
International Journal of Computer Applications (0975 – 8887)

Volume 185 – No. 38, October 2023

23

Securing Data in Clouds using the SDC Algorithm:

Current Trends and Research Directions

Dennis Redeemer Korda
Department of ICT

Bolgatanga Technical University
Bolgatanga, UER, Ghana

Eric Ayintareba Akolgo
Department of Computer Science
Regentropfen College of Applied

Sciences
Bolgatanga, UER, Ghana

Emmanuel Oteng Dapaah
Department of ICT

E.P College of Education
Bimbila, NR, Ghana

Dickson Kodzo Mawuli Hodowu

Ghana Water Company Limited
Department of Technology & Innovation

Bolgatanga, UER, Ghana

ABSTRACT

The rapid evolution of cloud computing has brought forth an

urgent need to ensure the security and confidentiality of data

stored in the cloud. Access control methods, while useful, may

not provide sufficient protection. As a viable alternative, data

encryption has emerged as a robust solution, empowering

organizations to encode data before transferring it to the cloud.

Within the realm of encryption algorithms, homomorphic

encryption stands out for its unique capabilities. By allowing

computations on ciphertext data without revealing the original

information, it addresses both confidentiality and data

processing needs in cloud computing. This review delves into

the critical topic of cloud computing security with a focus on

safeguarding data privacy using homomorphic encryption.

Various encryption algorithms are explored, including the

renowned Gentry cryptosystem, DGHV algorithm, Gen10,

SDC algorithm, and the cutting-edge GSW algorithm.

Homomorphic encryption, which permits computations on

ciphertexts, is dissected, distinguishing between additive and

multiplicative homomorphisms. Notably, fully homomorphic

encryption, a groundbreaking concept, supports both addition

and multiplication operations on ciphertexts.

The inception of fully homomorphic encryption by Gentry

marked a pivotal moment in the field, enabling computations

on encrypted data. Subsequent research expanded upon this

concept, introducing variations and practical implementations.

One such implementation aims to bridge the gap between cloud

computing and data confidentiality, offering a glimpse into the

future of secure cloud computing. This paper sheds light on the

key homomorphic encryption algorithms utilized in

safeguarding cloud computing data, providing a

comprehensive overview of their features and potential

applications.

Keywords

Encryption, Algorithms, Data Security, Homomorphic

Encryption Algorithms and Cloud Computing

1. INTRODUCTION
The past few years have seen escalating attention in the study

and application of cloud computing and the various ways of

safeguarding the data stored in the cloud. Some of the main

concerns regarding how to guarantee the confidentiality and

control which user group has access to the data. Access control

methods can be used to manage which user group has the

privilege to modify data on the cloud but these methods may

not be sufficient for a secured cloud. An alternate solution that

secures that from both the Cloud Service Provider (CSP) and

unauthorized users is encryption where data is encoded by the

organization before submitting it for storage in the cloud.

There are some encryption algorithms for various purposes.

Suppose the encryption algorithm used for a secured cloud

happens to be homomorphic, cloud users can execute

significant computations on the encoded data, deprived of

altering the initial data. Applying homomorphic encryption to

encode data not only guarantees the safety of cloud figuring

data but also reposes some form of assurance for cloud

customers. Aside from the characteristic of homomorphic

encryption allowing computations on ciphertext operations, the

problem of the efficiency of ciphertext retrieval is also curtailed

unlike in the traditional cryptosystems. Consequently, [1]

proposed a down-to-earth, straightforward and completely

homomorphic encryption algorithm, utilizing fundamentally

rudimentary modular arithmetic, gotten after Gentry

cryptography to guarantee security saving in the cloud, where

scrambled data can be worked upon legitimately devoid of the

influence of the confidentiality of the encryption frameworks

so it can splendidly understand the necessity of cyphertext

recovery and further data dispensation in cloud computing.

This review presents and discusses issues on Cloud computing

security purposely on the most proficient method to secure the

secrecy of information in the cloud by using homomorphic

encryption. Some of the algorithms reviewed include the

Gentry cryptosystem, DGHV algorithm, Gen10, SDC

algorithm and the most recent GSW algorithm.

A homomorphic encryption algorithm is an encryption

algorithm that legitimately permits the execution of ciphertext

activities on ciphertexts, where the results being naturally

scrambled permits, anyone, to control what is encoded, even

deprived of knowing the mystery key [1]. Within the fully

Homomorphic encryption, there is the addictive homomorphic

encryption that permits only additions to the raw data, there is

also the multiplicative homomorphic encryption that also

permits only multiplication on the raw data, while the last type

allows both additions and products on the raw data.

Various types of fully homomorphic encryption algorithms

have been suggested since Rivest et al. (1978), hinted at the

possibility of fully homomorphic encryption algorithms. Some

International Journal of Computer Applications (0975 – 8887)

Volume 185 – No. 38, October 2023

24

additive homomorphic encryption algorithms that have

evidence of semantic security are Goldwasser-Micali, Benaloh,

Naccache-Stern, Okamoto-Uchiyama, Paillier, and Damgard-

Jurik [1]. A semantically secure cryptosystem is one in which

just little data about the plaintext can be practicably removed

from the ciphertext and this is grounded on computational

complexity [2]. RSA and ElGamal are multiplicatively

homomorphic with an unbounded number of modular

multiplications. According to [3], if: for Enc(d1) and Enc(d2)

it is imaginable to compute Enc (f (d1, d2)), where f can be

Addition, Multiplication or both then it is said to be fully

homomorphic. They illustrated how these operations are

carried out in Figure 1.

Fully Homomorphic Encryption (FHE) was originally

demonstrated to be conceivable in the ongoing, leap-forward

research of Gentry, which underpins both addition and

multiplication on ciphertexts (Li et al., 2012). Afterwards, a

few more fully homomorphic encryption algorithms were

constructed but without working implementations. A

subsequent FHE algorithm, which demonstrates that Gentry's

model lattice-based algorithm can be substituted by a very

simple somewhat homomorphic algorithm which utilizes

integers instead of ideal lattices and therefore theoretically

more straightforward, with comparable properties regarding

homomorphic tasks and effectiveness was introduced in [4].

With the rapid penetration of cloud computing and its

associated confidentiality concerns, [5], proposed another fully

homomorphic encryption algorithm, intending to help make

cloud computing compatible with confidentiality. A

functioning implementation of the FHE alongside its

performance measures was introduced in [1].

Figure 1: Application of FHE in Cloud Computing.

There are some homomorphic encryption algorithms that are

utilized in securing data in cloud computing environments.

Under this section, the Gentry cryptosystem, DGHV, Gen10,

SDC encryption algorithms and the GSW algorithms are

discussed.

2. GENTRY CRYPTOSYSTEM
Gentry’s algorithm was based on lattice cryptography and it

supported addition and multiplication procedures mutually on

ciphertexts [6]. These addition and multiplication operations

relate to AND (∧) and XOR (⊕) operations in Boolean algebra

respectively. This is outstanding because it provided the basis

for many functions to be derived from them [6]. For instance,

¬A can be derived from A ⊕ 1, and (¬A) ∧ (¬B) can also be

derived from A ∨ B, and then transformed to (A ⊕ 1) ^ (B ⊕

1). The common term for the construction of cryptographic

primitives (encryption functions) that involve itself is known as

lattice-based cryptography and any basis of Rn the subgroup of

every single linear combination with integer coefficients of the

basis vectors forms a lattice.

Gentry’s lattice-based cryptography comprises numerous

stages which start based on what was suggested as a somewhat

homomorphic encryption (SWH) algorithm utilizing ideal

lattices which are restricted to assessing low-degree

polynomials over scrambled data. This restriction to some

extent is a result of the noise in each ciphertext and as more

computations (additions and or multiplications) are executed

on the ciphertext, this noise grows until eventually, the noise

brands the resultant ciphertext undecryptable. Afterwards, it

jams the decryption process with the goal that it tends to be

communicated as a small degree polynomial that is upheld by

the algorithm. Then lastly, it uses a bootstrapping

transformation, by means of an iterative self-implanting, to

acquire a fully homomorphic algorithm [7].

Bootstrapping transformation technique efficiently “refreshes”

the ciphertext by utilizing the decryption technique

homomorphically, and in so doing acquires a new ciphertext

with lower noise. Thus, the algorithm is said to be

bootstrappable if it is capable of evaluating not just the

decryption circuit which simply permits recryptions of the

plaintext yet additionally improved variants of it [8]. It is along

these lines conceivable to compute a discretionary number of

additions and multiplications short of expanding an excess of

noise by "refreshing" the ciphertext intermittently when the

noise becomes excessively huge.

Unlike well-known algorithms like the RSA and Diffie-

Hellman cryptographic algorithms which are effortlessly

compromised by quantum PCs, some lattice-based

constructions are resistant to these attacks. Figure 2 illustrates

the difference between conventional algorithms and fully

homomorphic encryption algorithms (FHE).

Figure 2: Conventional encryption and FHE

3. DGHV ALGORITHM
The researchers in [4], recommended a subsequent fully

homomorphic encryption known as the DGHV algorithm,

which improves upon the Gentry cryptosystem by showing that

the Somewhat Homomorphic constituent of the ideal lattices

International Journal of Computer Applications (0975 – 8887)

Volume 185 – No. 38, October 2023

25

can be supplanted with an easier homomorphic algorithm

which utilizes integers instead. This algorithm is, thus,

theoretically uncomplicated as compared with the Gentry

cryptosystem, in any case, has comparative qualities for

homomorphic tasks and effectiveness.

A DGHV fully homomorphic public-key encryption algorithm

consists of a number of sub-algorithms. These incorporate the

typical KeyGen, Encrypt, Decrypt, and an extra significant

algorithm known as Evaluate. KeyGen, as usual, is a large odd

integer (for instance p) which is chosen at random and the

complexity of the algorithm depends on how easy it is to

factorize this odd integer. In order to Encrypt (p, m) a bit of a

message, the ciphertext is established as an integer with residue

mod p and has a similar equivalence as the plaintext. Viz., set

 𝑐 = 𝑝𝑞 + 2𝑟 + 𝑚

where the integers q and r are selected indiscriminately in some

other recommended intervals, with the end goal that 2r is lesser

than p/2 in absolute value. The r represents the noise which is

adequately lesser than the private key p and therefore the

Decrypt (p, c) outputs (c mod p) mod 2. Evaluate the public key

pk as input. This uncomplicated algorithm is additive and

multiplicative homomorphic with respect to low mathematical

computations and one can also utilize bootstrapping and

squashing to morph this algorithm into FHE [1].

In the work of [9], he developed a framework for this algorithm

that should be easy to use, not too dependent on the security

measures taken by end-clients, have the option to handle any

cryptographic operations within the trusted infrastructure, be

able to send encoded data to the cloud and the public clouds

where the encoded data is stored ought not to possess the

capability to decode its contents. This proposed

implementation structure is exemplified in Figure 3.

Figure 3: Framework Usage Scenario

According to the framework, the movement of the data

continues as follows, data created by the clients (that includes

staff personnel activity data, remote teammates, and people

utilizing services supported by the customer company) are

stored and transferred to the cloud environment of the company

by means of a secure interface. On the off chance that the

documents stay inside the reliable infrastructure of the

company, they stay secure, however, when it is sent to other

open cloud services, the issue of trust emerges and, in this way,

the proposed system offers a helpful technique to accomplish

communication with other open clouds. The framework of this

structure can be utilized by companies to secure and deal with

their data stored in unsecured open cloud environments.

As a major aspect of the work, he explored the chance of

utilizing delta encryption concepts alongside homomorphic

encryption algorithms by means of additive homomorphism to

update encoded documents, rather than uploading the whole

encoded versions each time after executing an update task.

According to [9], in trial conditions, the created framework

conveyed hopeful performance results when contrasted with

other regular solutions. But the paper was silent on the

ciphertext retrieval.

4. GEN10 ALGORITHM
In [5], the authors proposed an improved homomorphic

encryption algorithm known as, the Gen10 algorithm in the

publication of the Communications of the ACM, making a

beeline for far-reaching utilization of cloud computing, which

was amazingly basic and of the structure 𝑐 = 𝑝𝑞 + 𝑚

The c represents the encrypted message (ciphertext), m

represents the unencrypted message (plaintext), while p

represents the key and q an arbitrary numeral [5]. This

encryption procedure is, therefore, homomorphic in regard to

addition, subtraction and multiplication. There exists a

connection between c and m such that m is the remainder of c

regarding modulus p, that is, 𝑚 = 𝑐 𝑚𝑜𝑑 𝑝.

For this algorithm, the encryption is such that; KeyGen is an

arbitrary P-bit odd integer p and to Encrypt (p, m) a bit, let M

represent an arbitrary N-bit number such that 𝑀 = 𝑚 𝑚𝑜𝑑 2.

So, the output of the ciphertext becomes c←M+pq.

where q is an arbitrary Q-bit number. The Decrypt (p, c)

Outputs c mod p, where (c mod p) is the integer C in (-p/2, p/2)

such that p| (c – C).

The researchers in [10], focused on how to store data in cloud

environments in an encoded format with FHE (Gen10) in

Amazon Web Service (AWS) public cloud. The data was stored

specifically stored in DynamoDB of AWS and computations

were demonstrated in it. Their methodology involved a user

first establishing a connection with the AWS DynamoDB

service within the Eclipse IDE for Java EE Developers. Which

at that point permits the client to log in depending on his/her

credentials and afterwards the client can perform some

computations on their data dependent on necessities [11]. Once

the client is finished with all the jobs, he/she may decide to log

out of the framework. The simplified flowchart is shown in

Figure 4.

In the proposed algorithm, J and K denote a private key P0 and

P1 denote a public key while N represents the number to be

encoded and acknowledged as the client response. The

purported algorithm is streamlined, productive, applied in

AWS open cloud and can, accordingly, be utilized for different

applications, for example, web-based auctioning, medical

reasons and business reasons, but the ciphertext of this

algorithm is too long for efficient processing.

International Journal of Computer Applications (0975 – 8887)

Volume 185 – No. 38, October 2023

26

Figure 4: Flowchart for the Fully Homomorphic

Encryption

5. SDC ALGORITHM
The Gentry cryptosystem, DGHV and Gen10 encourage the

addition and multiplication of encrypted data, nevertheless,

neither of the three has made references to the cyphertext

recovery algorithms [11]. Therefore, [1] proposed a simple

FHE known as the SDC algorithm, which is also based on the

Gentry cryptographic encryption algorithm to safeguard data

confidentiality in cloud environments. An illustration of this

SDC algorithm is described below:

The KeyGen(p): Where p is an arbitrary P-bit odd integer and

to Encrypt (p, m) a message or bit {0,1}

𝑐 = 𝑚 + 𝑝 + 𝑟𝑝𝑞

where r is an arbitrary R-bit numeral q is consistent with Q-bit

enormous whole integer and c the ciphertext. The Decrypt (p,

c) Output (c mod p) and the Retrieval(c):

𝑅𝑖 = (𝑐𝑖 − 𝑐𝑖𝑛𝑑𝑒𝑥) 𝑚𝑜𝑑 𝑞

As soon as the customer wishes to retrieve the message mindex,

he encodes the keywords

𝑐𝑖𝑛𝑑𝑒𝑥 = 𝑚𝑖𝑛𝑑𝑒𝑥 + 𝑝 + 𝑟𝑝𝑞

and transports the cindex to the server. In receipt of cindex, the

server inspects the ciphertexts, computing

 𝑅 = 𝑐𝑖 − 𝑐𝑖𝑛𝑑𝑒𝑥𝑚𝑜𝑑 𝑞

once R = 0, ciphertext retrieval works and Ci is the anticipated

outcome [7]. A full description of this is shown in [11].

According to [4], Partially Homomorphic Encryption (PHE)

such as RSA and Paillier algorithms are inadequate to protect

cloud computing on the grounds that these algorithms permit

performing just a single activity (being addition or

multiplication) on the encoded data of the customer. But on a

brighter side, utilizing the Fully Homomorphic Encryption

(FHE) algorithm to encode data in the cloud server is the best

guarantee for security and confidentiality issues, since this type

of algorithm permits the execution of some essential

computations on the encoded data. In their work, the various

FHE algorithms were discussed and the utilization of the most

effective one, the SDC algorithm, to protect cloud computing

data was also discussed but not implemented and its

performance evaluation was also not analyzed. The framework

for FHE as proposed by [7] is shown in Figure 5.

Figure 5: Utilizing FHE to protect cloud data.

Within their proposed framework: the user or client first logs in

and generates the private or secret key using the key generation

given by the server. Secondly, the client then encodes the data

which will be sent to the cloud environment with the generated

key and probably utilize a digital signature algorithm to

guarantee the integrity as well as the non-repudiation of the

data during transmission. Last but not least, computations in the

server such as the search on the encrypted data can be done by

sending an encrypted request to the server, and then finally, the

client decrypts data using the private key to retrieve the actual

results.

6. GSW ALGORITHM
In [5], a novel encryption algorithm known as the GSW for

developing FHE algorithms which evade the high-priced

relinearization phase in homomorphic multiplication was

presented. As noted by [12], in some categories of circuits, the

GSW algorithm possesses a lesser noise growth rate as

compared with the others and, thus better proficiency and more

grounded security.

This algorithm was later upgraded to obtain ring modifications

of the GSW algorithm which are the fast fully homomorphic

encryption in the west (FHEW) in 2014 as well as fast fully

homomorphic encryption over the torus (TFHE) in 2016. The

FHEW was the principal algorithm to illustrate

bootstrapping(refreshing) of the ciphertext such that after each

and every computation, it is conceivable to lessen the

bootstrapping time to a small amount of a second and also

immensely simplified bootstrapping by implementing another

strategy to calculate Boolean gates on scrambled data [13].

Unlike the other algorithms, the FHEW encryption has

KeyGen, Encrypt, NAND and Decrypt meant for key

generation, encryption, homomorphic encryption as well and

decryption respectively [14].

The KeyGen creates the secret key and the corresponding

evaluation key that is utilized in encoding the message.

Subsequently, the ciphertext is then operated upon by the

homomorphic NAND operator using the evaluation key and

then finally, the resulting ciphertext is outputted. Two years

later, the efficacy of the FHEW was enhanced by the TFHE

International Journal of Computer Applications (0975 – 8887)

Volume 185 – No. 38, October 2023

27

algorithm, which also employs a variant of the bootstrapping

procedure with methods similar to the FHEW. The TFHE

allows implementing a very fast gate-by-gate bootstrapping by

evaluating a random Boolean circuit made out of binary gates,

such as, AND, OR, XOR, and NAND, just as Negation and

Multiplexer gate over encrypted data without breaching data

confidentiality.

The strapping approach of the TFHE does any limitation on the

number of gates nor its compositions and thus enables any form

of computations on the encrypted data [15]. The KeyGen

generates a private-keyset and a cloud-keyset which both

provide encryption and decryption capabilities but the cloud-

keyset can be transferred into the clouds so that it can allow for

secure homomorphic computations on encoded data. The

private keyset enables encryption, as well as decryption on the

data while the cloud keyset, evaluates a netlist of binary gates

homomorphically at a pace of around 76 gates for each core,

deprived of decoding its input. It is therefore adequate to

deliver the input bits in place of the sequence of gates and the

output ciphertexts of the output bits.

7. MEDICAL CLOUD COMPUTING
More healthcare providers are opting to work with vendors that

provide cloud computing solutions for their digital records than

ever before for the efficiency of the industry while decreasing

costs [16]. Cloud computing makes medical record-sharing

easier and safer, automates backend operations and even

facilitates the creation, and maintenance of, telehealth apps.

Suppose, a patient comes complaining of cough, chest pains

and a headache. The doctor would then use his or her

knowledge to diagnose what is wrong with the patient and

record all the relevant details. Nonetheless, only the primary

diagnosis would show up on the patient's chart. That is where

cloud-based data analysis comes in handy, extracting data that

would otherwise remain hidden. One of the main

apprehensions of healthcare providers, irrespective of size, is

healthcare data security. Data breaches and other cybercrimes

can overwhelm a firm's revenue, threaten patient safety and

damage the provider’s reputation [17] [18].

A few researchers also proposed different applications for

homomorphic encryption. For instance, [19], introduced a safe

and sound image retrieval strategy for cloud computing

dependent on homomorphic characteristics of the Paillier

algorithm. A technique for protection of medical cloud

computing, utilizing the fully homomorphic encryption was

also introduced [20]. Their novel method is illustrated in Figure

6.

Figure 6: Medical Cloud Patient Monitoring System

According to [21], it is basic to keep up the protection of a

scrambled database while performing computations on the

encrypted data. Thus, they devised a framework that uses

primitive circuits for encryption which was done for search and

computes operations to maintain protection for the exposure of

confidential data. It further described the advantages of using

FHE over the usage of multiple encryption algorithms to

maintain the privacy policy.

A Bayesian Classifier for a clinical decision support system to

help in making critical decisions was also proposed in [22]. An

addictive homomorphic proxy segregation algorithm can be

used to encrypt patients’ medical records. The method of

retrieval used to highlight the top matching records for this

algorithm is the Top-k method and the client-server connection

terminates by the message-passing phenomenon [22].

The challenges encountered while dealing with encrypted data

such as variable definition translation, instruction execution,

loop handling and conditional terminations were highlighted

and the idea of the encrypted auxiliary stack with the methods

of encrypted pop and encrypted push used to handle them [23].

 In [24], the researchers provided a homomorphic algorithm

that can handle large message space by putting much emphasis

on advances in existing algorithms by encoding it as a

coefficient of polynomial and then performing the encryption

on the encoded polynomial’s coefficient.

8. Conclusion
The ciphertext recovery algorithm in the DGHV requires the

movement of the secret key to the server, which appears to be

horrendously shaky. While, the ciphertext recovery algorithm

of Gentry's work is named Gen10 and GSW requests to present

q to the server in spite of that using c mod q, where q is an

irregular number and c is the ciphertext, yet the plaintext spills

out.

In [1], the authors proposed an algorithm that solves the

problem of ciphertext recovery successfully, without plaintext

spill out, in light of the fact that the procedure of decoding

utilizes the secret key p although the recovery procedure

utilizes the whole number q, which is completely unique.

Consequently, fulfils both the interest for ciphertext recovery

and information security.

There are quite several types or evolutions of the Fully

Homomorphic encryption algorithms with each of them

addressing some peculiar problems of its predecessor. Some of

the works reviewed so far used various implementation

frameworks for securing cloud data using fully homomorphic

encryption algorithms. In this research work, an

implementation framework for the SDC algorithm will be

proposed and its performance evaluation analyzed to protect

data from unauthorized access, disclosure, modification and

monitoring.

9. REFERENCES
[1] J. Li, S. Song, S. Chen and X. Lu, "A Simple Fully

Homomorphic Encryption Scheme Available In Cloud

Computing," IEEE, pp. 214-217, 2012.

[2] S. Goldwasser and S. Micali, "Probabilistic Encryption

and How to Play Mental Poker Keeping Secret all Partial

Information," ACM Symposium on Theory of Computing,

1982.

[3] M. Tebaa, S. El Hajji and A. El Ghazi, "Homomorphic

Encryption Applied to the Cloud Computing Security.," in

World Congress on Engineering, London, 2012.

International Journal of Computer Applications (0975 – 8887)

Volume 185 – No. 38, October 2023

28

[4] I. Jabbar and S. Najim, "Using Fully Homomorphic

Encryption to Secure Cloud Computing," Internet of

Things and Cloud Computing, pp. 13-18, 2016.

[5] C. Gentry, "Computing Arbitrary Functions of Encrypted

Data," ACM, vol. 53, no. 3, pp. 97-105, 2010.

[6] C. Gentry, "A Fully Homomorphic Encryption Scheme,"

2009.

[7] I. Jabbar and S. Najim, "Using Fully Homomorphic

Encryption to Secure Cloud Computing," Internet of

Things and Cloud Computing, pp. 13-18, 2016.

[8] C. Gentry, "Fully Homomorphic Encryption Using Ideal

Lattices," ACM, pp. 169-178, 2009.

[9] K. M. Mohanty, "Secure Data Storage on the Cloud using

Homomorphic Encrypyion.," in National Institute of

Technology., Rourkela, 2013.

[10] M. M. Potey, C. A. Dhote and H. D. Sharma,

"Homomorphic Encryption for Security of Cloud Data,"

in International Conference on Communication,

Computing and Virtualization, 2016.

[11] D. R. Korda, E. D. Ansong and D. K. M. Hodowu,

"Securing Data in the Cloud using the SDC Algorithm,"

International Journal of Computer Applications , pp. 24-

29, 2021.

[12] V. Brakerski and V. Vaikuntanathan, "Lattice-Based FHE

as Secure as PKE," in ITCS 2014, 2014.

[13] J. Alperin-Sheriff and C. Peikert, "Faster Bootstrapping

with Polynomial Error," in In CRYPTO 2014, 2014.

[14] L. Ducas and D. Micciancio, "FHEW: Bootstrapping

Homomorphic Encryption in less than a second,"

University of California, San Diego, 2014.

[15] I. Chillotti, N. Gama, M. Georgieva and M. Izabachène,

"Faster fully homomorphic encryption: Bootstrapping in

less than 0.1 seconds.," Asiacrypt , pp. 3-33, 2016.

[16] BuiltIn, "BuiltIn," 17 April 2019. [Online]. Available:

https://builtin.com/cloud-computing/cloud-computing-in-

healthcare.

[17] Forsee Medical, "Cloud Computing in Healthcare," 28

September 2020. [Online]. Available:

https://www.foreseemed.com/blog/cloud-computing-in-

healthcare.

[18] D. K. M. Hodowu, D. R. Korda and E. D. Ansong, "An

Enhancement of Data Security in Cloud Computing with

an Implementation of a Two-Level Cryptographic

Technique, using AES and ECC Algorithm," International

Journal of Engineering Research & Technology, vol. 09,

no. 09, pp. 639-650, 2020.

[19] O. Kocabas and T. Soyata, "Utilizing Homomorphic

Encryption to Implement Secure and Private Medical

Cloud Computing.," IEEE, 2015.

[20] O. Kocabas and T. Soyata, "Utilizing Homomorphic

Encryption to Implement Secure and Private Medical

Cloud Computing," IEEE, 2015.

[21] J. H. Cheon and M. Kim, "Optimized Search and Compute

Circuits and their Application to Query Evaluation on

Encrypted Data.," IEEE Transactions on Information

Forensics and Security, pp. 188-199, 2016.

[22] C. Ayantika and I. Sengupta, "Translating Algorithms to

handle Fully Homomorphic Encrypted Data on the

Cloud," IEEE Transactions on Cloud Computing, vol. 6,

no. 1, 2018.

[23] D. S. Dhokey and A. V. Deorankar, "Review on Usage of

Homomorphic Encryption Technique," International

Journal of Current Research, pp. 76377-76379, 2018.

[24] K. Aganya and I. Sharma, "Symmetric Fully

Homomorphic Encryption Scheme with Polynomials

Operations.," in International Conference on Electronics,

Communication and Aerospace Technology. ,

Coimbatore: IEEE., 2018.

IJCATM : www.ijcaonline.org

