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ABSTRACT 

The rapid evolution of cloud computing has brought forth an 

urgent need to ensure the security and confidentiality of data 

stored in the cloud. Access control methods, while useful, may 

not provide sufficient protection. As a viable alternative, data 

encryption has emerged as a robust solution, empowering 

organizations to encode data before transferring it to the cloud. 

Within the realm of encryption algorithms, homomorphic 

encryption stands out for its unique capabilities. By allowing 

computations on ciphertext data without revealing the original 

information, it addresses both confidentiality and data 

processing needs in cloud computing. This review delves into 

the critical topic of cloud computing security with a focus on 

safeguarding data privacy using homomorphic encryption. 

Various encryption algorithms are explored, including the 

renowned Gentry cryptosystem, DGHV algorithm, Gen10, 

SDC algorithm, and the cutting-edge GSW algorithm. 

Homomorphic encryption, which permits computations on 

ciphertexts, is dissected, distinguishing between additive and 

multiplicative homomorphisms. Notably, fully homomorphic 

encryption, a groundbreaking concept, supports both addition 

and multiplication operations on ciphertexts. 

The inception of fully homomorphic encryption by Gentry 

marked a pivotal moment in the field, enabling computations 

on encrypted data. Subsequent research expanded upon this 

concept, introducing variations and practical implementations. 

One such implementation aims to bridge the gap between cloud 

computing and data confidentiality, offering a glimpse into the 

future of secure cloud computing. This paper sheds light on the 

key homomorphic encryption algorithms utilized in 

safeguarding cloud computing data, providing a 

comprehensive overview of their features and potential 

applications. 
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1. INTRODUCTION 
The past few years have seen escalating attention in the study 

and application of cloud computing and the various ways of 

safeguarding the data stored in the cloud. Some of the main 

concerns regarding how to guarantee the confidentiality and 

control which user group has access to the data. Access control 

methods can be used to manage which user group has the 

privilege to modify data on the cloud but these methods may 

not be sufficient for a secured cloud. An alternate solution that 

secures that from both the Cloud Service Provider (CSP) and 

unauthorized users is encryption where data is encoded by the 

organization before submitting it for storage in the cloud.  

There are some encryption algorithms for various purposes. 

Suppose the encryption algorithm used for a secured cloud 

happens to be homomorphic, cloud users can execute 

significant computations on the encoded data, deprived of 

altering the initial data. Applying homomorphic encryption to 

encode data not only guarantees the safety of cloud figuring 

data but also reposes some form of assurance for cloud 

customers. Aside from the characteristic of homomorphic 

encryption allowing computations on ciphertext operations, the 

problem of the efficiency of ciphertext retrieval is also curtailed 

unlike in the traditional cryptosystems. Consequently, [1] 

proposed a down-to-earth, straightforward and completely 

homomorphic encryption algorithm, utilizing fundamentally 

rudimentary modular arithmetic, gotten after Gentry 

cryptography to guarantee security saving in the cloud, where 

scrambled data can be worked upon legitimately devoid of the 

influence of the confidentiality of the encryption frameworks 

so it can splendidly understand the necessity of cyphertext 

recovery and further data dispensation in cloud computing. 

This review presents and discusses issues on Cloud computing 

security purposely on the most proficient method to secure the 

secrecy of information in the cloud by using homomorphic 

encryption. Some of the algorithms reviewed include the 

Gentry cryptosystem, DGHV algorithm, Gen10, SDC 

algorithm and the most recent GSW algorithm.  

A homomorphic encryption algorithm is an encryption 

algorithm that legitimately permits the execution of ciphertext 

activities on ciphertexts, where the results being naturally 

scrambled permits, anyone, to control what is encoded, even 

deprived of knowing the mystery key [1]. Within the fully 

Homomorphic encryption, there is the addictive homomorphic 

encryption that permits only additions to the raw data, there is 

also the multiplicative homomorphic encryption that also 

permits only multiplication on the raw data, while the last type 

allows both additions and products on the raw data.  

Various types of fully homomorphic encryption algorithms 

have been suggested since Rivest et al. (1978), hinted at the 

possibility of fully homomorphic encryption algorithms. Some 
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additive homomorphic encryption algorithms that have 

evidence of semantic security are Goldwasser-Micali, Benaloh, 

Naccache-Stern, Okamoto-Uchiyama, Paillier, and Damgard-

Jurik [1]. A semantically secure cryptosystem is one in which 

just little data about the plaintext can be practicably removed 

from the ciphertext and this is grounded on computational 

complexity [2]. RSA and ElGamal are multiplicatively 

homomorphic with an unbounded number of modular 

multiplications. According to [3], if: for Enc(d1) and Enc(d2) 

it is imaginable to compute Enc (f (d1, d2)), where f can be 

Addition, Multiplication or both then it is said to be fully 

homomorphic. They illustrated how these operations are 

carried out in Figure 1. 

Fully Homomorphic Encryption (FHE) was originally 

demonstrated to be conceivable in the ongoing, leap-forward 

research of Gentry, which underpins both addition and 

multiplication on ciphertexts (Li et al., 2012). Afterwards, a 

few more fully homomorphic encryption algorithms were 

constructed but without working implementations. A 

subsequent FHE algorithm, which demonstrates that Gentry's 

model lattice-based algorithm can be substituted by a very 

simple somewhat homomorphic algorithm which utilizes 

integers instead of ideal lattices and therefore theoretically 

more straightforward, with comparable properties regarding 

homomorphic tasks and effectiveness was introduced in [4]. 

With the rapid penetration of cloud computing and its 

associated confidentiality concerns, [5], proposed another fully 

homomorphic encryption algorithm, intending to help make 

cloud computing compatible with confidentiality. A 

functioning implementation of the FHE alongside its 

performance measures was introduced in [1]. 

 

Figure 1: Application of FHE in Cloud Computing. 

There are some homomorphic encryption algorithms that are 

utilized in securing data in cloud computing environments. 

Under this section, the Gentry cryptosystem, DGHV, Gen10, 

SDC encryption algorithms and the GSW algorithms are 

discussed. 

2. GENTRY CRYPTOSYSTEM 
Gentry’s algorithm was based on lattice cryptography and it 

supported addition and multiplication procedures mutually on 

ciphertexts [6]. These addition and multiplication operations 

relate to AND (∧) and XOR (⊕) operations in Boolean algebra 

respectively. This is outstanding because it provided the basis 

for many functions to be derived from them [6]. For instance, 

¬A can be derived from A ⊕ 1, and (¬A) ∧ (¬B) can also be 

derived from A ∨ B, and then transformed to (A ⊕ 1) ^ (B ⊕ 

1). The common term for the construction of cryptographic 

primitives (encryption functions) that involve itself is known as 

lattice-based cryptography and any basis of Rn the subgroup of 

every single linear combination with integer coefficients of the 

basis vectors forms a lattice. 

Gentry’s lattice-based cryptography comprises numerous 

stages which start based on what was suggested as a somewhat 

homomorphic encryption (SWH) algorithm utilizing ideal 

lattices which are restricted to assessing low-degree 

polynomials over scrambled data. This restriction to some 

extent is a result of the noise in each ciphertext and as more 

computations (additions and or multiplications) are executed 

on the ciphertext, this noise grows until eventually, the noise 

brands the resultant ciphertext undecryptable. Afterwards, it 

jams the decryption process with the goal that it tends to be 

communicated as a small degree polynomial that is upheld by 

the algorithm. Then lastly, it uses a bootstrapping 

transformation, by means of an iterative self-implanting, to 

acquire a fully homomorphic algorithm [7]. 

Bootstrapping transformation technique efficiently “refreshes” 

the ciphertext by utilizing the decryption technique 

homomorphically, and in so doing acquires a new ciphertext 

with lower noise. Thus, the algorithm is said to be 

bootstrappable if it is capable of evaluating not just the 

decryption circuit which simply permits recryptions of the 

plaintext yet additionally improved variants of it [8].  It is along 

these lines conceivable to compute a discretionary number of 

additions and multiplications short of expanding an excess of 

noise by "refreshing" the ciphertext intermittently when the 

noise becomes excessively huge. 

Unlike well-known algorithms like the RSA and Diffie-

Hellman cryptographic algorithms which are effortlessly 

compromised by quantum PCs, some lattice-based 

constructions are resistant to these attacks. Figure 2 illustrates 

the difference between conventional algorithms and fully 

homomorphic encryption algorithms (FHE). 

 

Figure 2: Conventional encryption and FHE 

3. DGHV ALGORITHM 
The researchers in [4], recommended a subsequent fully 

homomorphic encryption known as the DGHV algorithm, 

which improves upon the Gentry cryptosystem by showing that 

the Somewhat Homomorphic constituent of the ideal lattices 
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can be supplanted with an easier homomorphic algorithm 

which utilizes integers instead. This algorithm is, thus, 

theoretically uncomplicated as compared with the Gentry 

cryptosystem, in any case, has comparative qualities for 

homomorphic tasks and effectiveness.  

A DGHV fully homomorphic public-key encryption algorithm 

consists of a number of sub-algorithms. These incorporate the 

typical KeyGen, Encrypt, Decrypt, and an extra significant 

algorithm known as Evaluate. KeyGen, as usual, is a large odd 

integer (for instance p) which is chosen at random and the 

complexity of the algorithm depends on how easy it is to 

factorize this odd integer. In order to Encrypt (p, m) a bit of a 

message, the ciphertext is established as an integer with residue 

mod p and has a similar equivalence as the plaintext. Viz., set 

  𝑐 = 𝑝𝑞 + 2𝑟 + 𝑚                   

where the integers q and r are selected indiscriminately in some 

other recommended intervals, with the end goal that 2r is lesser 

than p/2 in absolute value. The r represents the noise which is 

adequately lesser than the private key p and therefore the 

Decrypt (p, c) outputs (c mod p) mod 2. Evaluate the public key 

pk as input. This uncomplicated algorithm is additive and 

multiplicative homomorphic with respect to low mathematical 

computations and one can also utilize bootstrapping and 

squashing to morph this algorithm into FHE [1].  

In the work of [9], he developed a framework for this algorithm 

that should be easy to use, not too dependent on the security 

measures taken by end-clients, have the option to handle any 

cryptographic operations within the trusted infrastructure, be 

able to send encoded data to the cloud and the public clouds 

where the encoded data is stored ought not to possess the 

capability to decode its contents. This proposed 

implementation structure is exemplified in Figure 3. 

Figure 3: Framework Usage Scenario 

According to the framework, the movement of the data 

continues as follows, data created by the clients (that includes 

staff personnel activity data, remote teammates, and people 

utilizing services supported by the customer company) are 

stored and transferred to the cloud environment of the company 

by means of a secure interface. On the off chance that the 

documents stay inside the reliable infrastructure of the 

company, they stay secure, however, when it is sent to other 

open cloud services, the issue of trust emerges and, in this way, 

the proposed system offers a helpful technique to accomplish 

communication with other open clouds. The framework of this 

structure can be utilized by companies to secure and deal with 

their data stored in unsecured open cloud environments. 

As a major aspect of the work, he explored the chance of 

utilizing delta encryption concepts alongside homomorphic 

encryption algorithms by means of additive homomorphism to 

update encoded documents, rather than uploading the whole 

encoded versions each time after executing an update task. 

According to [9], in trial conditions, the created framework 

conveyed hopeful performance results when contrasted with 

other regular solutions. But the paper was silent on the 

ciphertext retrieval. 

4. GEN10 ALGORITHM 
In [5], the authors proposed an improved homomorphic 

encryption algorithm known as, the Gen10 algorithm in the 

publication of the Communications of the ACM, making a 

beeline for far-reaching utilization of cloud computing, which 

was amazingly basic and of the structure 𝑐 = 𝑝𝑞 + 𝑚                          

The c represents the encrypted message (ciphertext), m 

represents the unencrypted message (plaintext), while p 

represents the key and q an arbitrary numeral [5]. This 

encryption procedure is, therefore, homomorphic in regard to 

addition, subtraction and multiplication. There exists a 

connection between c and m such that m is the remainder of c 

regarding modulus p, that is, 𝑚 = 𝑐 𝑚𝑜𝑑 𝑝. 

For this algorithm, the encryption is such that; KeyGen is an 

arbitrary P-bit odd integer p and to Encrypt (p, m) a bit, let M 

represent an arbitrary N-bit number such that 𝑀 = 𝑚 𝑚𝑜𝑑 2.                           

So, the output of the ciphertext becomes c←M+pq.                               

where q is an arbitrary Q-bit number. The Decrypt (p, c) 

Outputs c mod p, where (c mod p) is the integer C in (-p/2, p/2) 

such that p| (c – C). 

The researchers in [10], focused on how to store data in cloud 

environments in an encoded format with FHE (Gen10) in 

Amazon Web Service (AWS) public cloud. The data was stored 

specifically stored in DynamoDB of AWS and computations 

were demonstrated in it. Their methodology involved a user 

first establishing a connection with the AWS DynamoDB 

service within the Eclipse IDE for Java EE Developers. Which 

at that point permits the client to log in depending on his/her 

credentials and afterwards the client can perform some 

computations on their data dependent on necessities [11]. Once 

the client is finished with all the jobs, he/she may decide to log 

out of the framework. The simplified flowchart is shown in 

Figure 4.  

In the proposed algorithm, J and K denote a private key P0 and 

P1 denote a public key while N represents the number to be 

encoded and acknowledged as the client response. The 

purported algorithm is streamlined, productive, applied in 

AWS open cloud and can, accordingly, be utilized for different 

applications, for example, web-based auctioning, medical 

reasons and business reasons, but the ciphertext of this 

algorithm is too long for efficient processing. 
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Figure 4: Flowchart for the Fully Homomorphic 

Encryption 

5. SDC ALGORITHM 
The Gentry cryptosystem, DGHV and Gen10 encourage the 

addition and multiplication of encrypted data, nevertheless, 

neither of the three has made references to the cyphertext 

recovery algorithms [11]. Therefore, [1] proposed a simple 

FHE known as the SDC algorithm, which is also based on the 

Gentry cryptographic encryption algorithm to safeguard data 

confidentiality in cloud environments. An illustration of this 

SDC algorithm is described below: 

The KeyGen(p): Where p is an arbitrary P-bit odd integer and 

to Encrypt (p, m) a message or bit {0,1} 

𝑐 = 𝑚 + 𝑝 + 𝑟𝑝𝑞                           

where r is an arbitrary R-bit numeral q is consistent with Q-bit 

enormous whole integer and c the ciphertext. The Decrypt (p, 

c) Output (c mod p) and the Retrieval(c):  

𝑅𝑖 = (𝑐𝑖 − 𝑐𝑖𝑛𝑑𝑒𝑥) 𝑚𝑜𝑑 𝑞                

As soon as the customer wishes to retrieve the message mindex, 

he encodes the keywords  

𝑐𝑖𝑛𝑑𝑒𝑥 =  𝑚𝑖𝑛𝑑𝑒𝑥 + 𝑝 + 𝑟𝑝𝑞       

and transports the cindex to the server. In receipt of cindex, the 

server inspects the ciphertexts, computing 

 𝑅 =  𝑐𝑖 −  𝑐𝑖𝑛𝑑𝑒𝑥𝑚𝑜𝑑 𝑞   

once R = 0, ciphertext retrieval works and Ci is the anticipated 

outcome [7]. A full description of this is shown in [11]. 

According to [4], Partially Homomorphic Encryption (PHE) 

such as RSA and Paillier algorithms are inadequate to protect 

cloud computing on the grounds that these algorithms permit 

performing just a single activity (being addition or 

multiplication) on the encoded data of the customer. But on a 

brighter side, utilizing the Fully Homomorphic Encryption 

(FHE) algorithm to encode data in the cloud server is the best 

guarantee for security and confidentiality issues, since this type 

of algorithm permits the execution of some essential 

computations on the encoded data. In their work, the various 

FHE algorithms were discussed and the utilization of the most 

effective one, the SDC algorithm, to protect cloud computing 

data was also discussed but not implemented and its 

performance evaluation was also not analyzed. The framework 

for FHE as proposed by [7] is shown in Figure 5. 

 

Figure 5: Utilizing FHE to protect cloud data. 

Within their proposed framework: the user or client first logs in 

and generates the private or secret key using the key generation 

given by the server. Secondly, the client then encodes the data 

which will be sent to the cloud environment with the generated 

key and probably utilize a digital signature algorithm to 

guarantee the integrity as well as the non-repudiation of the 

data during transmission. Last but not least, computations in the 

server such as the search on the encrypted data can be done by 

sending an encrypted request to the server, and then finally, the 

client decrypts data using the private key to retrieve the actual 

results. 

6. GSW ALGORITHM 
In [5], a novel encryption algorithm known as the GSW for 

developing FHE algorithms which evade the high-priced 

relinearization phase in homomorphic multiplication was 

presented. As noted by [12], in some categories of circuits, the 

GSW algorithm possesses a lesser noise growth rate as 

compared with the others and, thus better proficiency and more 

grounded security. 

This algorithm was later upgraded to obtain ring modifications 

of the GSW algorithm which are the fast fully homomorphic 

encryption in the west (FHEW) in 2014 as well as fast fully 

homomorphic encryption over the torus (TFHE) in 2016. The 

FHEW was the principal algorithm to illustrate 

bootstrapping(refreshing) of the ciphertext such that after each 

and every computation, it is conceivable to lessen the 

bootstrapping time to a small amount of a second and also 

immensely simplified bootstrapping by implementing another 

strategy to calculate Boolean gates on scrambled data [13]. 

Unlike the other algorithms, the FHEW encryption has 

KeyGen, Encrypt, NAND and Decrypt meant for key 

generation, encryption, homomorphic encryption as well and 

decryption respectively [14]. 

The KeyGen creates the secret key and the corresponding 

evaluation key that is utilized in encoding the message. 

Subsequently, the ciphertext is then operated upon by the 

homomorphic NAND operator using the evaluation key and 

then finally, the resulting ciphertext is outputted. Two years 

later, the efficacy of the FHEW was enhanced by the TFHE 
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algorithm, which also employs a variant of the bootstrapping 

procedure with methods similar to the FHEW. The TFHE 

allows implementing a very fast gate-by-gate bootstrapping by 

evaluating a random Boolean circuit made out of binary gates, 

such as, AND, OR, XOR, and NAND, just as Negation and 

Multiplexer gate over encrypted data without breaching data 

confidentiality.  

The strapping approach of the TFHE does any limitation on the 

number of gates nor its compositions and thus enables any form 

of computations on the encrypted data [15]. The KeyGen 

generates a private-keyset and a cloud-keyset which both 

provide encryption and decryption capabilities but the cloud-

keyset can be transferred into the clouds so that it can allow for 

secure homomorphic computations on encoded data. The 

private keyset enables encryption, as well as decryption on the 

data while the cloud keyset, evaluates a netlist of binary gates 

homomorphically at a pace of around 76 gates for each core, 

deprived of decoding its input. It is therefore adequate to 

deliver the input bits in place of the sequence of gates and the 

output ciphertexts of the output bits. 

7. MEDICAL CLOUD COMPUTING 
More healthcare providers are opting to work with vendors that 

provide cloud computing solutions for their digital records than 

ever before for the efficiency of the industry while decreasing 

costs [16]. Cloud computing makes medical record-sharing 

easier and safer, automates backend operations and even 

facilitates the creation, and maintenance of, telehealth apps. 

Suppose, a patient comes complaining of cough, chest pains 

and a headache. The doctor would then use his or her 

knowledge to diagnose what is wrong with the patient and 

record all the relevant details. Nonetheless, only the primary 

diagnosis would show up on the patient's chart. That is where 

cloud-based data analysis comes in handy, extracting data that 

would otherwise remain hidden. One of the main 

apprehensions of healthcare providers, irrespective of size, is 

healthcare data security. Data breaches and other cybercrimes 

can overwhelm a firm's revenue, threaten patient safety and 

damage the provider’s reputation [17] [18].  

A few researchers also proposed different applications for 

homomorphic encryption. For instance, [19], introduced a safe 

and sound image retrieval strategy for cloud computing 

dependent on homomorphic characteristics of the Paillier 

algorithm. A technique for protection of medical cloud 

computing, utilizing the fully homomorphic encryption was 

also introduced [20]. Their novel method is illustrated in Figure 

6. 

 
Figure 6: Medical Cloud Patient Monitoring System 

According to [21], it is basic to keep up the protection of a 

scrambled database while performing computations on the 

encrypted data. Thus, they devised a framework that uses 

primitive circuits for encryption which was done for search and 

computes operations to maintain protection for the exposure of 

confidential data. It further described the advantages of using 

FHE over the usage of multiple encryption algorithms to 

maintain the privacy policy. 

A Bayesian Classifier for a clinical decision support system to 

help in making critical decisions was also proposed in [22]. An 

addictive homomorphic proxy segregation algorithm can be 

used to encrypt patients’ medical records. The method of 

retrieval used to highlight the top matching records for this 

algorithm is the Top-k method and the client-server connection 

terminates by the message-passing phenomenon [22]. 

The challenges encountered while dealing with encrypted data 

such as variable definition translation, instruction execution, 

loop handling and conditional terminations were highlighted 

and the idea of the encrypted auxiliary stack with the methods 

of encrypted pop and encrypted push used to handle them [23]. 

 In [24], the researchers provided a homomorphic algorithm 

that can handle large message space by putting much emphasis 

on advances in existing algorithms by encoding it as a 

coefficient of polynomial and then performing the encryption 

on the encoded polynomial’s coefficient. 

8. Conclusion 
The ciphertext recovery algorithm in the DGHV requires the 

movement of the secret key to the server, which appears to be 

horrendously shaky. While, the ciphertext recovery algorithm 

of Gentry's work is named Gen10 and GSW requests to present 

q to the server in spite of that using c mod q, where q is an 

irregular number and c is the ciphertext, yet the plaintext spills 

out.  

In [1], the authors proposed an algorithm that solves the 

problem of ciphertext recovery successfully, without plaintext 

spill out, in light of the fact that the procedure of decoding 

utilizes the secret key p although the recovery procedure 

utilizes the whole number q, which is completely unique. 

Consequently, fulfils both the interest for ciphertext recovery 

and information security. 

There are quite several types or evolutions of the Fully 

Homomorphic encryption algorithms with each of them 

addressing some peculiar problems of its predecessor. Some of 

the works reviewed so far used various implementation 

frameworks for securing cloud data using fully homomorphic 

encryption algorithms. In this research work, an 

implementation framework for the SDC algorithm will be 

proposed and its performance evaluation analyzed to protect 

data from unauthorized access, disclosure, modification and 

monitoring. 
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