
International Journal of Computer Applications (0975 – 8887)

Volume 185 – No. 37, October 2023

48

Writing Secure Code in the Digital Age: Preventing

Common Vulnerabilities

Vamsi Thatikonda
8921 Satterlee Ave Se
Snoqualmie, WA, USA

Hemavantha Rajesh Varma Mudunuri
Cumming, GA, USA

ABSTRACT

It is important for a developer to consider writing secure code

to protect the system from arising vulnerabilities within

software applications that support the entire framework.

Common threats including SQL injection, XSS, and CSRF

have been explored in the research which highlight the

significance of adopting best practices from the industry for

input validation, output encoding and adequate authentication.

Tools including static and dynamic analysis have been

considered as secure coding tools and have also been discussed

within the report. There is also a strong emphasis over

following coding standards including the OWASP Top Ten.

The Secure Software Development Lifecycle (SDLC) has been

discussed, in relation of its integration across all stages of the

software. Case studies from the real world have been utilized

to shed light over the consequences of vulnerabilities within

software. Finally, leveraging an informed approach, the report

advice placing perpetual importance over secure coding to

reduce the chances of risks in software integrity.

Keywords
Secure code, vulnerabilities, software applications, SQL

injection, XSS, CSRF, input validation, output encoding,

secure coding tools, static analysis, dynamic analysis, OWASP

Top Ten, Secure Software Development Lifecycle, SDLC

1. INTRODUCTION
Today’s digital landscape places high emphasis over writing

secure code. The frequency and sophistication of cyberattacks

keeps on increasing and improving day by day [1], which

makes it imperative for adequate security measures to be

integrated within software development [2]. Likewise, this

report also explores the level of significance demanded by the

need to prevent common vulnerabilities within software that

exposes the system to malicious attacks. As industries tend to

increasingly rely over software, it is important to safeguard

sensitive data, maintaining the trust of the user [1]. The

following sections of the report will explore prevalent

vulnerabilities, best practices, and tools to identify

vulnerabilities, shaping the existing knowledge regarding

secure software development.

2. UNDERSTANDING COMMON

VULNERABILITIES
SQL injection, cross-site scripting (XSS) and cross-site request

forgery (CSRF) are examples of common vulnerabilities that

can compromise the security of a software application. SQL

injection is the technique of inserting malicious SQL queries

into the input fields which helps the attacker gain unauthorized

access to databases and sensitive information. Cross-site

scripting on the other hand, comprises of injecting malicious

scripts onto the web page which tricks users to execute harmful

code which leads towards data theft or session hijacking. Cross-

site request forgery meanwhile forces the user to execute

actions unknowingly, violating their logged-in sessions to

execute unauthorized commands [3].

These three vulnerabilities have been the cause of many real-

world incidents which highlights their severity. The 2017

Equifax Breach, is an important example of a vulnerability

where SQL injections were used to gain access to the personal

data of approximately 147 million individuals. This attack

significantly influenced credit scores and also exposed

sensitive financial information [4]. Similarly, in 2014 an XSS

attack was carried out on eBay where malicious code was

injected into the product listings which redirected the users

towards phishing sites which compromised their credentials

[5].

3. BEST PRACTICES
As it is important to safeguard the security of software

applications, industries implement a few best practices that

reduces this risk. Some of the practices used by developers have

been elaborated as below.

3.1 Input Validation and Sanitization
A rigorous system of input validation and sanitization is

demanded to prevent any injection attacks on the software.

Developers need to validate and sanitize all user inputs,

ensuring that only the expected and safe data is processed.

Parameterized queries and prepared statements are techniques

which help separate user data from SQL commands, which

makes the software harder to be attacked through manipulation

of queries [6].

3.2 Proper Handling of User Input and

Output Encoding
Through a proper handling system of user inputs and output

encoding, cross-site scripting (XSS) attacks can be easily

prevented. User inputs can be validated and sanitized for

malicious scripts. Meanwhile, output encoding is done at the

time of rendering user input which helps in displaying harmful

content as text instead of being executed as code [7].

3.3 Strong Authentication and

Authorization Mechanisms
Implementing an authentication and authorization mechanism

can safeguard sensitive data. Multi-factor authentication

(MFA) provides an extra layer of security where users are

prompted for multiple forms of identification before giving

access. These mechanisms help ensure that only the concerned

users have access to the data or system, and they are the sole

individuals responsible for any modification or previews [8].

3.4 Secure Session Management and

Preventing CSRF Attacks
As the term suggests, secure session management is only

International Journal of Computer Applications (0975 – 8887)

Volume 185 – No. 37, October 2023

49

relevant to preventing session related attacks such as cross-site

request forgery (CSRF). Techniques including token

generation, storage and validation are used to secure a session.

Developers even make use of anti-CSRF tokens in web forms.

 which verifies the authenticity of the requests, preventing

attackers from forcing users to perform unintended actions

without their consent [9].

4. EXPERIMENTAL RESULTS
A web application was developed with input forms vulnerable

to SQL injection and XSS. Two versions were created:

1. Vulnerable version with no protections

2. Secure version with input validation and output

encoding

SQL injection and XSS attacks were simulated using OWASP

ZAP tool. The results are shown below:

Table 1. Successful SQL Injection and XSS attacks

Attack Type
Vulnerable

Version
Secure Version

SQL Injection 14/15 0/15

XSS 10/10 0/10

Figure 1. Comparison of Successful attacks

The vulnerable version was prone to 93% SQL injection and

100% XSS attacks while the secure version prevented all

attacks. This demonstrates the effectiveness of input

sanitization and output encoding in mitigating these

vulnerabilities.

4.1 Analysis
Secure coding tools help identify vulnerabilities within the

software, proactively addressing and mitigating potential

attacks. Following are a few coding tools that are used by

developers.

The results clearly indicate the ability of input validation and

output encoding techniques to prevent SQL injection and XSS

attacks. Sanitizing untrusted inputs using white-listing, black-

listing, or validation prevents malicious data from reaching

sensitive code or databases. Encoding untrusted outputs before

rendering prevents execution of injected scripts. These best

practices significantly reduce the attack surface.

5. SECURE CODING TOOLS
Secure coding tools help identify vulnerabilities within the

software, proactively addressing and mitigating potential

attacks. Following are a few coding tools that are used by

developers.

5.1 Static Code Analysis
Static code analysis, analyzes the source code without

execution, identifying any vulnerabilities based on patterns and

issues. Coding errors, insecure coding practices and known

vulnerabilities within the codebase can easily be detected

through this practice. As the threat is detected early in the

development cycle, the threat is mitigated proactively [10].

Fig 1: XSS [6]

International Journal of Computer Applications (0975 – 8887)

Volume 185 – No. 37, October 2023

50

5.2 Dynamic Analysis
A dynamic analysis examines the software as it runs. It further

detects any vulnerability that could not be detected when the

code wasn’t executed, including runtime vulnerabilities or

memory leaks. Various attack scenarios can be simulated,

which makes developers understand the reaction of their code

to different threats [11].

5.3 Security Testing
Security testing is a tool that involves numerous techniques

including penetration testing, vulnerability scanning, and fuzz

testing. Penetration testing simulates real-world attacks to

detect vulnerabilities from the perspective of an attacker.

Vulnerability scanning automates this process, identifying

known vulnerabilities in software. Fuzz testing, meanwhile,

sends random or specially crafted inputs to the software to

identify any unexpected behaviors [12].

6. CODING STANDARDS AND

GUIDELINES
Coding standards and guidelines within the industry act as a

blueprint for the developers to follow, ensuring that their code

is not only functional but also secure. Established standards

including the OWASP Top Ten improves the security of any

application. It outlines critical web application security risks,

based on which a systematic approach is provided which helps

to identify and prevent common security vulnerabilities within

the software. Addressing these gaps at the development stage

helps reduce the chances of breaches, protecting data and

privacy [13]

7. CODING STANDARDS AND

GUIDELINES
The SDLC is a structured approach which integrates numerous

security considerations in each developmental stage of a

software. The stages of SDLC include requirements, design,

coding, testing, deployment and maintenance. The first stage

identifies security needs of the software which is aligned with

its functionality. Design plan includes integrating security

mechanisms within the software itself. During coding, secure

coding practices, tools and tests are leveraged to mitigate any

vulnerabilities proactively. In the deployment phase, the serves

are configured to be secure. Lastly, during maintenance, a

continuous approach is taken towards monitoring and

addressing potential threats [14].

8. REAL WORLD EXAMPLES
The Target data breach, taken place in 2013 compromised the

credit card details of around 40 million customers due to a

vulnerable third-party vendor portal. Utilizing an adequate

security assessment and strict vendor management approach

could have helped proactively prevent this unauthorized access

to sensitive data [15]. Similarly, in 2018, the Marriott data

breach took place where the unencrypted guest information was

exploited by the hackers which resulted in affecting around 500

million customers of the chain. Stored data should be

encrypted, along with the conduction of regular security audits

to ensure that this massive breach is mitigated beforehand [16].

Both these cases highlight the consequences of the security

breaches, resulting in damage to reputation, financial losses and

legal damages. A robust security mechanism, continuous

monitoring and timely response practices can help prevent such

incidents, effectively. These incidents act as warnings for other

developers, placing emphasis over the need to prioritize

security in software development lifecycle as well, to protect

the trust of the user as well as the well-being of the

organization.

9. CONCLUSION
Based on the existing collecting information, it can be claimed

that there are numerous essential aspects of coding to be

considered to ensure that the writing is secure, preventing any

common vulnerabilities within the system applications. On

understanding the most prevalent vulnerabilities within the

industry, developers are utilizing a few top best practices for

coding security which highlights the need for and importance

of integrating security into every phase of the development

lifecycle of a software. Moreover, the tool, standards and case

studies of secure coding further highlight the tangible

consequences of having vulnerabilities within the system on the

business. However, it is to note that writing a secure code is not

only limited to the development and deployment phase but also

requires a on-going commitment towards reducing risks. Cyber

threats continue to evolve, which makes it increasingly

important to consider security in software development day by

day which can help protect data, the trust of the user and the

integrity of the organization.

In conclusion, integrating security in every phase of software

development is crucial to avoid common vulnerabilities like

SQLi, XSS, and CSRF that can compromise applications. Best

practices like input sanitization, output encoding,

authentication mechanisms, secure configuration, and adoption

of coding standards and tools can help developers write secure

code. The experiment demonstrates the efficacy of techniques

like input validation and output encoding. With increasing

cyber threats, developers must make secure coding a top

priority to build resilient applications and prevent data

breaches.

10. REFERENCES
[1] A. Delplace, S. Hermoso and K. Anandita, "Cyber attack

detection thanks to machine learning algorithms," 2020.

[2] A. W. Khan, S. Zaib, F. Khan, I. Tarimer, J. T. Seo and J.

Shin, "Analyzing and evaluating critical cyber security

challenges faced by vendor organizations in software

development: SLR based approach," IEEE Access, vol.

10, pp. 65044-65054, 2022.

[3] B. Nagpal, N. Chauhan and N. Singh, "SECSIX: security

engine for CSRF, SQL injection and XSS attacks.,"

International Journal of System Assurance Engineering

and Management, vol. 8, pp. 631-644, 2017.

[4] N. Daswani, M. Elbayadi, N. Daswani and M. Elbayadi,

"The Equifax Breach," Big Breaches: Cybersecurity

Lessons for Everyone, pp. 75-95, 2021.

[5] J. Sidhu, R. Sakhuja and D. Zhou, "Attacks on eBay,"

2016.

[6] H. Fadlallah, "Using parameterized queries to avoid SQL

injection," SQL Shack, 18 November 2022. [Online].

Available: https://www.sqlshack.com/using-

parameterized-queries-to-avoid-sql-

injection/#:~:text=One%20of%20the%20most%20comm

on,values%20are%20passed%20as%20parameters..

[Accessed 28 August 2023].

[7] LinkedIn, "What are the best practices for output encoding

to prevent XSS attacks?," LinkedIn, [Online]. Available:

https://www.linkedin.com/advice/1/what-best-practices-

output-encoding-prevent. [Accessed 29 August 2023].

International Journal of Computer Applications (0975 – 8887)

Volume 185 – No. 37, October 2023

51

[8] A. Henricks and H. Kettani, "On data protection using

multi-factor authentication," Proceedings of the 2019

International Conference on Information System and

System Management, pp. 1-4, 2019.

[9] OWASP, "Cross-Site Request Forgery Prevention Cheat

Sheet," OWASP, [Online]. Available:

https://cheatsheetseries.owasp.org/cheatsheets/Cross-

Site_Request_Forgery_Prevention_Cheat_Sheet.html.

[Accessed 29 August 2023].

[10] N. Sun, J. Zhang, P. Rimba, S. Gao, L. Y. Zhang and Y.

Xiang, "Data-driven cybersecurity incident prediction: A

survey," IEEE communications surveys & tutorials, vol.

21, no. 2, pp. 1744-1772, 2018.

[11] R. A. Calix, S. B. Singh, T. Chen, D. Zhang and M. Tu,

"Cyber security tool kit (CyberSecTK): A Python library

for machine learning and cyber security," Information,

vol. 11, no. 2, p. 100, 2020.

[12] K. Nagendran, A. Adithyan, R. Chethana, P. Camillus and

K. B. S. Varshini, "Web application penetration testing,"

Int. J. Innov. Technol. Explor. Eng, vol. 8, no. 10, pp.

1029-1035, 2019.

[13] OWASP, "OWASP Top Ten," OWASP, [Online].

Available: https://owasp.org/www-project-top-ten/.

[Accessed 29 August 2023].

[14] N. M. Mohammed, M. Niazi, M. Alshayeb and S.

Mahmood, "Exploring software security approaches in

software development lifecycle: A systematic mapping

study," Computer Standards & Interfaces, vol. 50, pp.

107-115, 2017.

[15] X. Shu, K. Tian, A. Ciambrone and D. Yao, "Breaking the

target: An analysis of target data breach and lessons

learned," 2017.

[16] J. Fruhlinger, "Marriott data breach FAQ: How did it

happen and what was the impact?," CSO, 11 February

2020. [Online]. Available:

https://www.csoonline.com/article/567795/marriott-data-

breach-faq-how-did-it-happen-and-what-was-the-

impact.html. [Accessed 29 August 2023].

IJCATM : www.ijcaonline.org

