
International Journal of Computer Applications (0975 – 8887)

Volume 185 – No. 35, September 2023

9

Implementation of Keyword Extraction using Term

Frequency-Inverse Document Frequency (TF-IDF) in

Python

Ahmad Farhan AlShammari
Department of Computer and Information Systems

College of Business Studies, PAAET
Kuwait

ABSTRACT
The goal of this research is to develop a keyword extraction

program using Term Frequency-Inverse Document Frequency

(TF-IDF) in Python. The purpose of keyword extraction is to

identify the set of words (keywords) that describe the content

of the text. The TF-IDF method is used to measure the

importance of words in the text. The basic steps of keyword

extraction are explained: preprocessing text, creating list of

words, creating bag of words, creating word frequency (TF),

creating inverse document frequency (IDF), creating word

frequency-inverse document frequency (TF-IDF), creating

keywords, and sorting keywords. The developed program was

tested on an experimental text from Wikipedia. The program

successfully performed the basic steps of keyword extraction

and provided the required results.

Keywords
Artificial Intelligence, Machine Learning, Natural Language

Processing, Text Mining, Keyword Extraction, Term

Frequency-Inverse Document Frequency, TF-IDF, Python,

Programming.

1. INTRODUCTION
The rapid development of Information and Communications

Technology (ICT) is enabling the volume of data to grow very

fast. Processing large amounts of data is becoming a crucial

issue. Computer systems need more powerful methods to

process data, analyze it, and extract information. Actually,

machine learning is playing a key role in processing data more

quickly and efficiently.

Machine Learning (ML) is a branch of Artificial Intelligence

(AI) that is focused on the study of computer algorithms to

improve the performance of computer programs.

Keyword extraction is one of the important applications of

machine learning. It is a common field between ML and

Natural Language Processing (NLP). Therefore, it applies both

the methods of ML and the techniques of NLP to process

human language.

Fig 1: Field of Keyword Extraction

2. LIREATURE REVIEW
The review of literature revealed the major contributions in the

field of keyword extraction [1-16]. The research started in the

late fifties. In 1958, Hans Luhn [17] proposed a statistical

method based on "Term Frequency" (TF) to measure the word

importance in the text. He found that the word importance is

simply proportional to the word frequency in the text. However,

TF has a drawback, for example: common words (for example:

the, it, is) occur more frequently in the text and therefore, will

get high TF value.

Over time, researchers continued to develop new methods to

overcome the limitations of TF. In 1972, Spark Jones [18, 19]

suggested the "Inverse Document Frequency" (IDF) to measure

the word importance in the whole set of documents. She found

that the word importance is "inversely" proportional to the

word frequency in the whole set of documents. For example: If

the word occurs more frequently in the documents, then it has

low significance.

Gerard Salton developed the Term Frequency-Inverse

Document Frequency (TF-IDF) which is simply the product of

TF and IDF [20-22, 23-28]. It is used to measure the word

importance in the document with respect to the whole set of

documents. TF-IDF is the most widely used weighting method

in text mining because it is powerful in extracting keywords

from the text. In 2015, a study showed that TF-IDF is

implemented in (83%) of digital libraries [8].

Salton also introduced the Vector Space Model (VSM) to easily

represent text as a vector of numbers or weights [23].

The fundamental concepts of keyword extraction are explained

in the following section:

Keyword Extraction:
Keyword extraction is the process that identifies the set of

words (keywords) that describe the content of the text.

Keywords are very important in text mining. They provide a

short representation for the basic characteristics of the text.

Fig 2: Concept of Keyword Extraction

AI Linguistics NLP ML ×

Word1

Word2

Word3
…

Keyword
Extraction

Keywords:

Text

International Journal of Computer Applications (0975 – 8887)

Volume 185 – No. 35, September 2023

10

Therefore, the text is represented as a vector of words as shown

in the following view:

Text = (word1, word2, word3, …)

Applications of Keyword Extraction:
Keyword extraction is an essential process in information

retrieval, text mining, and machine learning. It is used in

various applications such as: indexing, searching, ranking,

summarization, similarity, recommendation, clustering,

classification, etc.

Approaches of Keyword Extraction:
There are different approaches in keyword extraction, such as:

frequency-based, graph-based, and neural networks.

In this research, the frequency-based approach is applied.

Keyword Extraction System:
In the keyword extraction system; the input is the text given by

the user. Then, the system will apply the TF-IDF method to

give specific weights to the words based on their frequency in

the text. Finally, the output is the resulting keywords.

Fig 3: Diagram of Text Extraction System

Preprocessing Text:
The text should be cleaned from the unwanted characters and

words for example: punctuation symbols and stopwords.

List of Words:
The text is "tokenized" or split into words. The result of word

tokenization is the list of words, as shown in the following

view:

List of Words = [word1, word2, word3, …]

Bag of Words:
Bag of Words (BoW) is the set of words without repetition, as

shown in the following view:

Bag of Words = (word1, word2, word3, …)

Term Frequency:
Term Frequency (TF) is the number of times a word occurs in

the document divided by the total number of words in the

document. It measures the importance of a word in the

document. It is calculated by the following formula:

TF(wi) =
 Nwi

Nw
 (1)

Where: Nwi is the number of times the word (wi) occurs in the

document, and Nw is the total number of words in the

document.

Inverse Document Frequency:
Inverse Document Frequency (IDF) is the log value of the

number of documents (corpus) divided by the number of

documents in which a word occurs. It measures the word

importance in the whole set of documents. It is calculated by

the following formula:

IDF(wi) = log (
 Nd

Nd|𝑤𝑖
) (2)

Where: Nd is the total number of documents, and Nd|wi is the

number of documents in which the word (wi) occurs.

Term Frequency-Inverse Document

Frequency:
Term Frequency-Inverse Document Frequency (TF-IDF) is the

product of term frequency (TF) and inverse document

frequency (IDF). It measures the word importance in the

document with respect to the whole set of documents. It is

calculated by the following formula:

TF-IDF(wi) = TF(wi) × IDF(wi) (3)

Python:
Python [29] is a high-level general purpose programming

language. It is simple, easy to learn, and powerful. It is the most

preferred programming language by the developers of machine

learning applications.

Python provides additional libraries such as: Numpy [30],

Pandas [31], Matplotlib [32], NLTK [33], and SK Learn [34].

In this research, the standard functions of Python are used

without using any additional library.

3. RESEARCH METHODOLOGY
The basic steps of keyword extraction are: (1) preprocessing

text, (2) creating list of words, (3) creating bag of words, (4)

creating term frequency (TF), (5) creating inverse document

frequency (IDF), (6) creating term frequency-inverse document

frequency (TF-IDF), (7) creating keywords, and (8) sorting

keywords.

Fig 4: Steps of Keyword Extraction

1. Preprocessing Text

2. Creating List of Words

3. Creating Bag of Words

4. Creating Term Frequency (TF)

5. Creating Inverse Document Frequency (IDF)

6. Creating Term Frequency- Inverse Document

Frequency (TF-IDF)

7. Creating Keywords

8. Sorting Keywords

Keyword

Extraction
System

(TF-IDF)

Key-
words

Text

International Journal of Computer Applications (0975 – 8887)

Volume 185 – No. 35, September 2023

11

Fig 5: Flowchart of Keyword Extraction

The steps of keyword extraction are explained in details in the

following section:

1. Preprocessing Text:
The text is preprocessed to clean it from the unwanted

characters and words. It is done by the following steps:

1.1 Converting Text into Lower Case:
The text is converted into lower case. It is done by the following

code:

text = text.lower()

1.2 Removing Punctuation:
The punctuation symbols (like: !@#$ …) are removed from the

text. It is done by the following code:

letters = "abcdefghijklmnopqrstuvwxyz"

for c in text:

 if (c not in letters):

 text = text.replace(c," ")

1.3 Removing Stopwords:
The stopwords (like: I, am, is are, …) are removed from the

text. It is done by the following code:

stopwords = ["i", "am", "is", "are", "we",

 "it", "he", "she", "the",

 "they", "that", "this", ...]

for word in text:

 if (word in stopwords):

 text = text.replace(word,"")

2. Creating List of Words:
The text is split into words. It is done by the following code:

words = text.split()

3. Creating Bag of Words:
The bag of words is the set of words. It is done by the following

code:

bag_of_words = set(words)

4. Creating Term Frequency:
The term frequency (TF) holds the TF values of words. It is

shown in the following view:

Word TF

w1 tf(w1)

w2 tf (w2)

w3 tf (w3)

… …

wn tf(wn)

Fig 6: Structure of Word Frequency

Where: tf(wi) is the TF value of word (wi). It is done by the

following code:

Nw = len(words)

tf = {}

for word in bag_of_words:

 tf[word] = words.count(word) / Nw

5. Creating Inverse Document Frequency:
The inverse document frequency (IDF) holds the IDF values of

words. It is shown in the following view:

Word IDF

w1 idf(w1)

w2 idf (w2)

w3 idf (w3)

… …

wn idf(wn)

Fig 7: Structure of Inverse Document Frequency

Where: idf(wi) is the IDf value of word (wi). It is done by the

following code:

Creating

TF

Key-

words

Stop-

words

TF IDF

TF-IDF

Bag of

Words

Words

Sorted

Key-

words

Creating

Bag of Words

Creating
Keywords

Creating TF-IDF

Creating

IDF

Sorting
Keywords

Creating

List of Words Preprocessing
Text

Text

1,2,3

International Journal of Computer Applications (0975 – 8887)

Volume 185 – No. 35, September 2023

12

Nd = len(docs)

idf = {}

for word in bag_of_words:

 sum = 0

 for doc in docs:

 if (word in doc):

 sum +=1

 Ndw = sum

 idf[word] = math.log10(Nd / Ndw)

6. Creating Term Frequency-Inverse

Document Frequency:
The term frequency-inverse document frequency (TF-IDF)

holds the TF-IDF values of words. It is shown in the following

view:

Word TF-IDF

w1 tfidf(w1)

w2 tfidf (w2)

w3 tfidf (w3)

… …

wn tfidf (wn)

Fig 8: Structure of Term Frequency- Inverse Document

Frequency

Where: tfidf (wi) is the TF-IDF value of word (wi). It is done by

the following code:

tfidf = {}

for word, value in tf.items():

 tfidf[word] = value * idf[word]

7. Creating Keywords:
The Keywords consist of the words that have TF-IDF values

above the average value. It is done by the following code:

keywords = {}

for word, value in tfidf.items():

 if (value >= average):

 keywords[word] = value

8. Sorting Keywords:
The keywords are sorted by the TF-IDF values in reversed

order. In Python, sorting a list is simply done by the (sorted)

function as shown in the following code:

sorted_list = sorted(list, reverse=True)

However, sorting a dictionary is more complicated than a list

because the structure of dictionary is composed of paired (key,

value) items.

4. RESULTS AND DISCUSSION
The developed program was tested on an experimental text

from Wikipedia [35]. The program performed the basic steps

of keyword extraction and provided the required results. The

resulting output is shown in the following section:

List of Words:
The list of words is shown in the following view:

List of Words:

Text 1:

algorithms

automation

computation

computation

computer

...

Text 2:

amount

answering

computation

computations

computed

...

Text 3:

aims

communicating

compressing

data

data

...

...

Bag of Words:
The bag of words is shown in the following view:

Bag of Words:

adaptation

aims

algorithms

amount

analysis

...

Term Frequency:
The term frequency (TF) is shown in the following view:

Term Frequency (TF):

Text 1:

algorithms 0.0454545455

automation 0.0454545455

computation 0.0909090909

computer 0.0454545455

computing 0.0454545455

...

Text 2:

amount 0.0833333333

answering 0.0833333333

computation 0.0833333333

computations 0.0833333333

computed 0.0833333333

...

Text 3:

aims 0.0666666667

communicating 0.0666666667

compressing 0.0666666667

data 0.1333333333

find 0.0666666667

...

...

Inverse Document Frequency:
The inverse document frequency (IDF) is shown in the

following view:

Inverse Document Frequency (IDF):

adaptation 1.0791812460

aims 0.4771212547

algorithms 0.7781512504

amount 1.0791812460

analysis 0.7781512504

...

International Journal of Computer Applications (0975 – 8887)

Volume 185 – No. 35, September 2023

13

Term Frequency-Inverse Document

Frequency:
The term frequency-inverse document frequency (TF-IDF) is

shown in the following view:

Term Frequency-Inverse Document Frequency (TF-

IDF):

Text 1:

algorithms 0.0353705114

automation 0.0490536930

computation 0.0707410228

computer 0.0172823292

computing 0.0490536930

...

Text 2:

amount 0.0899317705

answering 0.0899317705

computation 0.0648459375

computations 0.0899317705

computed 0.0899317705

...

Text 3:

aims 0.0318080836

communicating 0.0719454164

compressing 0.0719454164

data 0.0636161673

find 0.0719454164

 ...

...

Keywords:
The keywords are shown in the following view:

Keywords:

Text 1:

automation 0.0490536930

computation 0.0707410228

computing 0.0490536930

hardware 0.0490536930

implementing 0.0490536930

...

Text 2:

 amount 0.0899317705

 answering 0.0899317705

 computations 0.0899317705

 computed 0.0899317705

 focused 0.0899317705

 ...

Text 3:

communicating 0.0719454164

compressing 0.0719454164

data 0.0636161673

find 0.0719454164

operations 0.0719454164

...

...

Sorted Keywords:
The sorted keywords are shown in the following view:

Sorted Keywords:

Text 1:

computation 0.0707410228

wide 0.0490536930

topics 0.0490536930

theoretical 0.0490536930

systems 0.0490536930

...

Text 2:

resources 0.0899317705

required 0.0899317705

questions 0.0899317705

perform 0.0899317705

focused 0.0899317705

...

Text 3:

storing 0.0719454164

signal 0.0719454164

reliably 0.0719454164

processing 0.0719454164

operations 0.0719454164

...

...

The following chart shows a visual representation for the

number of keywords in the texts:

Fig 9: Chart of Number of Keywords

In summary, the program output clearly demonstrates that the

developed program successfully performed the basic steps of

keyword extraction and provided the required results.

5. CONCLUSION
Keyword extraction is one of the important applications of

machine learning. The purpose of keyword extraction is to

identify the set of words (keywords) that describe the content

of the text. The TF-IDF method is used to measure the

importance of words in the text.

In this research, the author developed a keyword extraction

program using the word frequency-inverse document

frequency (TF-IDF) in Python. The program performed the

basic steps of keyword extraction: preprocessing text, creating

list of words, creating bag of words, creating word frequency

(TF), creating inverse document frequency (IDF), creating

word frequency-inverse document frequency (TF-IDF),

creating keywords, and sorting keywords.

The program was tested on an experimental text from

Wikipedia and provided the required results: list of words, bag

of words, term frequency (TF), inverse document frequency

(IDF), term frequency-inverse document frequency (TF-IDF),

keywords, and sorted keywords.

In future work, more research is certainly needed to improve

and develop the current methods of keyword extraction. In

addition, they should be more investigated in different

domains, and languages such as Arabic.

0 5 10 15 20

Text 1

Text 2

Text 3

Text 4

Text 5

Text 6

Text 7

Text 8

Text 9

Text 10

Text 11

Text 12

Number of Keywords

International Journal of Computer Applications (0975 – 8887)

Volume 185 – No. 35, September 2023

14

6. REFERENCES
[1] Sammut, C., & Webb, G. I. (2011). "Encyclopedia of

Machine Learning". Springer.

[2] Aggarwal, C. (2015). "Data Mining: The Textbook". New

York: Springer.

[3] Lee, S., & Kim, H. J. (2008). "Automatic Keyword

Extraction from News Articles using TF-IDF Model".

Networked Computing and Advanced Information

Management, 2.

[4] Rose, S., Engel, D., Cramer, N., & Cowley, W. (2010).

"Automatic Keyword Extraction from Individual

Documents". In Text Mining: Applications and Theory, 1-

20.

[5] Kaur, J., & Gupta, V. (2010). "Effective Approaches for

Extraction of Keywords". International Journal of

Computer Science Issues, 7(6), 144-148.

[6] Hong, B., & Zhen, D. (2012). "An Extended Keyword

Extraction Method". Physics Procedia, 24, 1120-1127.

[7] Beliga, S. (2014). "Keyword Extraction: A Review of

Methods and Approaches". University of Rijeka,

Department of Informatics, Rijeka, 1(9).

[8] Breitinger, C., Gipp, B., Langer, S. (2015). "Research-

Paper Recommender Systems: A Literature Survey".

International Journal on Digital Libraries, 17(4), 305-338.

[9] Siddiqi, S., & Sharan, A. (2015). "Keyword and

Keyphrase Extraction Techniques: A Literature Review".

International Journal of Computer Applications, 109(2),

18-23.

[10] Gupta, T. (2017). "Keyword Extraction: A Review".

International Journal of Engineering Applied Sciences and

Technology, 2(4), 215-220.

[11] Bharti, S. K., & Babu, K. S. (2017). "Automatic Keyword

Extraction for Text Summarization: A Survey". arXiv

preprint arXiv:1704.03242.

[12] Qaiser, S., & Ali, R. (2018). "Text Mining: Use of TF-IDF

to Examine the Relevance of Words to Documents".

International Journal of Computer Applications, 181(1),

25-29.

[13] Thushara, M. G., Mownika, T., & Mangamuru, R. (2019).

"A Comparative Study on Different Keyword Extraction

Algorithms". In 2019 3rd International Conference on

Computing Methodologies and Communication (ICCMC)

(pp. 969-973). IEEE.

[14] Firoozeh, N., Nazarenko, A., Alizon, F., & Daille, B.

(2020). "Keyword Extraction: Issues and Methods".

Natural Language Engineering, 26(3), 259-291.

[15] Xu, Z., & Zhang, J. (2021). "Extracting Keywords from

Texts based on Word Frequency and Association

Features". Procedia Computer Science, 187, 77-82.

[16] Li, J. (2021). "A Comparative Study of Keyword

Extraction Algorithms for English Texts". Journal of

Intelligent Systems, 30(1), 808-815.

[17] Luhn, H. (1958). "The Automatic Creation of Literature

Abstracts". IBM Journal of Research and

Development, 2(2), 159-165.

[18] Sparck Jones, K. (1972). "A Statistical Interpretation of

Term Specificity and Its Application in Retrieval". Journal

of Documentation. 28(1), 11–21.

[19] Sparck Jones, K. (2004). "IDF Term Weighting and IR

Research Lessons". Journal of Documentation, 60(5),

521-523.

[20] Robertson, S. (1972). "Term Specificity". Journal of

Documentation, 28(1), 164-165.

[21] Robertson, S. (1974). "Documentation Note: Specificity

and Weighted Retrieval". Journal of Documentation,

30(1), 41-46.

[22] Robertson, S. (2004). "Understanding Inverse Document

Frequency: On Theoretical Arguments for IDF". Journal

of Documentation, 60(5), 503-520.

[23] Salton, G., Wong, A., & Yang, C. S. (1975a). "A Vector

Space Model for Automatic Indexing". Communications

of the ACM, 18(11), 613-620.

[24] Salton, G., Yang, C. S., & Yu, C. T. (1975b). "A Theory

of Term Importance in Automatic Text Analysis". Journal

of the American Society for Information Science, 26(1),

33-44.

[25] Salton, G. & McGill, M. (1983). "Introduction to Modern

Information Retrieval". McGraw Hill Book Co, New

York.

[26] Salton, G., & Buckley, C. (1988). "Term-Weighting

approaches in Automatic Text Retrieval". Information

Processing and Management, 24(5), 513-523.

[27] Salton, G. (1989). "Automatic Text Processing: The

Transformation, Analysis, and Retrieval of Information by

Computer". Addison- Wesley Publishing Company, USA.

[28] Salton, G., Singhal, A., Mitra, M., & Buckley, C. (1997).

"Automatic Text Structuring and Summarization".

Information Processing & Management, 33(2), 193-207.

[29] Python: https://www.python.org

[30] Numpy: https://www.numpy.org

[31] Pandas: https:// pandas.pydata.org

[32] Matplotlib: https://www. matplotlib.org

[33] NLTK: https://www.nltk.org

[34] SK Learn: https://scikit-learn.org

[35] Wikipedia: https://en.wikipedia.org

IJCATM : www.ijcaonline.org

http://nbn-resolving.de/urn:nbn:de:bsz:352-0-311312
http://nbn-resolving.de/urn:nbn:de:bsz:352-0-311312

