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ABSTRACT 
The goal of this research is to develop a keyword extraction 

program using Term Frequency-Inverse Document Frequency 

(TF-IDF) in Python. The purpose of keyword extraction is to 

identify the set of words (keywords) that describe the content 

of the text. The TF-IDF method is used to measure the 

importance of words in the text. The basic steps of keyword 

extraction are explained: preprocessing text, creating list of 

words, creating bag of words, creating word frequency (TF), 

creating inverse document frequency (IDF), creating word 

frequency-inverse document frequency (TF-IDF), creating 

keywords, and sorting keywords. The developed program was 

tested on an experimental text from Wikipedia. The program 

successfully performed the basic steps of keyword extraction 

and provided the required results. 
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1. INTRODUCTION 
The rapid development of Information and Communications 

Technology (ICT) is enabling the volume of data to grow very 

fast. Processing large amounts of data is becoming a crucial 

issue. Computer systems need more powerful methods to 

process data, analyze it, and extract information. Actually, 

machine learning is playing a key role in processing data more 

quickly and efficiently.  

 

Machine Learning (ML) is a branch of Artificial Intelligence 

(AI) that is focused on the study of computer algorithms to 

improve the performance of computer programs.  

 

Keyword extraction is one of the important applications of 

machine learning. It is a common field between ML and 

Natural Language Processing (NLP). Therefore, it applies both 

the methods of ML and the techniques of NLP to process 

human language. 

 

 

 

 

 

 

 

 

 

Fig 1: Field of Keyword Extraction 

2. LIREATURE REVIEW 
The review of literature revealed the major contributions in the 

field of keyword extraction [1-16]. The research started in the 

late fifties. In 1958, Hans Luhn [17] proposed a statistical 

method based on "Term Frequency" (TF) to measure the word 

importance in the text. He found that the word importance is 

simply proportional to the word frequency in the text. However, 

TF has a drawback, for example: common words (for example: 

the, it, is) occur more frequently in the text and therefore, will 

get high TF value.  

 

Over time, researchers continued to develop new methods to 

overcome the limitations of TF. In 1972, Spark Jones [18, 19] 

suggested the "Inverse Document Frequency" (IDF) to measure 

the word importance in the whole set of documents. She found 

that the word importance is "inversely" proportional to the 

word frequency in the whole set of documents. For example: If 

the word occurs more frequently in the documents, then it has 

low significance.  

 

Gerard Salton developed the Term Frequency-Inverse 

Document Frequency (TF-IDF) which is simply the product of 

TF and IDF [20-22, 23-28]. It is used to measure the word 

importance in the document with respect to the whole set of 

documents. TF-IDF is the most widely used weighting method 

in text mining because it is powerful in extracting keywords 

from the text. In 2015, a study showed that TF-IDF is 

implemented in (83%) of digital libraries [8]. 

 

Salton also introduced the Vector Space Model (VSM) to easily 

represent text as a vector of numbers or weights [23]. 

 

The fundamental concepts of keyword extraction are explained 

in the following section: 

 

Keyword Extraction: 
Keyword extraction is the process that identifies the set of 

words (keywords) that describe the content of the text. 

Keywords are very important in text mining. They provide a 

short representation for the basic characteristics of the text. 

 

 

 

 

 

 

 

 

Fig 2: Concept of Keyword Extraction 
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Therefore, the text is represented as a vector of words as shown 

in the following view: 

 

Text = (word1, word2, word3, … ) 

 

Applications of Keyword Extraction: 
Keyword extraction is an essential process in information 

retrieval, text mining, and machine learning. It is used in 

various applications such as: indexing, searching, ranking, 

summarization, similarity, recommendation, clustering, 

classification, etc. 

 

Approaches of Keyword Extraction: 
There are different approaches in keyword extraction, such as: 

frequency-based, graph-based, and neural networks.  

 

In this research, the frequency-based approach is applied. 

 

Keyword Extraction System: 
In the keyword extraction system; the input is the text given by 

the user.  Then, the system will apply the TF-IDF method to 

give specific weights to the words based on their frequency in 

the text. Finally, the output is the resulting keywords. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 3: Diagram of Text Extraction System 

 

Preprocessing Text: 
The text should be cleaned from the unwanted characters and 

words for example: punctuation symbols and stopwords. 

 

List of Words: 
The text is "tokenized" or split into words. The result of word 

tokenization is the list of words, as shown in the following 

view: 

 

List of Words = [ word1, word2, word3, … ] 

 

Bag of Words: 
Bag of Words (BoW) is the set of words without repetition, as 

shown in the following view: 

 

Bag of Words = ( word1, word2, word3, … ) 

 

Term Frequency: 
Term Frequency (TF) is the number of times a word occurs in 

the document divided by the total number of words in the 

document. It measures the importance of a word in the 

document. It is calculated by the following formula: 

TF(wi) = 
 Nwi

Nw
                               (1) 

 

Where: Nwi is the number of times the word (wi) occurs in the 

document, and Nw is the total number of words in the 

document.  

Inverse Document Frequency: 
Inverse Document Frequency (IDF) is the log value of the 

number of documents (corpus) divided by the number of 

documents in which a word occurs. It measures the word 

importance in the whole set of documents. It is calculated by 

the following formula: 

IDF(wi) = log (
 Nd

Nd|𝑤𝑖
)                  (2) 

 

Where: Nd is the total number of documents, and Nd|wi is the 

number of documents in which the word (wi) occurs.  

 

Term Frequency-Inverse Document 

Frequency: 
Term Frequency-Inverse Document Frequency (TF-IDF) is the 

product of term frequency (TF) and inverse document 

frequency (IDF). It measures the word importance in the 

document with respect to the whole set of documents. It is 

calculated by the following formula: 

 

TF-IDF(wi) = TF(wi) × IDF(wi)          (3) 

 

Python: 
Python [29] is a high-level general purpose programming 

language. It is simple, easy to learn, and powerful. It is the most 

preferred programming language by the developers of machine 

learning applications.  

 

Python provides additional libraries such as: Numpy [30], 

Pandas [31], Matplotlib [32], NLTK [33], and SK Learn [34]. 

 

In this research, the standard functions of Python are used 

without using any additional library. 

 

3. RESEARCH METHODOLOGY 
The basic steps of keyword extraction are: (1) preprocessing 

text, (2) creating list of words, (3) creating bag of words, (4) 

creating term frequency (TF), (5) creating inverse document 

frequency (IDF), (6) creating term frequency-inverse document 

frequency (TF-IDF), (7) creating keywords, and (8) sorting 

keywords. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 4: Steps of Keyword Extraction 
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Fig 5: Flowchart of Keyword Extraction 

The steps of keyword extraction are explained in details in the 

following section:  

 

1. Preprocessing Text: 
The text is preprocessed to clean it from the unwanted 

characters and words. It is done by the following steps:  

 

1.1 Converting Text into Lower Case: 
The text is converted into lower case. It is done by the following 

code: 

 
text = text.lower() 

 

1.2 Removing Punctuation: 
The punctuation symbols (like: !@#$ …) are removed from the 

text. It is done by the following code: 

 
letters = "abcdefghijklmnopqrstuvwxyz" 

for c in text: 

    if (c not in letters): 

     text = text.replace(c," ") 

 

 

1.3 Removing Stopwords: 
The stopwords (like: I, am, is are, …) are removed from the 

text. It is done by the following code: 

 
stopwords = ["i", "am", "is", "are", "we",                  

             "it", "he", "she", "the",  

             "they", "that", "this", ... ] 

for word in text: 

    if (word in stopwords): 

     text = text.replace(word,"") 

 

2. Creating List of Words: 
The text is split into words. It is done by the following code: 

 

words = text.split() 

 

3. Creating Bag of Words: 
The bag of words is the set of words. It is done by the following 

code: 

 
bag_of_words = set(words) 

 

4. Creating Term Frequency: 
The term frequency (TF) holds the TF values of words. It is 

shown in the following view: 

 

Word TF 

w1 tf(w1) 

w2 tf (w2) 

w3 tf (w3) 

… … 

wn tf(wn) 

 

Fig 6: Structure of Word Frequency 

 

Where: tf(wi) is the TF value of word (wi). It is done by the 

following code: 

 
Nw = len(words) 

tf = {} 

for word in bag_of_words: 

    tf[word] = words.count(word) / Nw 

 

5. Creating Inverse Document Frequency: 
The inverse document frequency (IDF) holds the IDF values of 

words. It is shown in the following view: 

 

Word IDF 

w1 idf(w1) 

w2 idf (w2) 

w3 idf (w3) 

… … 

wn idf(wn) 

 

Fig 7: Structure of Inverse Document Frequency 

 

Where: idf(wi) is the IDf value of word (wi). It is done by the 

following code: 
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Nd = len(docs) 

idf = {} 

for word in bag_of_words: 

    sum = 0 

    for doc in docs: 

        if (word in doc): 

            sum +=1 

    Ndw = sum 

    idf[word] = math.log10(Nd / Ndw) 

 

6. Creating Term Frequency-Inverse 

Document Frequency: 
The term frequency-inverse document frequency (TF-IDF) 

holds the TF-IDF values of words. It is shown in the following 

view: 

 

Word TF-IDF 

w1 tfidf(w1) 

w2 tfidf (w2) 

w3 tfidf (w3) 

… … 

wn tfidf (wn) 

 

Fig 8: Structure of Term Frequency- Inverse Document 

Frequency 

 

Where: tfidf (wi) is the TF-IDF value of word (wi). It is done by 

the following code: 

 
tfidf = {} 

for word, value in tf.items(): 

    tfidf[word] = value * idf[word] 

 

7. Creating Keywords: 
The Keywords consist of the words that have TF-IDF values 

above the average value. It is done by the following code: 

 
keywords = {} 

for word, value in tfidf.items(): 

    if (value >= average): 

    keywords[word] = value 

 

8. Sorting Keywords: 
The keywords are sorted by the TF-IDF values in reversed 

order. In Python, sorting a list is simply done by the (sorted) 

function as shown in the following code: 

 

sorted_list = sorted(list, reverse=True) 

 

However, sorting a dictionary is more complicated than a list 

because the structure of dictionary is composed of paired (key, 

value) items. 

 

4. RESULTS AND DISCUSSION 
The developed program was tested on an experimental text 

from Wikipedia [35]. The program performed the basic steps 

of keyword extraction and provided the required results. The 

resulting output is shown in the following section: 

 

List of Words: 
The list of words is shown in the following view:  

 

 

List of Words: 

Text 1: 

algorithms 

automation 

computation 

computation 

computer 

... 

Text 2: 

amount 

answering 

computation 

computations 

computed 

... 

Text 3: 

aims 

communicating 

compressing 

data 

data 

... 

... 

Bag of Words: 
The bag of words is shown in the following view: 

 
Bag of Words: 

adaptation 

aims 

algorithms 

amount 

analysis 

... 

 

Term Frequency: 
The term frequency (TF) is shown in the following view: 

 
Term Frequency (TF): 

Text 1: 

algorithms   0.0454545455 

automation   0.0454545455 

computation   0.0909090909 

computer   0.0454545455 

computing   0.0454545455 

... 

Text 2: 

amount    0.0833333333 

answering   0.0833333333 

computation   0.0833333333 

computations   0.0833333333 

computed    0.0833333333 

... 

Text 3: 

aims    0.0666666667 

communicating   0.0666666667 

compressing   0.0666666667 

data    0.1333333333 

find    0.0666666667 

... 

... 

 

Inverse Document Frequency: 
The inverse document frequency (IDF) is shown in the 

following view: 

 
Inverse Document Frequency (IDF): 

adaptation   1.0791812460 

aims     0.4771212547 

algorithms   0.7781512504 

amount    1.0791812460 

analysis   0.7781512504 

... 
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Term Frequency-Inverse Document 

Frequency: 
The term frequency-inverse document frequency (TF-IDF) is 

shown in the following view: 

 
Term Frequency-Inverse Document Frequency (TF-

IDF): 

Text 1: 

algorithms  0.0353705114 

automation            0.0490536930 

computation           0.0707410228 

computer              0.0172823292 

computing             0.0490536930 

... 

Text 2: 

amount                0.0899317705 

answering             0.0899317705 

computation           0.0648459375 

computations          0.0899317705 

computed              0.0899317705 

... 

Text 3: 

aims                  0.0318080836 

communicating         0.0719454164 

compressing           0.0719454164 

data                  0.0636161673 

find                  0.0719454164 

 ... 

... 

 

 

Keywords: 
The keywords are shown in the following view: 
 
Keywords: 

Text 1: 

automation           0.0490536930 

computation          0.0707410228 

computing            0.0490536930 

hardware             0.0490536930 

implementing         0.0490536930 

...  

Text 2: 

 amount               0.0899317705 

 answering            0.0899317705 

 computations         0.0899317705 

 computed             0.0899317705 

 focused              0.0899317705

 ... 

Text 3: 

communicating        0.0719454164 

compressing          0.0719454164 

data                 0.0636161673 

find                 0.0719454164 

operations           0.0719454164 

... 

... 

 

Sorted Keywords: 
The sorted keywords are shown in the following view:  

 
Sorted Keywords: 

Text 1: 

computation          0.0707410228 

wide                 0.0490536930 

topics               0.0490536930 

theoretical          0.0490536930 

systems              0.0490536930 

... 

Text 2: 

resources            0.0899317705 

required             0.0899317705 

questions            0.0899317705 

perform              0.0899317705 

focused              0.0899317705 

... 

Text 3: 

storing              0.0719454164 

signal               0.0719454164 

reliably             0.0719454164 

processing           0.0719454164 

operations           0.0719454164 

... 

... 

 

The following chart shows a visual representation for the 

number of keywords in the texts:   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 9: Chart of Number of Keywords 

 

In summary, the program output clearly demonstrates that the 

developed program successfully performed the basic steps of 

keyword extraction and provided the required results. 

 

5. CONCLUSION 
Keyword extraction is one of the important applications of 

machine learning. The purpose of keyword extraction is to 

identify the set of words (keywords) that describe the content 

of the text. The TF-IDF method is used to measure the 

importance of words in the text. 

 

In this research, the author developed a keyword extraction 

program using the word frequency-inverse document 

frequency (TF-IDF) in Python. The program performed the 

basic steps of keyword extraction: preprocessing text, creating 

list of words, creating bag of words, creating word frequency 

(TF), creating inverse document frequency (IDF), creating 

word frequency-inverse document frequency (TF-IDF), 

creating keywords, and sorting keywords. 

 

The program was tested on an experimental text from 

Wikipedia and provided the required results: list of words, bag 

of words, term frequency (TF), inverse document frequency 

(IDF), term frequency-inverse document frequency (TF-IDF), 

keywords, and sorted keywords. 

 

In future work, more research is certainly needed to improve 

and develop the current methods of keyword extraction. In 

addition, they should be more investigated in different 

domains, and languages such as Arabic. 
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