
International Journal of Computer Applications (0975 – 8887)

Volume 185 – No. 35, September 2023

35

Improvised Dynamic Round-Robin Scheduling for

Optimum Resource Utilization in Cloud Systems

Suvarna N.A.
Research Scholar, GD Goenka University

Gurugram, Haryana -122102, India

Rashmi Priya
Assistant Professor, GD Goenka University

Gurugram, Haryana -122102, India

ABSTRACT
Efficient task scheduling, aimed at maximizing resource

utilization (such as CPU, memory, and bandwidth) while

executing a maximum number of tasks, is crucial in large-

scale cloud computing and associated architectures (e.g.,

Fog/Edge/IoT). These architectures are employed to support

new business models and ensure uninterrupted services, even

with intermittent connections to cloud servers. Resource

optimization plays a vital role in determining the quality of

service (QoS) provided to customers. Furthermore, task

scheduling for parallel processing is fundamental for

comprehending resource utilization, inter-process

communication, network latency, load balancing, job

migration, and fault tolerance. This research paper endeavours

to explore, analyse, design, and implement scheduling

algorithms that optimize the utilization of computing

resources. The newly developed algorithm exhibits improved

performance compared to existing ones. The results are

interpreted and substantiated based on various QoS indicators.

General terms
Algorithms

Keywords
 Round-Robin (RR); Burst Time (BT); Time Slice (TS);

Shortest Job First (SJF), Average Completion Time (ACT) ;

Average Waiting Time (AWT).

1. INTRODUCTION
In Cloud Computing, efficient allocation of CPU time to

incoming tasks is a crucial resource optimization challenge.

The Datacentre Broker is responsible for dispatching

incoming tasks to Virtual Machines, and each Virtual Machine

executes the assigned tasks according to a scheduling strategy.

The scheduling algorithm plays a vital role in resource

management, and Round-Robin Scheduling is a widely

popular and traditional scheduling algorithm.

Round-Robin Scheduling is a pre-emptive algorithm that

divides the CPU time into small, fixed intervals known as

Time-Slices (TS) or Quantum-Time (QT). In each iteration,

every process in the ready queue is allocated a single TS. If

the process is completed within a TS, it gets terminated;

otherwise, it gets added to the end of the queue with its

remaining Burst Time (BT). The CPU iterates through the

processes in multiple cycles until all tasks are completed.

The effectiveness of Round-Robin Scheduling is governed by

two major concerns:

a) The value of Time-Slice relative to Burst-Time.

b) Adjustment of Time-Slice to suit the unpredictable

dynamic loads in Cloud Systems.

Keeping the Time-Slice small causes additional overhead due

to Context Switching (CS), which involves storing the context

of each task in the stack and wastes precious CPU time.

Conversely, setting the Time-Slice too high increases the

average completion time (ACT) and worsens the performance

by making shorter jobs wait longer behind longer ones.

Therefore, an optimal Time-Slice is crucial for designing an

efficient Round-Robin algorithm.

Furthermore, the dynamic nature of cloud computing demands

a dynamic scheduling policy that can adapt to the ever-

changing load.

2. RELATED WORKS
Numerous scheduling algorithms have been designed and

developed by researchers to achieve optimal CPU utilization

and reduce process waiting time. This paper focuses on

improving the Round Robin (RR) Scheduling algorithm.

Different formulae have been proposed by previous

researchers to determine the value of time slice (TS) and to

incorporate the dynamic nature of computing platforms such

as Fog/IoT/Edge. This is achieved by varying the TS after

each round of execution. Performance evaluation and results

assessment are carried out by measuring several parameters,

including Average Completion Time (ACT), Average

Waiting Time (AWT), MakeSpan, Context Switches (CS),

and Average Response Time (ART).

Pandaba Pradhan et al. [1] proposed an improved dynamic RR

algorithm. The first task cycle has TS equal to the first task,

and for all subsequent iterations, the TS is equal to the average

of the burst-times of the remaining jobs in the queue. A

comparison was made to show the improvement over the static

RR algorithm.

Saqib Ul Sabha et al. [2] suggest sorting tasks based on their

burst times and using a random TS at the initial stage. The

algorithm compares the TS with the remaining burst time of

each task. If the remaining burst time after execution is less

than or equal to half the TS, the process is executed

completely. Sorting is done after each iteration, but only when

a new process enters the queue.

Linz Tom. and Bindu V.R. [3] sort the tasks and virtual

machines (VMs) in decreasing order of computing time and

apply an improved algorithm, Dynamic Task Scheduling

Based on Completion Time (DTBCT). The authors

recommend maintaining multiple queues and attaching tasks

to VMs in sorted order. Tasks are migrated based on

completion time in dynamic mode. Time-Slice is dynamically

determined based on the burst time of the task under

consideration. An improvement in all performance metrics,

including AWT, ACT, CS, and Make Span, is achieved in

comparison with static RR, First Come First Serve (FCFS),

and Shortest Job First (SJF) algorithms.

International Journal of Computer Applications (0975 – 8887)

Volume 185 – No. 35, September 2023

36

Sakshi et al. [4] elaborates various methods of the RR

scheduling with dynamic TS, including the Average Median

RR (AMRR), A New Round Robin (ANRR), and Modified

Median RR Algorithm (MMRRA). The authors then propose

a new enhanced algorithm for calculating dynamic TS as

Median Average Round Robin (MARR). The authors

practically prove that MARR performs better than earlier

schemes.

• TS = (Av. BT + Highest BT)/2 (AMRR) - (1)

• TS = Average BT (ANRR) - (2)

• TS =  median * Highest BT (MMRRA) - (3)

The author then suggests the new improved algorithm by

calculation of dynamic time slice as:

• TS = (Av. BT + Median BT) /2 (MARR) - (4)

Abdulaziz et al. [5] proposed four different algorithms based

on the calculation of TS, including Optimum Round-Robin

using Manhattan Distance (ORRMD), Improved RR

Algorithm (IRR), Adaptive RR Algorithm (ARRA), and Best

Time Quantum RR (BTQRR). Although the author claims

better results for ORRMD and ARRA, the results reveal that

the number of context switches is significantly higher in

ORRMD, and the average response time is longer in ARRA

when compared with other algorithms.

• TS = (Max BT + Min BT) (ORRMD) - (5)
• TS = (Median * Highest)BT (IRR) - (6)

• TS =Median BT (ARRA) - (7)

• TS =(Mean + Median)BT/2 (BTQRR) - (8)

Uferah Shafi et.al [6] conducted a study on various

enhancements to the traditional Round Robin (RR) algorithm

and compared them with their devised algorithm. The paper

mentions the following variations of RR:

Improved Round Robin (IRR): The first cycle follows RR,

and subsequent cycles use Shortest Job First (SJF).

Optimum Multilevel Dynamic Round Robin (OMDRR):

This method involves the following steps:

• Ordering of processes

• Application of an intelligent time slice

• Doubling of time slice after each iteration

• Application of a condition to reduce waiting time based

on remaining burst time

Priority based Round Robin (PRR): In the first iteration,

processes are executed according to priority. Subsequent

iterations arrange processes based on remaining burst time for

execution.

Uferah Shafi et.al [6] then proposes the following approach:

1) Set the time slice (TS) to the lowest BT.

2) If (TS<Threshold), set TS to Threshold.

3) Perform the following steps repeatedly:

3.1) Execute the first task in the RQ.

3.2) If (Remaining BT < TS/2), pre-empt the process.

3.3) Else, place the process at the end of RQ.

Sanaj M S, Dr. Joe Prathap P M [7], in their literature study

mentions the nature inspired “Ant Colony Optimization”

(ACO), “Genetic Algorithm” (GA), “Multiple Pheromone

Algorithm” (MPA) which is a variation of ACO, FCFS,

Particle Swarm Optimization (PSO). The author suggests the

simple setting of time slice as mean value, which in normal

distribution of data tends to be the median itself.

In [8], Shihab Ullah et al. refer to an algorithm called

ODTSRR (Optimum Dynamic Time Slicing Round Robin

Scheduling), where TS is chosen as the median of the burst

times in the task queue. After executing each task, if the

remaining BT is less than TS, the task is fully executed to

reduce waiting time. The authors then propose a different

algorithm called IODTSRR (Improved Optimum Dynamic

Time Slicing Round Robin Scheduling Algorithm), where

the job is executed to completion if the BT is less than or equal

to twice the TS.

In [9], Rahul Mishra et al. propose the "Improved Round

Robin Algorithm for effective Scheduling Process for

CPU" which sets TS to the average BT and executes the job

to completion if the remaining BT is less than TS. The

literature study primarily focuses on selecting TS as mean,

median, (mean + median)/2, (mean + maximum)/2, √(Median

* Highest BT), and combining Round Robin with SJF to

reduce waiting time. Most of the referenced research works

with small data sets, as outlined in Table .

Komal Mahajan et al. [13] propose saving the earlier

allocation state of a virtual machine (VM) to a request from a

specific user, providing server affinity to the tasks. Table-1

summarizes the literature study.

3. PROBLEM STATEMENT
Load balancing in distributed systems is crucial for enhancing

execution speed and optimizing resource utilization. Load

balancing is required during various stages, such as when

allocating a data center, allocating a VM within a data center,

and allocating CPU time for jobs within a VM [12][14]. This

research focuses on load balancing within a VM through

scheduling algorithms, considering the third stage mentioned

above. Inspired by previous research efforts to improve the

Round Robin algorithm for modern computing systems with

Edge, Fog, and IoT architecture, this study explores dynamic

algorithms for further advancements and improved

performance.

International Journal of Computer Applications (0975 – 8887)

Volume 185 – No. 35, September 2023

37

Table 1: Comparison of literature studied on Improvisation of Round Robin Scheduling
Ref. Algorithm Dynamic

/Static

Time-Slice/Algorithm Sorting

of Jobs

No. of

Tasks

Limitations Comparisons

[1] Modified Round-

Robin

Dynamic TS = Average BT No 5 Lacks the

benefits of

SJF as sorting

is not done.

RR

[2] Improved Round-

Robin with

Intelligent Time

Quantum based

on remaining BT

Dynamic TS = Random value

If (BT <= 1.5*TS)

 Execute the complete

process

Else

 Execute for Time = TS

End If

Yes 4 No

improvement

in turn around

time when

processes

arrive at

different

times.

RR

[3] Dynamic Task

Scheduling Based

on Completion

Time(DTBCT)

Dynamic TS = Average Burst Time Yes 10 to

1000

Main work

revolves

around

managing

multiple

queues based

on burst time.

RR SJF

FCFS

[4] Median Average

Round-Robin

Algorithm

(MARR)

Dynamic TS = (Average +

Median)/2

Yes 4, 6 Turn Around

Time is not

improved

when

compared to

ANRR and no

change in

context

switching.

ANRR

AMRR

MMRRA

[5] 1. Optimum

Round-Robin

using Manhattan

Distance

2. Improved

Round-Robin

Algorithm

3. Adaptive

Round-Robin

Algorithm

Best Time

Quantum Round-

Robin CPU

Scheduling

Algorithm

Dynamic

Dynamic

Dynamic

Dynamic

TS = (Max BT + Min BT)

(ORRMD)

TS =  Median * Highest

BT

(IRR)

TS = Median

(ARRA)

TS = (Mean + Median)/2

(BTQRR)

No

Yes

Yes

Yes

10000 Average

Response

Time,

Average

Waiting Time

and Average

turn Around

Time is better

in ORRMD.

Context

Switching is

better in

ARRA

ORRMD

ARRA

[6] Amended

Dynamic Round

Robin

Dynamic TS = Lowest BT

If (TS < Threshold)

 TS = Threshold

End If

Do

{ Execute first task in RQ

 If (Remaining BT <

TS/2)

 Pre-empt the process

 Else

 Place the process in

the end of RQ

 End If

} While (RQ != NULL)

Yes 5 The results in

terms of

Average

Waiting Time,

Average

Completion

Time, Context

Swithing got

improved in

the order of

RR->PRR-

>OMDRR-

>IRR-

>ADRR

RR

PRR

OMDRR

IRR

ADRR

[7] An Enhanced

Round Robin

(ERR) algorithm

Dynamic TS = Mean BT Yes 7 Compares

with PSO,

GA, ACO,

PSO

GA

ACO

International Journal of Computer Applications (0975 – 8887)

Volume 185 – No. 35, September 2023

38

for Effective and

Efficient Task

Scheduling in

cloud

environment

MPA, FCFS,

Min-Min. But

comparison is

only on

makespan and

energy levels.

AWT is

compared

with only RR

MPA

FCFS

Min-Min

[8]

Improved

Optimum

Dynamic Time

Slicing Round

Robin Scheduling

Algorithm

(IODTSRR)

Dynamic TS = Median BT

If (Remaining BT < TS)

 Execute the complete

Process

End If

Yes 5, 8 Context

Switching has

increased in

IODTSRR

when

processes (7)

arrive at

different

times.

ODTSRR

[9] Improved Round

Robin Algorithm

for effective

Scheduling

Process for CPU

Dynamic TS = Average BT

If (Remaining BT < TS)

 Execute the

 complete process

End If

Yes 5 Improved

over RR and

CRR.

RR CRR

4. PROPOSED WORK
Authors propose an improved version of the Round-Robin

algorithm that surpasses previous research studies. Our

proposed algorithm combines the strengths of Shortest Job

First (SJF) and Round-Robin (RR) approaches, making it

highly suitable for modern large-scale and unpredictable

computing requirements.

To achieve optimal performance, the paper introduces

variations in the time slice of the Round-Robin algorithm.

Through extensive experimentation, it is discovered that the

best outcomes were achieved by integrating SJF principles,

which involve ordering tasks in increasing order of their burst

times. Additionally, we determined that setting the time slice

to a value that would clear the queue within a single iteration

yielded favourable results. Thus, we propose the Optimal

Time Slice(OTS) as:

OTS = BT of the second-largest job in the

 queue - (9)

Based on this Optimum Time Slice (OTS) concept, we present

a novel algorithm called "Novel Optimum Dynamic

Approach to Round Robin Scheduling" (NODARR). The

algorithm's steps are as follows:

• Sort the processes in ascending order of BT.

• Insert the sorted processes into the RQ

• Set the time slice to the second-largest BT (OTS) in the

RQ.

• Initialize the completion time and waiting time and

context switches of each process to 0.

• Set the iteration counter to 1 & enter a loop.

• While the RQ is not empty, perform the following steps:

• For each task in the RQ, do the following:

If the BT of the task is ≥TS:

Execute the task for one TS.

Update the completion time by adding TS.

Update the waiting time by adding TS.

Increment the context switches by 1.

Decrease the remaining BT by TS.

Insert the process at the end of the RQ.

Set BT to the remaining burst time.

Else (if BT ≤TS):

 Execute the task for its entire BT.

Update the completion time by adding the BT.

Update the waiting time by adding the BT.

Increment the context switches by 1.

Set the remaining BT to 0.

Remove the process from the RQ.

• End the if-else condition.

• End the loop for each task.

• Rearrange the tasks in the RQ in the order of their BT to

accommodate new entries.

• Update the time slice to the OTS.

• Increment the iteration counter by 1.

• Repeat the do-while loop.

• End the do-while loop when the termination condition is

met.

.

Figure 1: Flow Chart of the Proposed Algorithm-

NODARR

READY QUEUE
SELECT THE FIRST

PROCESS

IS BT ≤ TS

YES

NO

EXECUTE FOR TIME = TS
EXECUTE FOR TIME = BT

DELETE FROM RQ BT = BT – TS

PLACE THE PROCESS IN

THE END OF RQ

IS RQ

EMPTY?

END

RECALCULATE TS

START

YES

1

1

NO

2

2

CALCULATE TS

P

R

O

C

E

S

S

E

S

International Journal of Computer Applications (0975 – 8887)

Volume 185 – No. 35, September 2023

39

The proposed algorithm, NODARR, demonstrates the

capability to optimize round-robin scheduling by dynamically

adjusting the time slice based on the second-largest burst time

in the queue. By combining SJF principles and effectively

managing the execution of tasks, the algorithm significantly

reduces waiting time.

5. EXPERIMENTAL SETUP
The experimental setup in CloudSim consists of the following

components:

a) Datacentre b) Datacentre broker

c) Hosts d) Processing Elements

e) Virtual Machines f) Cloudlets

Figure 2: Experimental Setup

The number of Processing Elements (CPUs) used is 1. The

Datacentre specifications included an "x86" architecture,

Linux operating system, and Xen virtual machine. The

Cloudlet specifications involved 40 cloudlets with random

Burst Times ranging from 1 to 100. There were 4 Hosts, each

with one processing element, having 4096 MB RAM,

1000000 storage, and 10000 bandwidths. Additionally, 4

Virtual Machines were created with 512 MB RAM, 1000

MIPS, and 1000 bandwidth.

The simulator used for the experiment is CloudSim, and the

dataset employed is the Google Dataset available at the

following link:

GoogleDataset

(https://zenodo.org/record/3696775#.YxtXFHZBy3A). This

dataset focused on "Problem instances for scheduling jobs

with time windows on unrelated parallel machines."

The experiment was conducted in two phases, where different

cases were explored. The cases were as follows:

Case 1: Static RR with TS of 5 seconds.

Case 2: Static RR with TS of 10 seconds.

Case 3: Static RR with TS of 20 seconds.

Case 4: Static RR with TS = AMRR (1).

Case 5: Static First-Come, First-Served (FCFS) .

Case 6: Static SJF + RR with TS = AMRR (1).

Case 7: Dynamic RR with TS = AMRR (1).

Case 8: Dynamic SJF + RR with TS = AMRR (1)

The burst times for the 40 tasks allocated to the 4 virtual

machines in groups of 10 each are presented in Table 2 below.

Table 2: Burst Times of 40 Processes in Millions of

Instructions (Mis)

 PROCESS LENGTHS IN MIs

PROCESS VM-1 VM-2 VM-3 VM-4

P1 32 20 54 49

P2 83 68 110 45

P3 26 92 34 76

P4 30 18 24 40

P5 86 61 55 51

P6 41 101 21 72

P7 99 33 55 50

P8 69 84 48 94

P9 28 36 77 47

P10 25 59 55 104

Average 51.90 57.20 53.30 62.80

6. RESULTS OF PHASE-I
When subjecting the 40 tasks from Table 2 to the eight

different cases across 4 virtual machines (VMs), the results for

Average Waiting Time (AWT), Active Time (ACT), and

Completion Status (CS) were recorded and presented in Table

3.

Table 3: Results of Phase-1

C
A

S
E

 VM 1 VM 2

ACT AWT CS ACT AWT CS

1 369 317 108 408 351 119

2 366 314 56 402 345 62

3 376 324 32 384 327 33

4 346 294 13 359 302 13

5 289 237 10 306 249 10

6 234 182 13 258 201 13

7 346 294 13 359 302 13

8 234 182 14 258 201 14

C
A

S
E

VM 3 VM 4

ACT AWT CS ACT AWT CS

1 397 344 109 505 442 238

2 403 349 58 496 433 67

3 393 340 31 485 422 36

4 312 259 11 325 262 12

5 330 277 11 313 250 10

6 228 175 11 297 234 12

7 312 259 11 325 262 12

8 228 175 11 297 234 13

6.1 Result Analysis of Sample Cases

6.1.1 Case-3 with TS=20 under VM-3

 A specific sample, namely Case-3 under VM-3, was selected

for further analysis. The Gantt Chart in Figure 3 illustrates the

execution timeline of the 10 processes running under VM-3

for Case-3, which employed Round Robin (RR) scheduling

with a time slice (TS) of 20 seconds.

The completion times of 10 processes recorded while running

on VM-3 for Case-3, utilizing a time slice (TS) of 20 seconds,

are presented in Table 4.

Average Completion Time:

(373+533+254+258+408+279+423+431+503+466)/10 =

3928/10 = 392.8

Average Waiting Time (AWT): Average Waiting Time is

defined as:

AWT = Sum of ((Time of Completion - Burst Time) of

each job) / Number of Jobs

https://zenodo.org/record/3696775#.YxtXFHZBy3A
https://zenodo.org/record/3696775#.YxtXFHZBy3A

International Journal of Computer Applications (0975 – 8887)

Volume 185 – No. 35, September 2023

40

Figure 3: Gantt Chart of Case-3 with Time Slice = 20

under VM-3

Table 4: Completion Times of 10 processes under

VM-3 (Case-3)

Process Completion Times

P1 373

P2 533

P3 254

P4 258

P5 408

P6 279

P7 423

P8 431

P9 503

P10 466

So, for the above example,

AWT = (319 + 423 + 220 + 234 + 353 + 258 + 368 + 383 +

426 + 411) / 10 = 3395/10 = 339.5

Context Switches: Number of Context Switches is defined as

Context Switches (CS) = Sum of (Number of Iterations of

Each Process)

CS = 3 + 6 + 2 + 2 + 3 + 2 + 3 + 3 + 4 + 3 = 31

6.1.2 Case-8 with TS= AMRR under VM-1

Table 5 below lists the tasks and related averages and time-

slice values in each iteration.

Table 5: Sorted Burst Times under VM 1

Burst Times Dynamic

Averages

Time Slices

25, 26, 28, 30, 32,

41, 69, 83, 86, 99

51.9, 14,5

75.45,19, 5

Iteration 1:

Average = 25 + 26 + 28 + 30 + 32 + 41 + 69 +

 83 + 86 + 99

 = 51.9

TS = (Average BT + Highest BT)/2

 = (51.9 + 99)/2 = 75.45

As TS is 75.45, seven tasks are executed completely and

remaining 3 tasks are partly executed. The remaining burst

times of these three tasks are 8, 11 and 24.

Iteration 2:

Av = (8 +11+24)/3 = 14

TS = (14 +24)/2 = 19

Now only last task is left incomplete with remaining burst

time as 5.

Iteration 3:

Av = 5, TS = (5+5)/2 = 5

Average Completion Time :

(25 + 51 + 79 + 109+ 141 + 182 + 251 + 484 + 495 + 519) /

10 = 233.6

Average Waiting Time:

(0 + 25 + 51 + 79 + 109 + 141 + 182 + 401 + 409 + 420)/10

= 181.7

Total number of Context Switches:

(1 + 1 + 1 + 1 + 1 + 1 + 1 + 2 + 2 + 3) = 14

The total number of context switches in each VM under the

above mentioned eight different cases of different time-slices

is given in the graph of figures 4 and 5. From the graphs, it is

evident that the context switching is minimum for case-5

(FCFS).

Figure 4:Context Switches under VM1 &VM2

Figure 5:Context Switches under VM-3, VM-4

But, considering the graphs for completion times as shown in

figures 6 and 7 and the graphs for waiting times as shown in

figures 8 to 11, best results are obtained for the case-7 and

case-8. Therefore, these cases are short-listed for phase-II,

where they are compared with the proposed algorithm.

10
8 11

9

5 6

32 33

13 1310 1014 1313 1314 14
0

50

100

150

1 2

C
o

n
te

x
t

S
w

it
c
h

e
s

Virtual Machines

Number of Context Switches

CASE-1 CASE-2
CASE-3 CASE-4
CASE-5 CASE-6
CASE-7 CASE-8

1
0

9

23
8

5
8 6

7

3
1 3
6

1
1 1
2

1
1

1
01
1

121
1 121

1 1
3

0

50

100

150

200

250

3 4

C
o

n
te

x
t

S
w

it
ch

es

Virtual Machines

Number of Context Switches

CASE-1 CASE-2

CASE-3 CASE-4

CASE-5 CASE-6

CASE-7 CASE-8

International Journal of Computer Applications (0975 – 8887)

Volume 185 – No. 35, September 2023

41

Figure 6: ACT under VM1 and VM2

Figure 7: ACT under VM3 and VM4

Figure 8: Average Waiting Times under VM1

Figure 9:Average Waiting Times under VM2

Figure 10:Average Waiting Times under VM3

Figure 11:Average Waiting Times under VM4

7. RESULTS OF PROPOSED

ALGORITHM
In phase-II of the experiment, the selected cases from phase-I

that yielded the best results, namely Round-Robin with

Shortest Job First (case 6 and case 8), were further examined.

The time slice was varied based on recommendations from

previous researchers. Subsequently, these cases were

compared against the proposed algorithm to demonstrate the

superior performance of the proposed approach.

7.1 Performance Analysis
Table 6 below presents a collection of 40 processes that were

executed together under a single virtual machine (VM)

utilizing the proposed algorithm. The outcomes achieved from

this execution were then compared with the results obtained

using other algorithms referenced in [4].

Table 6: 40 Processes and their burst times

Process BT Process BT

P1 21 P21 43

P2 72 P22 99

P3 15 P23 23

P4 19 P24 13

P5 75 P25 44

P6 30 P26 10

P7 88 P27 44

P8 58 P28 37

P9 17 P29 65

P10 11 P30 55

P11 9 P31 38

3

6

9

4

0

8

3

6

6

4

0

2

3

7

6

3

8

4

3

4

6

3

5

9

2

8

9

3

0

6

2

3

4

2

5

8

3

4

6

3

5

9
2

3

4

2

5

8

0

50

100

150

200

250

300

350

400

450
A

C
T

VM3 VM4

Average Completion Time

CASE-1 CASE-2 CASE-3 CASE-4
CASE-5 CASE-6 CASE-7 CASE-8

3

9

7

5

0

5

4

0

3

4

9

6

3

9

3

4

8

5

3

1

2

3

2

5

3

3

0

3

1

3

2

2

8

2

9

7

3

1

2

3

2

5

2

2

8

2

9

7

0

100

200

300

400

500

600

A
C

T

VM3 VM4

Average Completion Time

CASE-1 CASE-2 CASE-3 CASE-4
CASE-5 CASE-6 CASE-7 CASE-8

317 314 324
294

237

182

294

182

0

50

100

150

200

250

300

350

A
W

T

Average Waiting Times in VM-1

408
345 327 302

249
201

302

201

0

100

200

300

400

500

A
W

T

Average Waiting Times in VM-2

397

349 340

259
277

175

259

175

0

50

100

150

200

250

300

350

400

450

A
W

T

Average Waiting Times in VM-3

505

433 422

262 250 234
262

234

0

100

200

300

400

500

600

A
W

T

Average Waiting Times in VM-4

International Journal of Computer Applications (0975 – 8887)

Volume 185 – No. 35, September 2023

42

P12 57 P32 34

P13 81 P33 65

P14 7 P34 29

P15 50 P35 40

P16 90 P36 61

P17 22 P37 39

P18 73 P38 83

P19 25 P39 31

P20 48 P40 70

The obtained results for the proposed NODARR algorithm,

along with the algorithms referenced in [4], are organized and

presented in Table 7. Corresponding graphical representations

can be found in Figures 9 and 10.

Table 7: Results of the proposed algorithm

Time Slice Algorithm CS ACT AWT

(Av+median)/2 MARR (4) 73 851 806

 Av+highest)/2 AMRR(1) 48 678 633

Second Largest NODARR (9) 40 627 582

The results conclusively demonstrate that the proposed

algorithm outperforms the other two algorithms mentioned in

reference [4].

Figure 12: AWT and ACT of proposed algorithm

(NODARR)

Figure 13: Context Switches of the proposed algorithm

7.2 Performance Analysis of the Proposed

Algorithm with 1000 Processes
In order to further evaluate the improved performance of the

proposed algorithm, the experiment was extended to involve

the execution of 1000 processes. The outcomes of this

extended experiment are illustrated in Figure 11. Once again,

the proposed algorithm demonstrated superior performance

compared to the other two algorithms across all three metrics:

Average Waiting Time (AWT), Active Time (ACT), and

Completion Status (CS).

Figure 14: CS, ACT and AWT with large dataset (1000

processes)

7.3 Time Complexity of NODARR
Assuming that all tasks have equal lengths (l) and there are a

total of n tasks, the proposed algorithm (NODARR) exhibits

the following time complexity:

𝑂(∑𝑙𝑖

𝑛

𝑖=0

)

In contrast, the time complexity of the reference algorithm

mentioned in [4] is given by:

𝑂(∑(

log𝑛

𝑖=0

∑ 𝑙𝑖

𝑛

2𝑖+1

𝑛−
𝑛

2𝑖

))

8. CONCLUSION
The NODARR (Novel Optimum Dynamic Approach to

Round Robin) algorithm, proposed in this study,

outperformed previously suggested algorithms across

different task lengths and data sizes. As a result, the study

recommends the adoption of an optimal solution for dynamic

time slice determination in round-robin scheduling:

Optimum Time Slice (OTS) = Burst Time of the second

largest task

The proposed algorithm combines the advantages of both

Round Robin (RR) and Shortest Job First (SJF). It leverages

the dynamic time-slice feature of RR while incorporating the

minimal waiting time aspect of SJF. In addition to these

benefits, setting the time slice to the proposed optimal value

minimizes the number of iterations and reduces context

switching.

It should be noted that incoming task lengths can exhibit

unpredictable variations, and the average value may not

accurately represent the center of the data set. Therefore, using

the average as a measure for calculating the time slice is not

considered appropriate in such scenarios.

9. FUTURE SCOPE

To replicate the dynamic nature of the cloud environment, it

is possible to simulate various configurations of virtual

machines (VMs) and introduce different start times for jobs.

Additionally, the same algorithm can be extended to facilitate

inter-VM allocation of jobs, which aids in load balancing

across multiple VMs. However, when considering inter-VM

allocation, it becomes necessary to modify the algorithm to

account for the latency involved in transmitting tasks between

851
806

678
633627

582

0.0

200.0

400.0

600.0

800.0

1000.0

ACT AWT

A
C

T
 a

n
d

 A
W

T
 i

n
 S

e
c
o
n

d
s

Comparison with proposed

algorithm MARR

AMRR

NODARR

73

48
40

0

20

40

60

80

MARR AMRR NODARR

Total Context Switches

1
9

7
3

3
3

8
7

4

3
3

8
0

3

1
3

1
1

2
6

9
7

9

2
6

9
0

7

1
0

0
3

2
3

8
7

2

2
3

8
0

1

0

10000

20000

30000

40000

CS ACT AWT

Proposed NODARR algorithm
with 1000 Processes

MARR

AMRR

NODARR

International Journal of Computer Applications (0975 – 8887)

Volume 185 – No. 35, September 2023

43

VMs. A comprehensive algorithm can be devised at the load

balancer level to effectively balance loads for both intra-VM

and inter-VM allocation scenarios.

10. REFERENCES
[1] Pandaba Pradhan, Prafulla Ku. Behera, B N B Ray

(2016), “Modified Round Robin Algorithm for

Resource Allocation in Cloud omputing”, Procedia

Computer Science 85, 878 – 890

[2] Saqib Ul Sabha (2018), “ A Novel and Efficient Round

Robin Algorithm with Intelligent Time Slice and Shortest

Remaining Time First”, Materials Today Proceedings 5,

12009-12015.

[3] Linz Tom. and Bindu V.R. (2021), “Dynamic Task

scheduling Based on Burst Time requirement for cloud

environment”, International Journal of Computer

Networks & Communications (IJCNC) Vol.13, No.5,

September.

[4] Sakshi, Chetan Sharma, Shamneesh Sharma, Sandeep

Kautish, Shami A. M. Alsallami, E.M. Khalil, Ali Wagdy

Mohamed (2022), “A new median-average round Robin

scheduling algorithm: An optimal approach for reducing

turnaround and waiting time”, Alexandria Engineering

Journal 61, 10527–10538.

[5] Abdulaziz A. Alsulami, Qasem Abu Al-Haija,

Mohammed I. Thanoon, Qian Mao (2019), “Performance

Evaluation of Dynamic Round Robin Algorithms for

CPU Scheduling”, DOI:

https://doi.org/0.1109/SoutheastCon

42311.2019.9020439

[6] Uferah Shafi, Munam Shah, Abdul Wahid, Kamran

Abbasi, Qaisar Javaid, Muhammad Asghar, and

Muhammad Haider (2020), “A Novel Amended

Dynamic Round Robin Scheduling Algorithm for

Timeshared Systems”, The International Arab Journal of

Information Technology, Vol. 17, No. 1, January 2020.

[7] Sanaj M S, Dr. Joe Prathap P M, “An Enhanced Round

Robin (ERR) algorithm for Effective and Efficient Task

Scheduling in cloud Environment”,

https://doi.org/10.1109/

ACCTHPA49271.2020.9213198

[8] Shihab Ullah, “Improved Optimum Dynamic Time

Slicing Round Robin Algorithm” (2017), 3rd

International Conference on Electrical Information and

Communication Technology (EICT), 7-9 December

2017, Khulna, Bangladesh.

[9] Rahul Mishra, Gaurav Mitawa, “Improved Round Robin

Algorithm for effective Scheduling Process for CPU”

(2021), Proceedings of the Third International

Conference on Intelligent Communication Technologies

and Virtual Mobile Networks (ICICV 2021). IEEE

Xplore Part Number: CFP21ONG-ART; 978-0-7381-

1183-4.

[10] BING HU, (Senior Member, IEEE), FUJIE FAN,

(Student Member, IEEE), KWAN L. YEUNG, (Senior

Member, IEEE), AND SUGIH JAMIN (2018), “Highest

Rank First: A New Class of Single-iteration Scheduling

Algorithms for Input-queued Switches” IEEE Access,

DOI: 10.1109/ACCESS.2017

[11] Mohammad Oqail Ahmad and Rafiqul Zaman Khan

(2019), “Cloud Computing Modeling and Simulation

using CloudSim Environment”, International Journal of

Recent Technology and Engineering (IJRTE) ISSN:

2277-3878, Volume-8 Issue-2, July 2019.

[12] Shahbaz Afzal, G. Kavitha (2019), “Load balancing in

cloud computing – A hierarchical taxonomical

classification”, Journal of Cloud Computing: Advances,

Systems and Applications

https://doi.org/10.1186/s13677-019-0146.

[13] Komal Mahajan, Ansuyia Makroo and Deepak Dahiya

(2013) “Round Robin with Server Affinity: A VM Load

Balancing Algorithm for Cloud Based Infrastructure

Journal of Information Processing Systems”, DOI:

10.3745/JIPS.2013.9.3.379.

[14] Altaf Hussain, Muhammad Aleem , Muhammad Arshad

Islam, Muhammad Azhar Iqbal (2018), “A Rigorous

Evaluation of State-of-the-Art Scheduling Algorithms

for Cloud Computing”, IEEE Access, DOI:

10.1109/ACCESS.2018.2884480.

[15] Mung Chiang, Fellow, IEEE, and Tao Zhang, Fellow,

IEEE (2016), “Fog and IoT: An Overview of Research

Opportunities”, IEEE Internet of Things Journal, vol. 3,

no. 6, December 2016.

IJCATM : www.ijcaonline.org

