
International Journal of Computer Applications (0975 – 8887)

Volume 185 – No. 36, October 2023

54

Implementation of Text Similarity using Word Frequency

and Cosine Similarity in Python

Ahmad Farhan AlShammari
Department of Computer and Information Systems

College of Business Studies, PAAET
Kuwait

ABSTRACT
The goal of this research is to develop a text similarity program

using word frequency and cosine similarity in Python. The

purpose of text similarity is to measure the similarity between

texts. The word frequency is used to measure the word

importance in the text, and cosine similarity is used to measure

the similarity between texts. The basic steps of text similarity

are explained: preprocessing text, creating list of words,

creating bag of words, creating word frequency, calculating

cosine similarity, and printing similarity score. The developed

program was tested on an experimental text from Wikipedia.

The program successfully performed the basic steps of text

similarity and provided the required results.

Keywords
Artificial Intelligence, Machine Learning, Natural Language

Processing, Text Mining, Text Similarity, Word Frequency,

Cosine Similarity, Python, Programming.

1. INTRODUCTION
The rapid development of Information and Communications

Technology (ICT) is enabling the volume of data to grow very

fast. Processing large amounts of data has become a crucial

issue. Computer systems need more powerful methods to

process data, analyze it, and extract information. Actually,

machine learning is playing a key role in processing data more

quickly and efficiently.

Machine learning (ML) is a branch of Artificial Intelligence

(AI) that is focused on the study of computer algorithms to

improve the performance of computer programs.

Text similarity is one of the important applications of machine

learning. It is a common field between ML and Natural

Language Processing (NLP). It applies both the techniques of

NLP and the methods of ML to process human language.

Fig 1: Field of Text Similarity

2. LIREATURE REVIEW
The review of literature revealed the major contributions in the

field of text similarity [1-11]. The research started in the late

fifties. In 1958, Hans Luhn [12] published the first paper in text

summarization. He used the "word frequency" to measure the

importance of words and sentences in the text. Then, the

sentences of high scores are selected and added to the summary.

The research was originally focused on Information Retrieval

(IR) [4]. Gerard Salton was the leading scientist in the field of

information retrieval, and was called the father of IR.

Salton and his research group at Cornell University developed

the first "automatic" information retrieval system SMART

(System for the Mechanical Analysis and Retrieval of Text)

[13-14].

Salton, Wong, and Yang [15] introduced the Vector Space

Model (VSM) to easily represent text in the vector form. The

text can be represented as a vector of numbers or weights as

shown in the following view:

Text = (weight1, weight2, …, weightn)

Where: weighti is the weight of word (wordi) in the text.

Text vectorization helped to easily perform numerical

calculations on text.

Over time, researchers continued to develop new weighting

methods. For example, Karen Sparck-Jones [22,23,24-26]

suggested the Inverse Document Frequency (IDF) to overcome

the limitation of word frequency.

Later, Salton developed the Term Frequency-Inverse

Document Frequency (TF-IDF) method [16-21]. It is the most

widely used weighting method in retrieval systems, search

engines, and digital libraries [6].

Salton also introduced the cosine similarity method to measure

the similarity between texts. The concept of cosine similarity

was originally used to measure the angle between vectors.

The fundamental concepts of text similarity are explained in the

following section:

Text Similarity:
Text similarity is the process of measuring the similarity

between texts to show if they are similar or not.

Fig 2: Concept of Text Similarity

AI Linguistics NLP ML ×

Text Similarity

Text 1:

Text 2:

= (w1, w2, w3, …)

= (w1, w2, w3, …)

Similarity

Score

International Journal of Computer Applications (0975 – 8887)

Volume 185 – No. 36, October 2023

55

Text similarity is used in many applications, for example:

searching, ranking, recommendation, clustering, and

classification.

Methods of Text Similarity:
There are different methods used to measure the text similarity

such as: Euclidean distance, Manhattan distance, Jaccard

distance and cosine similarity. They are used for different

purposes, and have their advantages and disadvantages.

Fig 3: Methods of Text Similarity

A brief explanation for the methods of text similarity is shown

in the following section:

The Euclidean distance is the direct distance between two

points.

Fig 4: Explanation of Euclidean Distance

The Manhattan distance is the sum of horizontal and vertical

distances between two points.

Fig 5: Explanation of Manhattan Distance

The Jaccard distance is the number of intersection items

divided by the number of union items.

Fig 6: Explanation of Jaccard Distance

The cosine similarity is the cosine of the angle between two

vectors.

Fig 7: Explanation of Cosine Similarity

Cosine similarity is the most widely used method in text

similarity because of its simplicity and efficiency.

In this research, the cosine similarity method is applied.

Text Similarity System:
In the text similarity system; the input is the two texts. Then,

the system will process the two texts and apply the cosine

similarity method to calculate the similarity between them.

Finally, the output is the similarity score.

Fig 8: Diagram of Text Similarity System

Preprocessing Text:
The raw text should be "cleaned" from the unwanted characters

and words such as punctuation symbols and stopwords.

List of Words:
The text is "tokenized" or split into words. The result of word

tokenization is the list of words as shown in the following view:

 List of Words = [word1, word2, …, wordn]

Bag of Words:
Bag of words (BoW) is the set of words without repetition.

Bag of Words = (word1, word2, …, wordm)

Word Frequency:
Word frequency is the number of times a word occurs in the

text divided by the number of words in the text. It is calculated

by the following formula:

freq(wi) =
 Nwi

Nw
 (1)

Where: Nwi is the number of times the word (wi) occurs in the

text, and Nw is the total number of words in the text.

Cosine Similarity:
Cosine similarity is a mathematical method used to measure the

similarity between texts. The concept of cosine similarity was

originally used in mathematics to measure the angle between

vectors.

For example, consider the two vectors A and B in the plane, as

shown in the following diagram:

 Text
1, 2

Text

Similarity
System

Similarity

Score

Text Similarity

Euclidean

Distance

Manhattan
Distance

Jaccard
Distance

Cosine
Similarity

A

B

A

B

A B A∩B

θ

B

A

International Journal of Computer Applications (0975 – 8887)

Volume 185 – No. 36, October 2023

56

Fig 9: Representation of Vectors A and B

The dot product of the two vectors (A.B) is calculated by the

following formula:

A∙B =‖𝐴‖ ‖𝐵‖ Cos(𝜃) (2)

Where: ||A|| and ||B|| are the norms of vectors A and B

respectively, and θ is the angle between the two vectors.

Then, the cosine of the angle is calculated by the following

formula:

Cos(𝜃) =
A∙B

‖𝐴‖ ‖𝐵‖
 (3)

In general, for any two vectors A and B in the space, where:

A = (a1, a2, … , an)

B = (b1, b2,… ,bn)

Then, the cosine of the angle is calculated by the following

formula:

Cos(θ) =
∑ (ai bi)

 √∑ ai
2 ∑ bi

2

 (4)

Where: ai and bi are the values of vectors A and B respectively.

The cosine similarity shows the "percentage" of similarity

between the two vectors. The resulting cosine can take values

between (0) and (1). If the cosine value is (1) then the two

vectors are similar, and if the cosine value is (0) then the two

vectors are not similar.

Fig 10: Values of Cosine Similarity

Python:
Python [27] is a general high-level programming language. It

is simple, easy to learn, and powerful. It is the most preferred

programming language by the developers of machine learning

applications.

Python provides additional libraries such as: Numpy [28],

Pandas [29], Matplotlib [30], NLTK [31], and SK Learn [32].

In this research, the standard functions of Python are applied

without using any additional library.

3. RESEARCH METHODOLOGY
The basic steps of text similarity are: preprocessing text,

creating list of words, creating bag of words, creating word

frequency, calculating cosine similarity, and printing similarity

score.

Fig 11: Steps of Text Similarity

Fig 12: Flowchart of Text Similarity

The basic steps of text similarity are explained in details in the

following section:

1.Preprocessing Text:
The text is preprocessed to remove the unwanted characters and

words. It is done by the following steps:

1.1 Converting Text into Lower Case:

Word
Freq

2

Words

2

Calculate

Cosine
Similarity

Bag of
Words

2

Text

2

Word
Freq

1

Words

1

Bag of

Words
1

Text

1
Stop-

words

Similarity

Score

Creating

Word Freq

Preprocessing Text

Creating
Bag of Words

Creating

List of Words

A

B

θ

1. Preprocessing Text

2. Creating List of Words

3. Creating Bag of Words

4. Creating Word Frequency

5. Calculating Cosine Similarity

6. Printing Similarity Score

Similar Not Similar

Cos(θ) = 1 Cos(θ) = 0

International Journal of Computer Applications (0975 – 8887)

Volume 185 – No. 36, October 2023

57

The text is converted into lower case. It is done by the following

code:

text = raw_text.lower()

1.2 Removing Punctuation:
The punctuation symbols (like: !@#$ …) are removed from the

text. It is done by the following code:

letters = "abcdefghijklmnopqrstuvwxyz"

for c in text:

 if (c not in letters):

 text = text.replace(c," ")

1.3 Removing Stopwords:
The Stopwords (like: I, am, is, are, …) are removed from the

text. It is done by the following code:

stopwords = ["i", "am", "is", "are", "we",

 "he", "she", "it", "the",

 "they", "that", "this", ...]

for word in text:

 if (word in stopwords):

 text = text.replace(word,"")

2. Creating List of Words:
The text is split into words. It is done by the following code:

words = text.split()

3. Creating Bag of Words:
The bag of words is the set of words. It is done by the following

code:

bag_of_words = set(words)

4. Creating Word Frequency:
The word frequency holds the frequencies of words.

Word Frequency

w1 freq(w1)

w2 freq (w2)

w3 freq (w3)

… …

wn freq (wn)

Fig 13: Structure of Word Frequency

Where: freq(wi) is the frequency of word (wi). It is done by the

following code:

Nw = len(words)

freq = {}

for word in bag_of_words:

 freq[word] = words.count(word) / Nw

5. Calculating Cosine Similarity:
The cosine similarity is calculated using formula (4). It is done

by the following code:

calculate the dot product of two vectors

def dot(vector1, vector2):

 sum = 0

 for key in vector1:

 if key in vector2:

 sum += vecor1[key] * vector2[key]

 return sum

calculate the norm of a vector

def norm(vector):

 sum = 0

 for key in vector:

 sum += vector[key]**2

 return math.sqrt(sum)

calculate the cosine similarity

value1 = dot(freq1, freq2)

value2 = norm(freq1) * norm(freq2)

cosine = value1 / value2

6. Printing Similarity Score:
The similarity score is printed. It is done by the following code:

print("Similarity Score = ", cosine)

4. RESULTS AND DISCUSSION
The developed program was tested on an experimental text

from Wikipedia [33]. The program performed the basic steps

of text similarity and provided the required results. The

resulting output is shown in the following section:

List of Words:
The list of words is shown in the following view:

List of Words:

Text 1:

abstract

analogous

available

based

chooses

clinical

collectively

comprise

content

content

...

Text 2:

abstraction

abstractive

abstractive

abstractive

applied

apply

based

build

called

cases

...

Bag of Words:
The bag of words is shown in the following view:

Bag of Words

Text 1:

abstract

analogous

available

based

chooses

clinical

collectively

comprise

content

International Journal of Computer Applications (0975 – 8887)

Volume 185 – No. 36, October 2023

58

data

...

Text 2:

abstraction

abstractive

applied

apply

based

build

called

cases

challenging

closer

...

Word Frequency:
The word frequency is shown in the following view:

Word Frequency:

Text 1:

abstract 0.0135135135

analogous 0.0135135135

available 0.0135135135

based 0.0135135135

chooses 0.0135135135

clinical 0.0135135135

collectively 0.0135135135

comprise 0.0135135135

content 0.0405405405

data 0.0135135135

...

Text 2:

abstraction 0.0135135135

abstractive 0.0405405405

applied 0.0135135135

apply 0.0135135135

based 0.0135135135

build 0.0135135135

called 0.0135135135

cases 0.0135135135

challenging 0.0135135135

closer 0.0135135135

 ...

The existence of common words proves the similarity between

the two texts. They are shown in the following view:

Common Words:

1 based

2 content

3 document

4 extracted

5 extraction

6 original

7 summarization

8 summary

9 text

10 video

The frequencies of the common words are shown in the

following table:

Table 1: Frequencies of Common Words

Word Text 1 Text 2

1 0.0135135135 0.0135135135

2 0.0405405405 0.0270270270

3 0.0270270270 0.0270270270

4 0.0405405405 0.0135135135

5 0.0405405405 0.0270270270

6 0.0135135135 0.0540540541

7 0.0135135135 0.0405405405

8 0.0135135135 0.0135135135

9 0.0405405405 0.0675675676

10 0.0135135135 0.0135135135

The following chart shows a visual representation of the

common words:

Fig 14: Chart of Common Words

Similarity Score:
The similarity score is shown in the following view:

Similarity Score = 0.3467255099

The resulting similarity score shows that the percentage of

similarity between the two texts is about (35%).

Further, the cosine similarity matrix (2×2) is shown in the

following view:

 Text 1 Text 2

Text 1 1 0.3467255099

Text 2 0.3467255099 1

Fig 15: Cosine Similarity Matrix

In summary, the program output clearly demonstrates that the

developed program successfully performed the basic steps of

text similarity and provided the required results.

5. CONCLUSION
Text similarity is one of the important applications of machine

learning. The purpose of text similarity is to measure the

similarity between texts and show if they are similar or not. The

word frequency is used to measure the importance of words in

the text, and cosine similarity is used to measure the similarity

between texts.

In this research, the author developed a program to measure the

similarity between texts using word frequency and cosine

similarity in Python. The developed program performed the

basic steps of text similarity: preprocessing text, creating list of

words, creating bag of words, creating word frequency,

calculating cosine similarity, and printing similarity score.

The program was tested on an experimental text from

Wikipedia and provided the required results: list of words, bag

of words, word frequency, and similarity score.

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

1

2

3

4

5

6

7

8

9

10

Common Words

Text 1

Text 2

International Journal of Computer Applications (0975 – 8887)

Volume 185 – No. 36, October 2023

59

In future work, more research is certainly required to improve

and develop the current methods of text similarity. In addition,

they should be more investigated on different domains and

languages such as Arabic.

6. REFERENCES
[1] Sammut, C., & Webb, G. I. (2011). "Encyclopedia of

Machine Learning". Springer.

[2] Aggarwal, C. (2015). "Data Mining: The Textbook". New

York: Springer.

[3] Aggarwal, C. (2018). "Machine Learning for Text". New

York: Springer.

[4] Hotho, A., Nürnberger, A., & Paass, G. (2005). "A Brief

Survey of Text Mining". LDV Forum - GLDV Journal for

Computational Linguistics and Language Technology. 20,

19-62.

[5] Gomaa, W. H., & Fahmy, A. A. (2013). "A Survey of Text

Similarity Approaches". International Journal of

Computer Applications, 68(13), 13-18.

[6] Breitinger, C., Gipp, B., Langer, S. (2015). "Research-

Paper Recommender Systems: A Literature Survey".

International Journal on Digital Libraries, 17(4), 305-338.

[7] Vijaymeena, M. K., & Kavitha, K. (2016). "A Survey on

Similarity Measures in Text Mining". Machine Learning

and Applications: An International Journal, 3(2), 19-28.

[8] Gunawan, D., Sembiring, C. A., & Budiman, M. A.

(2018). "The Implementation of Cosine Similarity to

Calculate Text Relevance between Two Documents". In

Journal of Physics: Conference Series (Vol. 978, p.

012120). IOP Publishing.

[9] Prasetya, D. D., Wibawa, A. P., & Hirashima, T. (2018).

"The Performance of Text Similarity Algorithms".

International Journal of Advances in Intelligent

Informatics, 4(1), 63-69.

[10] Shahmirzadi, O., Lugowski, A., & Younge, K. (2019).

"Text Similarity in Vector Space Models: A Comparative

Study". In 2019 18th IEEE international conference on

machine learning and applications (ICMLA) (pp. 659-

666). IEEE.

[11] Wang, J., & Dong, Y. (2020). "Measurement of Text

Similarity: A Survey". Information, 11(9), 421.

[12] Luhn, H. (1958). "The Automatic Creation of Literature

Abstracts". IBM Journal of Research and

Development, 2(2), 159-165.

[13] Salton, G. & Lesk, M. E. (1965). "The SMART Automatic

Document Retrieval Systems: An Illustration".

Communications of the ACM. 8 (6): 391-398.

[14] Salton, G. (1971). "The SMART Retrieval System:

Experiments in Automatic Document Retrieval".

Englewood Cliffs, N.J.: Prentice Hall Inc.

[15] Salton, G., Wong, A., & Yang, C. S. (1975). "A Vector

Space Model for Automatic Indexing". Communications

of the ACM, 18(11), 613-620.

[16] Salton, G., Yang, C. S., & Yu, C. T. (1975). "A Theory of

Term Importance in Automatic Text Analysis". Journal of

the American Society for Information Science, 26(1), 33-

44.

[17] Salton, G. & McGill, M. (1983). "Introduction to Modern

Information Retrieval". McGraw Hill Book Co, New

York.

[18] Salton, G., & Buckley, C. (1988). "Term-Weighting

Approaches in Automatic Text Retrieval". Information

Processing and Management, 24(5), 513-523.

[19] Salton, G. (1989). "Automatic Text Processing: The

Transformation, Analysis, and Retrieval of Information by

Computer". Addison- Wesley Publishing Company, USA.

[20] Salton, G., Allan, J., & Buckley, C. (1994). "Automatic

Structuring and Retrieval of Large Text Files".

Communications of the ACM, 37(2), 97-108.

[21] Salton, G., Singhal, A., Mitra, M., & Buckley, C. (1997).

"Automatic Text Structuring and Summarization".

Information Processing & Management, 33(2), 193-207.

[22] Sparck Jones, K. (1972). "A Statistical Interpretation of

Term Specificity and Its Application in Retrieval". Journal

of Documentation. 28(1), 11–21.

[23] Sparck Jones, K. (2004). "IDF Term Weighting and IR

Research Lessons". Journal of Documentation, 60(5),

521-523.

[24] Robertson, S. (1972). "Term Specificity". Journal of

Documentation, 28(1), 164-165.

[25] Robertson, S. (1974). "Documentation Note: Specificity

and Weighted Retrieval". Journal of Documentation,

30(1), 41-46.

[26] Robertson, S. (2004). "Understanding Inverse Document

Frequency: On Theoretical Arguments for IDF". Journal

of Documentation, 60(5), 503-520.

[27] Python: https://www.python.org

[28] Numpy: https://www.numpy.org

[29] Pandas: https:// pandas.pydata.org

[30] Matplotlib: https://www. matplotlib.org

[31] NLTK: https://www.nltk.org

[32] SK Learn: https://scikit-learn.org

[33] Wikipedia: https://en.wikipedia.org

IJCATM : www.ijcaonline.org

http://nbn-resolving.de/urn:nbn:de:bsz:352-0-311312
http://nbn-resolving.de/urn:nbn:de:bsz:352-0-311312
https://doi.org/10.1145%2F364955.364990
https://doi.org/10.1145%2F364955.364990

