currency. Game

hackers may exploit in-game mechanisms to obtain these

virtual items and then sell them on various websites, profiting

from the hard work of legitimate players (Heeks, 2008). The

dark web provides an anonymous platform for game hackers to

share their exploits, tools, and techniques. Hacking forums

serve as a virtual marketplace, where hackers can buy and sell

various tools and information related to hacking video games.

These platforms allow hackers to refine their skills and

collaborate with others, which can lead to the development of

more sophisticated hacks (Kshetri, Voas, & Zhang, 2019).

3. METHODOLOGY AND TECHNIQUE

DETAILS

3.1 Context
To develop an actual exploit in order to achieve the unfair

advantage of drawing opponents through walls, the first thing

that must be understood is the game’s engine. Counter-Strike:

Source is powered by the Source Engine, an engine that

developed by Valve in 2004 in order to display advanced

calculations and predictions of physics, a technique called

“occlusion culling” is used by this engine in order to improve

performance and involves determining which objects in the

game world are visible to the player based on the players

position and where the player is looking at, this information is

obtained by the server calling the functions GetEyeAngles(ply)

and GetPos(ply), where “ply” is the current player that the

engine is checking. In the context of Counter-Strike: Source, all

players are checked each “tick” of the server, a tick refers to a

single iteration of the game loop that updates the game state

and checks for events such as user input. Counter-Strike:

Source runs at a fixed tick rate of 60 ticks per second, which

means that the game is updated 60 times every second, which

in turn means that the functions GetEyeAngle() and GetPos()

are called 60 times every second. and based on what these

functions return to the server, the server will prevent certain

objects from being visible to the player which will significantly

reduce the number of resources and processing power that is

required for the computer or system to run the game. The “wall-

hack” that was created for the purpose of demonstrating the

weakness of the engine and the anti-cheat system exploits this

technique of occlusion culling by intercepting these function

calls and manipulating the game’s rendering system. By

modifying the engine’s code, the wall-hack can disable

occlusion culling entirely for specific objects, such as player

skeletons and player models which allows the player using the

International Journal of Computer Applications (0975 – 8887)

Volume 185 – No. 33, September 2023

58

cheat to draw these models through ALL objects, allowing the

player to see opponents through walls. Because this hack

exploits a weakness in the game’s engine and model drawing

rather than making unauthorized changes to the server or

game’s rules, it is very difficult to detect by the Valve Anti-

Cheat protection system.

3.2 Injector
To successfully manipulate the Source Engine, first an injector

must be developed to implement any arbitrary scripts that

would be able to change the result of how the engine handles

occlusion culling. For the most efficient injector, C# was the

prime choice. This code defines a static class called

“VACBypass” which contains static methods for interacting

with the game process and the Windows API. The “Run”

Function is the initial point of the bypass which takes the path

to the DLL containing the malicious code.

Fig 1: DLL containing the malicious code

 This method initializes the global variables necessary for the

bypass and then locates the running ID of the game, in this case

the running ID would depend on the user’s computer and the

GetGamePID() function simply looks for the name of the game

in memory and returns the process ID in windows back to the

variable pid.

If the game process is found, then the Run method opens a

handle to the process using the “OpenProcess” API function.

Then it will call 2 methods on it, “InjectDLL()” and

“BypassCSSHook”. The BypassCSSHook function un-hooks

several system functions which are used by the game and the

Valve Anti-Cheat system, which prevents the game from

detecting the injected DLL and flagging it as malicious code.

The InjectDLL() method creates a remote thread in the game

process and loads in the specified DLL file into the process

using a load library function. Once the code has run

successfully, the RestoreCSSHook() function is called to

restore the original hooks and system functions that were

previously disabled to prevent any suspicion from the system.

Finally, the Run function will return a true value in order to

indicate the injection process was successful.

A. Exploitation
Now that the injector has successfully injected into the Source

Engine, the possibilities are endless as to what could be done.

For this example, C++ will be injected into the Source Engine

to exploit the way that the Source Engine handles occlusion

culling. First, #pragma directives must be instantiated to

modify behavior of the code, in this case they are modifying

the compiler in order to suppress certain warnings generated by

the compiler in order to make the code run properly.

Fig 2: Code Exploitation

Next, an initializer function is written to:

• Find the specified handle of the game window.

• Return the game ID (in this case it’s the ID of the

windows process, NOT the game ID).

• Open a handle to the running process.

• Calculate the memory addresses of the hack’s feature in

the game memory.

• Return the current state of the hack.

Fig 3: Malicious code injection

FindWindowA() returns the handle of the game’s window. The

code also uses GetWindowThreadProcessId() to return the ID

of the windows process back to the code and store it into the

pid variable, this will be important later. A handle is then

opened to the game process using the OpenProcess() function

with the parameters being PROCESS_VM_WRITE and

PROCESS_VM_OPERATION which grants this program

access to read, write, and execute operations on the virtual

memory of the specified process, which in this case would be

the id returned by GetWindowThreatProcessId() function or in

simpler terms, the game. Next the code calculates the memory

addresses of the exploit within the game’s memory by calling

the getModuleBaseAddresses() functions specified in the

config object. It does this by first creating a snapshot of the

target process using the CreateToolhelp23Snapshot() function

which will take a snapshot of all modules in use by the specified

process which in this case is stored in the config object. The

only thing that the config object contains is the ID of the game

that this code is being injected into. It will then look through

the list of modules using the Modul32First() function and

Module32Next(), checking each module’s name using

strcmp(), if it finds a module with a matching name it sets the

moduleBaseAddress variable to the base address of the module

and stops the loop. Finally, the function will return the variable

and this address is then used in the initialize function in order

to calculate the address of the hack feature within the module,

this way the hack can be called no matter where it is in memory.

Finally, the actual exploit code is quite simple, the complex part

is accessing it and injecting it into memory which has already

been completed.

International Journal of Computer Applications (0975 – 8887)

Volume 185 – No. 33, September 2023

59

Fig 4: Code to position eye angle

For each player in the current session, draw their position and

the angle they are looking at, the “2” parameter is referring to

what mode the model should be drawn as, 0 is typically the

standard model with occlusion culling enabled, 2 is a wireframe

with occlusion culling disabled, and 3 is the same as 2 although

it is the standard model instead of a wireframe. This is the very

core of the attack. The r_draw function is ran client-side so it is

entirely undetectable by the server which is a massive

vulnerability in the Source Engine.

Fig 5: Display with no exploit running

Fig 6: Display with exploitation

3.3 Ethics and Solution
The ethics of exploiting the Source Engine in this way is to

demonstrate the dangers of leaving extremely important

functions such as r_draw() available to the player, while

inputting this command alone into the console will not allow a

player to gain an advantage, if injected into the actual game via

a DLL, the r_draw function can still be run clientside because

all instances of this function depend on the user’s graphical

settings and are different from person to person, while this is

good for maintaining each user’s personal graphical

preference, if left unchecked by the server, instances of this

command can be used to exploit the game engine in order to

run in unauthorized ways. There are many ways to fix this

issue.

The first approach would be to make instances of r_draw()

checked by the server, which would drop performance for the

server but this exploit and many other like it would no longer

be functional.

An additional software could also be added to the game

directory in order to monitor the game’s memory, if any other

program aside from the game attempts to access the memory

such as in the way the exploit did using the ByPassCSS() and

InjectDLL() functions, the program auto terminates and issues

a VAC ban to the user, preventing them from playing the game

online. By monitoring the game’s memory, the engine becomes

a lot more secure.

Machine learning can also be implemented in game that keeps

track of a player’s statistics, and how often they manage to kill

players through walls, since this could also be a luck, instead

of issuing a ban to players that receive many kills through

walls, the software could flag the players user ID and

automatically record something called a “demo” that is sent to

a real human employee for inspection to determine whether or

not the player is cheating. A “demo” is a recording of gameplay

that can be played back using the game’s built-in demo player,

each and every tick of a single game is saved to a .demo file

during recording which provides a 3D replay in which the

camera can be moved around independent from the players

view instead of a simple .mp4 recording which allows for closer

inspection of whether or not the player is cheating

4. DATA ANALYSIS
The data for this research has collected through a combination

of primary and secondary sources, including interviews with

game hackers and developers, online hacking forums, industry

reports, scholarly articles, and news articles. The researchers

also developed injectors (Ikariiillustration/injector

(github.com)) that was used to test injection (on 5 iterations)

and detection (on 10 iterations).

This methodology ensured a comprehensive perspective of the

game hacking landscape.

4.1 Game Hackers
15 Questionnaires were sent out with invitations to be

interviewed after the questionnaire is completed and returned.

14 respondents returned the questionnaires and 12 agreed to be

interviewed. Out of the 12 respondents, all completed

interviews via Zoom and Teams chat.

4.1.1 Respondent Demography
Respondents were randomly selected from a sample of gamers,

ensuring unbiased representation and increasing the

generalizability of the findings (Pew Research Center Poll,

National sample study). This random selection process helped

to minimize selection bias and allowed for accurate conclusions

to be drawn.

Table 1. Respondent Demography

Number
of

Respond

ents

 Gender
Avera

ge

Age Third Party Software Male

Fema

le

3 RuneScape 3 0 30.5

2

Call of Duty (Modern

War Fare 2019) 1 1 19.5

2 Valorant 1 1 19.5

1 Destiny 2 0 1 19.5

2 Guild Wars 2 2 0 20.5

2 Final Fantasy 14 2 0 33

12 Total 9 3 23.75

International Journal of Computer Applications (0975 – 8887)

Volume 185 – No. 33, September 2023

60

4.1.2 Game Categorization
Many of them utilized the main servers of popular gaming

software such as RuneScape, Call of Duty, Valorant, Destiny

2, Guild Wars 2, and Final Fantasy 14. The survey findings

indicated that approximately 83.3% of the hackers employed

injectors, which are software tools used to modify game code

and gain an unfair advantage. Furthermore, within this group,

66% of the hackers reported using either Macro/Hacker (33%)

or Aimbot (33%) functionalities. These results highlight the

prevalence of hacking practices in the gaming community and

shed light on the specific games and tools commonly targeted

by hackers.

Table 2. Game Categorization

Main/Loc

al Server

Third Party

Software Injector Software Type

Main RuneScape

No

injector Macro-Software

Main

Call of Duty

(Modern War

Fare 2019) Injector

Aimbot Wall

Hacks

Main Valorant Injector Macro-Software

Main Destiny 2 Injector

Aimbot (Modify

values)

Main Guild Wars 2 Injector Macro/Hacker

Main

Final Fantasy

14 Injector Macro/Hacker

Fig 1: Sampled Games for Respondents

4.1.3 Game Hacking
All respondents in the survey reported using public gaming

platforms and played games that had anti-hacker measures in

place. Among the hacking software options mentioned, NMO

minion was found to be the most favored by the majority of

respondents. It was observed that a significant portion of

respondents intended to utilize this hacking software to gain an

unfair advantage in the games they played. Specifically, 50%

of respondents expressed a preference for cheats and hacks that

would enable them to achieve a superior advantage through

actions such as aided gameplay. Additionally, 25% of

respondents sought to exploit hacks that could speed up game

time or reduce the effort required. Furthermore, 30% of

respondents admitted to hacking in order to gain an advantage

in shooting enemies on their side. These findings shed light on

the motivations and preferences of hackers within the gaming

community.

Table 3. Game Hacking by Software and Anti-Cheat

Presence

Third

Party

Software

Advantage/Act

ion

Softwar

e

Anti-

Cheat?

Publi

c

RuneSca

pe

Perform action

(superior

advantage,

aided game

play)

Runelite

++ Yes Yes

Call of

Duty

(Modern

War Fare

2019)

Shoot on

enemy sites.

System

Cheat Yes Yes

Valorant

Shoot on

enemy sites. Yes Yes

Destiny 2

Modify values;

refile refill

type, aimbot,

and unlimited

life

Lavi

Cheat Yes Yes

Guild

Wars 2

Perform action

(superior

advantage,

aided game

play, speed up

time, cycle and

efforts)

MMO

minion Yes Yes

Final

Fantasy

14

Perform action

(superior

advantage,

aided game

play)

MMO

Minion Yes Yes

Based on the survey findings, it was determined that a

significant majority (83.3%) of the cheating tools utilized by

hackers were not available for free. Furthermore, a similar

percentage (83.3%) of the hackers managed to avoid being

banned, indicating a high success rate in evading detection.

Interestingly, all of the hackers maintained a sense of normalcy

while playing, despite having a superior advantage due to their

cheating activities. This approach likely helped them avoid

suspicion and scrutiny from other players and game

administrators.

Among the hackers, there were distinct variations in their

strategies. One hacker preferred to play exclusively with

average gamers, potentially to minimize the risk of being

detected. In contrast, two other hackers adopted a different

approach by targeting chests, taking intermittent breaks, and

then returning to cheating. This suggests a calculated and

strategic approach to maximize their advantage while

minimizing the chances of being caught.

Notably, 50% of the hackers intentionally avoided Player vs

Player (PvP) gameplay, as engaging in such activities could

subject them to consistent observation and scrutiny from other

players and game administrators. This avoidance strategy likely

helped them maintain a lower profile and reduce the risk of

being reported or detected.

It is worth mentioning that one of the hackers in the survey was

International Journal of Computer Applications (0975 – 8887)

Volume 185 – No. 33, September 2023

61

eventually banned, and this occurred because their hacking

activities were detected over an extended period. This

emphasizes the importance of vigilance and effective detection

measures in combating cheating and maintaining fair gameplay

environments.

Table 4. Game Hacking Detection Avoidance Strategy

Third

Party

Software

Third

Party

Software Free

Ba

n

Yet

? Avoid Detection

Main

RuneScap

e

Depend

s on

type of

cheat No

Play in line with

average gamers

(hrs./time/effort/adva

ntage)

Main

Call of

Duty

(Modern

War Fare

2019) No No

Aim for chest,

intermittent breaks

from chest, play on

normal

Main Valorant No No

Aim for chest,

intermittent breaks

from chest, play on

normal

Main Destiny 2 No No

Avoided PVP (Player

vs Player)

Main

Guild

Wars 2 No

Ye

s

Avoided PVP (Player

vs Player) || Detected

for hacking too long

Main

Final

Fantasy

14 No No

Avoided PVP (Player

vs Player)

4.2 Researchers’ Experimental Injections
In the experimental discovery, it was found that the VAC anti-

cheat system, designed to detect and prevent cheating in the

game, failed to identify the exploit being utilized. Throughout

each iteration of the experiment, the responsibility for detecting

and addressing the exploit rested solely on the players

themselves.

The specific game in question, Counter-Strike, has a mechanic

where players who are eliminated in a round enter a spectating

mode until the round concludes. During this time, the spectator

could observe the perspective of the surviving teammate. This

mechanic inadvertently provided an opportunity for exploiting

the game by gaining an unfair advantage through viewing

opponents’ locations through walls.

In one of the iterations, a play tester was falsely accused of

cheating and subsequently reported. This incident occurred

because the play tester was observed looking at opponents

through walls, an action that is not within the bounds of

legitimate gameplay. It highlights the potential for

misunderstandings and unwarranted accusations when

exploiting such game mechanics.

Interestingly, in another iteration, the exploit was only detected

when other players noticed suspicious activities, such as being

killed by the player through walls. This suggests that the

detection of the exploit relied heavily on the vigilance and

observation skills of the other players rather than the

effectiveness of the anti-cheat system itself.

This discovery underscores the limitations of the VAC anti-

cheat system in effectively detecting and addressing certain

exploits. It also emphasizes the importance of player awareness

and reporting in identifying suspicious activities during

gameplay. The findings highlight the need for continuous

improvement and updates to anti-cheat systems to effectively

combat cheating and maintain fair gameplay environments.

4.2.1 Counter-Strike Injection and Detection
It was observed that the successful functioning of the injector

software relied on the game initializing specific hooks

necessary for exploiting the game engine. The design of the

injector software was specifically tailored to accommodate this

requirement, ensuring compatibility and effectiveness.

Once the game initialized the exploitable hooks, the injection

process consistently achieved a 100% success rate in executing

the desired hack. This indicates that the injection method was

capable of effectively manipulating the game engine to gain an

unfair advantage throughout the iteration of the experiment.

Table 5. Success Game Injections

Successful Game Injection (1 = Successful; 0 = Failed)

Mins Before
Game Load

Try
One

Try
Two

Try
Three

Try
Four

Try
Five

Immediately 0 0 0 0 0

0-1 min during
game load

1 1 1 1 1

2-5 mins

during game

load

1 1 1 1 1

After game
load

1 1 1 1 1

During run

time
1 1 1 1 1

However, it is important to note that despite the initial success,

the injection was eventually detected in 4 out of 5 iterations.

The detection occurred on the 4th, 5th, 8th, and 10th attempts,

all of which were made during the second attempts. This

suggests that the initial injection went undetected, allowing the

hack to remain active until subsequent attempts were made.

Reports were made upon each detection, indicating the

vigilance of individuals in identifying and reporting the

presence of the hack.

Overall, the experimentation recorded an 80% success rate,

indicating that the injection method was effective in bypassing

detection in the majority of cases. However, the fact that the

hack was eventually detected in a significant portion of the

iterations highlights the potential vulnerability of the injection

method and the importance of robust detection measures in

maintaining fair gameplay environments.

This discovery underscores the ongoing cat-and-mouse game

between hackers and game developers, where hackers

constantly seek new methods to exploit game engines, while

developers work to enhance detection mechanisms to identify

and prevent such exploits. The findings emphasize the need for

continual improvement in anti-cheat systems and the

importance of player reporting in maintaining fair and balanced

gameplay experiences.

International Journal of Computer Applications (0975 – 8887)

Volume 185 – No. 33, September 2023

62

Table 6. Cheat Detection and Reporting

5. FINDINGS AND CONCLUSION

5.1 Findings
The findings of the hacking experiment shed light on the

specific mechanism through which the exploit operates, taking

advantage of a vulnerability inherent in the game’s engine

rather than targeting the anti-cheat system. This distinction is

crucial as it highlights the need for game developers to focus

not only on fortifying their anti-cheat measures but also on

addressing potential vulnerabilities within the engine itself.

The vulnerability exploited in this experiment revolves around

the unchecked nature of the r_draw function by the server,

allowing it to run on the client side without proper validation.

This lack of server-side scrutiny is primarily driven by the need

to accommodate different users’ graphic settings, which vary

based on their individual processing power. By allowing the

client to execute the r_draw function, the server can adapt the

graphical output according to the user’s selected settings,

whether it be high, medium, or low.

However, this unchecked execution of the r_draw function on

the client side poses a significant security risk. It enables

malicious actors to manipulate and exploit the game’s engine,

potentially granting them unfair advantages or compromising

the integrity of the gameplay experience for others.

To address this vulnerability, it is crucial for game developers

to implement stricter controls over function calls like r_draw.

One potential solution involves associating specific variables

with each graphical setting, such as 0 for low, 1 for medium,

and 2 for high. These variables can then be securely transmitted

to the server, allowing it to draw graphics based on the user’s

preference while maintaining control over the execution of

sensitive commands.

The exploit’s focus on the game engine rather than the anti-

cheat system highlights the importance of a multi-layered

security approach in game development. While anti-cheat

systems play a crucial role in detecting and preventing

cheating, vulnerabilities within the game engine itself can be

equally detrimental. This emphasizes the need for developers

to thoroughly assess and fortify the engine against potential

exploits.

The unchecked nature of the r_draw function by the server

exposes a fundamental flaw in the game’s architecture.

Allowing the client to execute this function without proper

validation opens the door for unauthorized manipulation and

compromises the integrity of the gameplay experience. This

vulnerability stems from the inherent trade-off between

accommodating users’ varying graphic settings and

maintaining control over sensitive commands.

5.2 Summary and Recommendations
The gaming industry has been proactively seeking solutions to

the issue of game hacking. Despite continuous efforts, these

hackers have continued to adapt and evade the implemented

measures. Combating game hacking requires a multi-tiered

approach. Some potential solutions include:

5.2.1 Strengthening Legal Frameworks
Enforcing stricter laws against hacking, piracy, and RMT and

increasing international collaborations to prosecute hackers can

serve as a deterrent (Lu, 2018).

5.2.2 Building Community Awareness
Educating the gaming community about the consequences of

game hacking could potentially discourage individuals from

participating in these activities.

5.2.3 Technology Innovations
Developing and implementing new technologies, such as

advanced anti-cheat software and encryption methods, can help

developers to detect and block hacking attempts (Bohannon,

2010).

5.2.4 Industry Collaboration
Aligning the interests of developers, platform providers, and

community leaders through shared objectives and coordinated

actions to counter hacking initiatives can have greater impact

and success in combating game hacking.

5.3 Conclusion
Injectors pose a significant challenge to the gaming industry's

integrity, undermining the authentic and fair experience that

online gaming intends to provide to its global audience. The use

of injectors enables hackers to introduce foreign code into a

game's memory space, allowing them to manipulate and exploit

the game software for their benefit. The gaming industry

continuously adapts its defense mechanisms to tackle the

increasingly sophisticated hacking techniques presented by

injectors and other hacking tools.

In the context of the context of physics engines used to power

games such as Counter-Strike: Source, or Valorant, it is

important to consider while developing these engines how they

could possibility exploited and what their vulnerabilities are in

order to prevent any issues at the source such as instances of

r_draw() functions that are unchecked by the server, or leaving

the engine open to injection by not monitoring what is making

use of the game’s or application’s memory.

While anti-cheat systems, such as Riot Games' Vanguard,

demonstrate promising advances in thwarting injectors and

other hacking attempts, there remains a relentless arms race

between hackers and game developers. If the desire to cheat

persists, so too will the efforts to develop more advanced

hacking tools.

To address this issue effectively, game developers must adopt

a defense-in-depth strategy. This involves implementing a

combination of server-side validation, client-server

communication protocols, and secure variable storage

mechanisms. By validating critical function calls on the server

side, developers can ensure that only authorized actions are

executed, minimizing the risk of exploits.

Introducing robust client-server communication protocols is

crucial to prevent unauthorized manipulation of sensitive

commands. By implementing secure channels for transmitting

user preferences and graphic settings, developers can maintain

control over the execution of functions like r_draw while still

accommodating individual user requirements. This approach

International Journal of Computer Applications (0975 – 8887)

Volume 185 – No. 33, September 2023

63

ensures that the server retains the final say in determining the

graphical output, preventing potential exploits.

Furthermore, storing variables associated with graphical

settings in a secure manner can enhance the overall security of

the game engine. By assigning specific values to each setting

and transmitting them to the server, developers can ensure that

the server interprets and executes the appropriate commands

based on the user’s preference. This approach not only

enhances security but also provides a standardized and

controlled environment for gameplay.

It is important to note that addressing vulnerabilities in a game

engine requires a comprehensive understanding of software

security principles, threat modeling, and rigorous testing. Game

developers must prioritize security throughout the development

lifecycle, employing techniques such as code reviews,

penetration testing, and continuous monitoring to identify and

mitigate potential vulnerabilities.

To further expand on the topic of using low, medium, and high

variables to address vulnerabilities in the game engine, let’s

explore their implementation and potential benefits.

By associating specific variables with each graphical setting,

such as 0 for low, 1 for medium, and 2 for high, game

developers can establish a standardized framework for

interpreting and executing graphical commands. This approach

allows for more controlled and secure gameplay while

accommodating the varying hardware capabilities of different

users.

When a player selects a particular graphical setting, the

corresponding variable is securely transmitted to the server.

The server then uses this information to determine the level of

graphical detail to render, ensuring consistency across all

players while maintaining control over the execution of

sensitive commands.

Implementing these variables offers several advantages.

Firstly, it allows the server to validate the received variable

against a predefined range, ensuring that only legitimate values

are accepted. This prevents potential exploits that may attempt

to manipulate the graphical settings to gain an unfair advantage.

Secondly, using variables enables developers to establish a

hierarchy of graphical settings. For instance, the server can

prioritize high-quality graphics (variable 2) over medium-

quality (variable 1) or low-quality (variable 0) if the hardware

capabilities of the player’s system allow for it. This ensures that

players with more powerful hardware can enjoy enhanced

visuals without compromising the integrity of the gameplay

experience for others.

Additionally, the use of variables facilitates easier maintenance

and updates. If developers decide to introduce new graphical

settings or optimize existing ones, they can simply modify the

corresponding variables on the server side. This eliminates the

need for individual client updates, streamlining the process and

ensuring a consistent experience for all players.

However, it is important to implement proper security

measures when transmitting these variables from the client to

the server. Encryption and secure communication protocols

should be employed to prevent unauthorized access or

tampering of the data during transmission.

6. REFERENCES
[1] Arefin, S., Islam, S. S., & Chy, A. M. (2018).

Identification of DLL injection technique based malware

from process monitoring data. Journal of King Saud

University-Computer and Information Sciences, 30(4),

465-474.

[2] Chen, H. T., Chen, S. Y., & Tu, C. H. (2009). Why do

people immerse in the subculture of online game

hacking: Contextual factors and their interactions. Social

Behavior and Personality: An International Journal,

37(10), 1269-1280.

[3] Chen, H. T., Tu, C. H., & Wang, S. Y. (2008). Discovering

the Motivation behind the Hacker's Mind: An Integrative

Structural Model of Hacking Behaviors. Social Behavior

and Personality: An International Journal, 36(2), 237-

244Tavel, P. 2007 Modeling and Simulation Design. AK

Peters Ltd.

[4] Hamari, J., & Sjöblom, M. (2017). What is eSports and

why do people watch it? Internet research, 27(2), 211-232.

[5] Halfond, W. G., Viegas, J., & Orso, A. (2006). A

classification of SQL-injection attacks and

countermeasures. Proceedings from IEEE International

Symposium on Secure Software Engineering, Arlington,

VA.

[6] Hutchins, B., & Rowe, D. (2018). eSports, skins betting

and wire fraud vulnerability. Communication Research

and Practice, 4(2), 145-162.

[7] Klumbyte, N., & Kerner, D. N. (2019). Digital cheating:

the case of esports. European Journal for Sport and

Society, 16(1), 85-104.

[8] Krebs, B. (2014). The Target breach, by the numbers.

KrebsOnSecurity. Retrieved from

https://nam06.safelinks.protection.outlook.com/?url=http

s%3A%2F%2Fkrebsonsecurity.com%2F2014%2F02%2

Fthe-target-breach-by-the-

numbers%2F&data=05%7C01%7Cfrancis.martinson%4

0microsoft.com%7C450cfc6861cb40b0fec008db534b44

7a%7C72f988bf86f141af91ab2d7cd011db47%7C1%7C

0%7C638195354962725148%7CUnknown%7CTWFpb

GZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIi

LCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C

%7C%7C&sdata=pARaQygDrg6OylTp%2B%2Fow0qC

bmf0%2FcibjQYxX2cOIel0%3D&reserved=0

[9] Kushner, D. (2013). The real story of Stuxnet. IEEE

Spectrum, 1-7.

[10] Li, Y., Yan, G., Xia, Z., Chen, B., Li, H., & Wu, D. D.

(2018). Detecting Cheat Activities in Online Game: A

Data Mining Approach. Decision Analysis, 15(3), 160-

175.

[11] Mansfield-Devine, S. (2009). A short history of hacking.

Network Security, 2009(2), 4-6.

[12] Sadeghi, A. R. (2018). The internet of insecure things:

End-to-end security and privacy challenges. Proceedings

of the IEEE, 106(9), 1706-1710.

[13] Richards, P. (2018). Tackling cheaters and pirates:

Strategies for combating digital piracy in the video game

industry. Interactive Entertainment Law Review, 1(1),

40-54.

[14] https://developer.valvesoftware.com/wiki/Visibility_opti

mization

[15] https://developer.valvesoftware.com/wiki/Func_occluder

[16] https://developer.valvesoftware.com/wiki/Source

[17] Ikariiillustration/injector (github.com).

IJCATM : www.ijcaonline.org

