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ABSTRACT 

Day-by-day the  satellite data utility is increasing in the fields 

of urban planning, forestry studies, climate studies, draught 

estimations and for  effective management  when  natural 

disasters occurred  and this utility may be from  state , central 

government or private organisations. For urban, forestry, 

climate studies temporal data is more useful and consequently 

there is huge requirement of older Indian Remote Sensing 

Satellite (IRS) data from user community for the study of above 

applications. Also photogrammetric processing levels may be 

different depending on their application. But after development  

of physical sensor model  satellite vendors are using(Rational 

polynomial coefficients(RPC) based generic software for any 

photogrammetric processing but in the data product  generation 

chain rad-ortho kit(raw product with RPC’s file and metadata 

file which gives the information about the data) products are 

not available for older Indian Remote Sensing Satellites (IRS) 

IRS-1C/1D.In this paper developed methodology for the 

generation of  RPC’s based on the physical sensor model 

namely line of sight (LOS)model and applied on IRS-

1C/1D,LISS-III sensor data but in this paper only IRS-1C 

LISS-III sensor results are published due to similarity of results 

and sensors of IRS-1C/1D.  

Keywords 
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1. INTRODUCTION 
Indian Remote Sensing Satellite-1C (IRS-1C) was launched on 

December 28,1995 and its  applications such as crop acreage 

and yield estimation, drought monitoring and assessment, flood 

mapping, wasteland mapping, ocean/marine resources survey, 

urban mapping, mineral prospecting, forest resource survey  etc 

have integral part of the resources management system in the 

country[6].The IRS-1C  payload consists of Linear imaging 

self scanning sensors (LISS-III) of spatial resolution of 23.5 

meters for B2,B3,B4 and 70.5 meters  in SWIR-B5 ,PAN  

camera of spatial resolution 5.8 meters  and WiFS camera 

with188.3 meters of spatial resolution. IRS – 1D was launched 

on September 27, 1997 by PSLV – C1. IRS – 1D, a follow on 

satellite to IRS – 1C. It has 3 payloads viz., PAN, LISS 3 

&WiFS. It has similar capabilities as IRC – 1C in terms of 

spatial resolution, spectral bands, stereoscopic imaging, wide 

field coverage and revisit capability. The improvements carried 

out in the IRS – 1D satellite taking into account the IRS – 1C 

experiences have resulted in better quality imageries [6]. 

For IRS-1C/1D satellites in the NRSC data product  generation 

chain RPC products are not available and after development   of 

physical sensor model vendors are using rpc’s based generic 

software for any photogrammetric processing  and therefore 

there is a requirement for generation of RPC’s for IRS-1C/1D 

data. In this paper developed methodology for RPC’s 

generation based on the physical sensor model namely line of 

sight (LOS) model[7] and hence this methodology enables the 

user community to do the photogrammetric processing with 

generic software for these satellites also. Finally generated 

ortho rectified product using the above rpc’s from GDAL- 

libraries and these products are validated with reference 

images. 

 Also LOS model is not straightforward as in[2,3,7] due to non-

availability of some of  inputs for LOS model from ADIF and 

OAT of IRS-1C/1D like sidereal angle etc and hence for 

calculation of sidereal angle is also presented in this paper as 

in[1]. 

1.1 LINE-OF-SIGHT MODEL (LOS) 
The line-of-sight model (LOS) is optical sensor model which 

transforms image coordinates to ground coordinates with series 

of transformations using sensor look angles, payload alignment 

angles, satellite attitude angles, satellite position, satellite 

velocity , sidereal angle and earth model[2,3]. In this paper all 

the sub models which are used in LOS model are discussed [3]. 

The inputs for LOS model are taken from ADIF(scene 

information) and OAT(position, velocity, attitude and sidereal 

angle).But onlyResourcesat-1 onwards sidereal angle has been 

giving in OAT module but which is not available in OAT of 

older satellites like IRS-1C/1D and hence in this paper 

algorithm for sidereal angle calculation is also presented. Line 

of sight model algorithm based on [2,3,7] is mentioned below. 

Sensor model-look vector computation: 
The sensor model takes a pixel in the satellite image and 

computes its look vector in the sensor coordinate system. It also 

computes the time for the instance of this look. The sensor 

model is initialized with parameters specific for the sensor 

design. It can be a generic model for a push broom scanner, 

which will have parameters such as focal length, detector 

positions in the focal plane and scan-line time interval. The 

sensor model is the sub-model that is most often modified when 

implementing a new satellite system. 

Formula for finding detector look angle (across track): 

ys=(pixel number-center pixel number)*IFOV; 
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xs=-FL; 

zs=0; 

                Image coordinate in CCD plane= [-xsyszs] T 

Body model: 
In this model payload alignment angles are used to rotate the 

look vector from the sensor coordinate system to the satellite 

body coordinate system.  

Attitude model: 

From OAT file roll, pitch, yaw angles are used to transform the 

look vector from the body coordinate system to the flight 

coordinate system.  

Flight model: 
In this models satellite position and velocity vector is used to 

transform the look vector from the flight coordinate system to 

the Earth Centered Inertial (ECI) coordinate system.  

Astronomical model: 
The astronomical model is used to transform the position and 

look vectors from the ECI system to the Earth Centered 

Rotating (ECR) coordinate system. In this model sidereal angle 

is to transform look vector from ECI to ECR conversion by 

definition of ECI and ECR coordinate systems. 

Intersection model: 
The intersection model calculates the intersection point 

between the look vector and an Earth model (ellipsoidal) 

centered in the ECR system. The ellipsoidal height is also input 

to get a unique position.  

Geodesy model: 
The geodesy model transforms the Earth intersection point, 

expressed in ECR coordinates, to a geographic coordinate 

(longitude, latitude, optometric height). It uses a geoids model 

to account for the irregularities in the Earth zero potential 

surfaces. The result is a coordinate in the WGS84 system. 

Sidereal time/angle calculation: 
Sidereal time is measured by the rotation of the earth relative 

to the fixed stars and Local sidereal time θ of a site is the time 

elapsed since the local meridian of the site passed through the 

vernal equinox [1]. To know the location of a point on the earth 

at any given instant relative to the geocentric equatorial frame 

requires knowing its local sidereal time. The local side-real 

time of a site is found by first determining the Greenwich 

sidereal time θG (the sidereal time of the Greenwich meridian), 

and then adding the east longitude (or subtracting the west 

longitude) of the site. The following procedure [1] followed to 

determine sidereal time. 

The Julian day number at 0 hr UT is  

𝐽0 = 367y – INT{
7[𝐼𝑁𝑇〈

𝑚+9

12
〉]

4
} + 𝐼𝑁𝑇 (

275𝑚

9
) + 𝑑 + 1,721,013.5 

Where y, m and d are integers lying in the following ranges. 

1901 ≤ 𝑦 ≤ 2099 , 1 ≤ 𝑚 ≤ 12 ,1 ≤ 𝑑 ≤ 31  

INT(x) means to retain only the integer portion of x, without 

rounding (or, in other words, round towards zero); 

The time T0in Julian centuries between the Julian day J 0 and 

J2000 is 

𝑇0 = 
𝐽0 − 2,451,545

36,525
 

The Greenwich sidereal time 𝜃𝐺0in degrees is given by the 

series 

𝜃𝐺0  =  100 . 4606184 +  36 , 000 . 77004𝑇0

+  0 . 000387933𝑇0
2 − 2.583(10−8)𝑇0

3 

This formula can yield a value outside of the range

 0 ≤ 𝜃𝐺0 ≤ 3600.If so, then the appropriate integer 

multiple of 360 ° must be added or subtracted to bring 𝜃𝐺0into 

that range. 

Once 𝜃𝐺0has been determined, the Greenwich sidereal time 

𝜃𝐺at any other universal time is found using the relation 

𝜃𝐺 = 𝜃𝐺0 +  360 . 98564724
𝑈𝑇

24
 

WhereUT is in hours. The coefficient of the second term on the 

right is the number of degrees the earth rotates in 24 hours 

(solar time). 

Finally, the local sidereal time θ of a site is obtained by adding 

its east longitude Λ to the Greenwich sidereal time, 

  𝜃 =   𝜃𝐺 + Λ 

Here again it is possible for the computed value of θ to exceed 

360°. If so, it must be reduced to within that limit by subtracting 

the appropriate integer multiple of 360 °. 

2. RATIONAL FUNCTION MODEL 

2.1 Introduction 
A sensor model describes the geometric relationship of 3D 

object coordinates to 2D image coordinates. There are various 

models to provide the relation and each model has its own 

merits and demerits. There are two broad categories of sensor 

models, which are (a) generalized and (b) physical. The choice 

of a sensor model depends primarily on the performance and 

the accuracy required the camera and control information 

available. A physical sensor model represents the physical 

imaging process. The parameters involved describe the position 

and the orientation of a sensor with respect to an object space 

co-ordinate system. In physical models, parameters are 

normally uncorrelated because each parameter has a physical 

significance. All the rigorous physical sensor models are more 

accurate, the development of generalized sensor models 

independent of sensor platforms and sensor types. In a 

generalized sensor model, the transformation between the 

image and the object space is represented as some general 

function without modeling the physical imaging process. The 

function can be of different form such as a polynomials or 

rational functions. 

A physical sensor model needs the physical parameters of the 

sensor such as the position and the orientation of the sensor 

with respect to an object space co-ordinate system and these 

parameters are not correlated and yield accurate results. LOS 

model developed in this project and is described in the previous 

chapter belongs to this category. But in the recent past the 

satellite data providers are not ready to part with the sensor 

model.  

As an alternative, remote sensing data providers started rational 

polynomial coefficients (RPC) models where sensor model is 

provided in the form of RPCs, The generalized models 

represent the transformation of the co-ordinates from 3D to 2D 

by rational function models (RFM). This chapter describes 

implementation of RFM to establish relationship between 

object space and image space for all the optical sensors, taking 

the LOS model as the basis. 

2.2 Mathematical Preliminaries 
RFM is a mathematical transformation between object space 

and image space co-ordinates. The RFM is defined as ratio 
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of two cubic polynomials separately for row and column 

coordinates of image and hence it is given[5,8,9] as: 

𝒓 =
𝑵𝒓(𝑿, 𝒀, 𝒁)

𝑫𝒓(𝑿, 𝒀, 𝒁)
𝒄 =

𝑵𝒄(𝑿, 𝒀, 𝒁)

𝑫𝒄(𝑿, 𝒀, 𝒁)
 

Where r, c are normalized row and column coordinates of 

image space and X, Y, Z are normalized coordinates of 

object space. The constant term in the denominator of r and 

c is taken as 1 to avoid singularity in equation (1). Also 

Nr(X,Y,Z), Dr(X,Y,Z), Nc(X,Y,Z), Dc(X,Y,Z) defined as: 

𝑁𝑟(𝑋, 𝑌, 𝑍) = 𝑎1 + 𝑎2𝑋 + 𝑎3𝑌 + 𝑎4𝑍 + 𝑎5𝑋𝑌
+ 𝑎6𝑋𝑍 + 𝑎7𝑌𝑍 + 𝑎8𝑋

2 + 𝑎9𝑌
2

+ 𝑎10𝑍
2 + 𝑎11𝑋𝑌𝑍 + 𝑎12𝑋

3

+ 𝑎13𝑋𝑌2 + 𝑎14𝑋𝑍2 + 𝑎15𝑋
2𝑌

+ 𝑎16𝑌
3 + 𝑎17𝑌𝑍2 + 𝑎18𝑍𝑋2

+ 𝑎19𝑍𝑌2 + 𝑎20𝑍
3 

𝐷𝑟(𝑋, 𝑌, 𝑍) = 𝑏1 + 𝑏2𝑋 + 𝑏3𝑌 + 𝑏4𝑍 + 𝑏𝑋𝑌
+ 𝑏𝑋𝑍 + 𝑏𝑌𝑍 + 𝑏8𝑋

2 + 𝑏9𝑌
2

+ 𝑏10𝑍
2 + 𝑏11𝑋𝑌𝑍 + 𝑏12𝑋

3

+ 𝑏13𝑋𝑌2 + 𝑏14𝑋𝑍2 + 𝑏15𝑋
2𝑌

+ 𝑏16𝑌
3 + 𝑏17𝑌𝑍2 + 𝑏18𝑍𝑋2

+ 𝑏19𝑍𝑌2 + 𝑏20𝑍
3 

𝑏1 = 1 

𝑁𝑐(𝑋, 𝑌, 𝑍) = 𝑐1 + 𝑐2𝑋 + 𝑐3𝑌 + 𝑐4𝑍 + 𝑐5𝑋𝑌
+ 𝑐6𝑋𝑍 + 𝑐7𝑌𝑍 + 𝑐8𝑋

2 + 𝑐9𝑌
2

+ 𝑐10𝑍
2 + 𝑐11𝑋𝑌𝑍 + 𝑐12𝑋

3

+ 𝑐13𝑋𝑌2 + 𝑐14𝑋𝑍2 + 𝑐15𝑋
2𝑌

+ 𝑐16𝑌
3 + 𝑐17𝑌𝑍2 + 𝑐18𝑍𝑋2

+ 𝑐19𝑍𝑌2 + 𝑐20𝑍
3 

𝐷𝑐(𝑋, 𝑌, 𝑍) = 𝑑1 + 𝑑2𝑋 + 𝑑3𝑌 + 𝑑4𝑍 + 𝑑5𝑋𝑌
+ 𝑑6𝑋𝑍 + 𝑑7𝑌𝑍 + 𝑑8𝑋

2 + 𝑑9𝑌
2

+ 𝑑10𝑍
2 + 𝑑11𝑋𝑌𝑍 + 𝑑12𝑋

3

+ 𝑑13𝑋𝑌2 + 𝑑14𝑋𝑍2 + 𝑑15𝑋
2𝑌

+ 𝑑16𝑌
3 + 𝑑17𝑌𝑍2 + 𝑑18𝑍𝑋2

+ 𝑑19𝑍𝑌2 + 𝑑20𝑍
3 

𝑑1 = 1 

X, Y, Z are the normalized object space coordinates i.e. 

normalized latitude, longitude and height respectively. x and y 

are the normalized scan line number and pixel number between 

(-1,+1). These 𝑎𝑖
′𝑠, 𝑏𝑖

′𝑠, 𝑐𝑖
′𝑠, 𝑑𝑖

′𝑠are polynomial coefficients 

called rational function coefficients (RFC’s). 

In RFM model, the distortions caused by optical projection can 

be expressed as 1st-order polynomial coefficients, and the error 

caused by the earth curvature, atmospheric refraction and lens 

distortion can be corrected by 2nd-order polynomial 

coefficients, and that caused by other unknown distortions can 

be simulated by 3rd-order polynomial coefficients. 

In RFM model, the distortions caused by optical projection can 

be expressed as 1st-order polynomial coefficients, and the error 

caused by the earth curvature, atmospheric refraction and lens 

distortion can be corrected by 2nd-order polynomial 

coefficients, and that caused by other unknown distortions can 

be simulated by 3rd-order polynomial coefficients. 

The methodology of developing the RFM is summarized in the 

figure1[1] as  below: 

 

 

Fig. 1 

The RFM uses ratios of polynomials to establish the 

relationship between the images coordinates and the object 

coordinates. The universal real-time model is in fact an 

extension to the RFM. It employs interpolation of high-order 

correction functions. Because the RFM is the most popular 

model in use, the emphasis in this study is placed on the 

investigation of the RFM.  

2.3 RFC Generation Methodology 
In order to avoid time consuming process and to improve the 

numerical stability of the equations in 1, both image and object 

space co-ordinates are normalized to the range of -1.0 to 1.0 

.The normalization of the coordinates is computed as follows: 

𝒙𝒏 =
𝒙 − 𝒙𝒐

𝒙𝒔
    ,    𝒚𝒏 =

𝒚 − 𝒚𝒐

𝒚𝒔
 

𝑿𝒏 =
𝑿−𝑿𝒐

𝑿
     ,     𝒀𝒏 =

𝒀−𝒀𝒐

𝒀𝒔
     ,   𝒁𝒏 =

𝒁−𝒁𝒐

𝒁𝒔
. 

Where, 𝑥𝑜 , 𝑦𝑜, 𝑋𝑜, 𝑌𝑜, 𝑍𝑜are the mean values for scan line 

number, pixel number, latitude, longitude and height 

respectively and 𝑥𝑠 , 𝑦𝑠, 𝑋𝑠 , 𝑌𝑠, 𝑍𝑠are the scale values for 
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scanline number, pixel number, latitude, longitude and height 

respectively. 

The maximum power of each ground co-ordinate is typically 

limited to 3; and the total power of all the ground co-ordinates 

is also limited to 3.In such a case, each polynomial is of 20-

term cubic form. 

So from the expression of scan line and pixel line functions, we 

have[5] 

𝒓 =
(𝟏𝑿𝒀𝒁…𝒀𝟑𝒁𝟑) .  (𝒂𝟏𝒂𝟐 …𝒂𝟐𝟎)

𝑻

(𝟏𝑿𝒀𝒁…𝒀𝟑𝒁𝟑) .  (𝟏𝒃𝟐 …𝒃𝟐𝟎)
𝑻  

𝒄 =
(𝟏𝑿𝒀𝒁…𝒀𝟑𝒁𝟑) .  (𝒄𝟏𝒄𝟐 …𝒄𝟐𝟎)

𝑻

(𝟏𝑿𝒀𝒁…𝒀𝟑𝒁𝟑) .  (𝟏𝒅𝟐 …𝒅𝟐𝟎)
𝑻  

Where 𝑎𝑖
′𝑠, 𝑏𝑖

′𝑠, 𝑐𝑖
′𝑠, 𝑑𝑖

′𝑠are polynomial coefficients. 

Let 𝑀 =

[
 
 
 
1 𝑋1

1 𝑋2
⋯

−𝑟1𝑍1
3

−𝑟𝑛𝑍2
3

⋮ ⋱ ⋮
1 𝑋3 ⋯ −𝑟𝑛𝑍𝑛

3]
 
 
 

 

𝐽 = (𝑀𝑇𝑀)−1𝑀𝑇𝑅 

𝑅 = (

𝑥1

⋮
𝑥𝑛

)Is the set of‘n’ number of ground control points. 

𝐽 = (𝑎0𝑎1 ⋯𝑎19𝑏1𝑏2 ⋯𝑏19)
𝑇Is the result matrix containing 

the RFCs for row of image coordinates? We get from equation 

(1) as 

𝑉 = 𝑀𝐽 − 𝑅                - (2) 

Where V is the error matrix. 

Since the error to be minimum, first take the values of V to be 

zero for direct least square solution [1]. It is noticed that solving 

equation (2) normally is critical because the matrix size is large 

and hence to solve the above equation multiply both the sides 

of the equation by the inverse of M matrix in order to get square 

matrices which can be worked easily with in terms of taking 

inverse and hence the equation becomes 

0 = (𝑀𝑇𝑀)𝐽 − 𝑀𝑇𝑅 

Simplifying it further gives: 

𝐽 = (𝑀𝑇𝑀)−1𝑀𝑇𝑅. 

Inverse of 𝑀𝑇𝑀 is found by singular value decomposition 

method and then the rational polynomial coefficients are 

computed. 

One common difficulty in fitting nonlinear models is finding 

adequate starting values. A major advantage of rational 

function models is the ability to compute starting values using 

a linear least squares fit. To do this, p points are chosen from 

the data set, with p denoting the number of parameters in the 

rational model. For example, given the linear/quadratic model 

𝑦 =
𝐴0 + 𝐴1𝑥

1 + 𝐵1𝑥 + 𝐵2𝑥
2 

The RPC model forms the co-ordinates of the image point as 

ratios of the cubic polynomials in the co-ordinates of the world 

or object space or ground point. A set of images is given to 

determine the set of polynomial coefficients in the RPC model 

to minimize the error. 

2.4 Software Implementation 
The RFM model relates the ground coordinate to its 

corresponding image pixel coordinate using a ratio polynomial. 

For one image, the following ratio polynomial is defined 

 

Where (X, Y, Z) is the regularized control point ground 

coordinates, and (x, y) is the regularized image pixel 

coordinates. The polynomial Pi (i = 1, 2, 3, 4) consists of a third 

degree polynomial containing X, Y, Z, and has the same 

independent form of parameter. 

P1(y, x, z) = a0 + a1X + a2Y + a3Z + a4XY + a5XZ + a6YZ + 

a7X2 + a8Y2 + a9Z2 + a10Y2Z + a11X3 + a12XY2 + a13XZ2 + 

a14X2Y+ a15Y3 + a16YZ2 + a17X2Z + a18YXZ +  a19Z3 

P2(y, x, z) = b0 + b1X + b2Y + b3Z + b4XY + b5XZ + b6YZ + 

b7X2 + b8Y2 + b9Z2 + b10Y2Z + b11X3 + b12XY2 + b13XZ2 + 

b14X2Y+ b15Y3 + b16YZ2 + b17X2Z + b18YXZ +  b19Z3 

P3(y, x, z) = c0 + c1X + c2Y + c3Z + c4XY + c5XZ + c6YZ + 

c7X2 + c8Y2 + c9Z2 + c10Y2Z + c11X3 + c12XY2 + c13XZ2 + 

c14X2Y+ c15Y3 + c16YZ2 + c17X2Z + c18YXZ +  c19Z3 

P4(y, x, z) = d0 + d1X + d2Y + d3Z + d4XY + d5XZ + d6YZ + 

d7X2 + d8Y2 + d9Z2 + d10Y2Z + d11X3 + d12XY2 + d13XZ2 + 

d14X2Y+ d15Y3 + d16YZ2 + d17X2Z + d18YXZ + d19Z3 

 

Where   ai, bi, ci, di (i=  0,  ...,  19)  are  the  coefficients  of 

Pi(i=1,2,3,4)respectively. Where 

b0 =1and d0=1. 

In order to enhance the stability of the parameter solution, the 

regularized to between -1 and 1. Before running a linear 

algorithm to calculate parameters, it is important to normalize 

the coordinate data using scale factors and offsets. 

 

 

Where XI is the original coordinate, Xi
R (i=1, 2, ton) is the 

normalized coordinate. 

𝑟 =
(1 𝑍 𝑌 𝑋 …Y3X3) . (𝑎0𝑎1 … 𝑎19)

𝑇

(1 𝑍 𝑌 𝑋 …Y3X3) . (1 𝑏1  … 𝑏19)
𝑇
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𝑐 =
(1 𝑍 𝑌 𝑋 …Y3X3) . (𝑐0𝑐1 … 𝑐19)

𝑇

(1 𝑍 𝑌 𝑋 …Y3X3) . (1 𝑑1  … 𝑑19)
𝑇 

The observation error equations can then be formed as 

𝑣𝑟 = (
1

𝐁

𝑍

𝐁

𝑌

𝐁

𝑋

𝐁
… 

Y3

𝐁

X3

𝐁
−

r𝑍

𝐁
−

r𝑌

𝐁
… 

rY3

𝐁
−

rX3

𝐁
) . 𝐉 − 

𝑟

𝐁
 

𝑣𝑐 = (
1

𝐃

𝑍

𝐃

𝑌

𝐃

𝑋

𝐃
… 

Y3

𝐃

X3

𝐃
−

𝑟𝑍

𝐃
−

𝑟𝑌

𝐃
… 

rY3

𝐃
−

rX3

𝐃
) . 𝐊 − 

𝑐

𝐃
 

Or 

 

𝑣𝑟
 ′

 =   𝐁𝑣𝑟 = [ 1 𝑍 𝑌 𝑋 … Y3 X3 −  𝑟𝑍 − 𝑟𝑌 …− rY3

−  rX3] . 𝐉 − 𝑟   

𝑣𝑐
 ′  =   𝐃𝑣𝑐 = [ 1 𝑍 𝑌 𝑋 … Y3 X3 −  𝑐𝑍 − 𝑐𝑌 …− cY3

−  cX3] . 𝐊 − 𝑐   

 

Where    𝐁 = (1 𝑍 𝑌 𝑋 …Y3X3) . (1 𝑏1  … 𝑏19)
𝑇 

 𝐉 =  (𝑎0𝑎1 … 𝑎19 𝑏1  𝑏2  … 𝑏19)
𝑇 

 𝐃 = (1 𝑍 𝑌 𝑋 …Y3X3) . (1 𝑑1  … 𝑑19)
𝑇 

 𝐊 =  (𝑐0𝑐1 … 𝑐19 𝑑1  𝑑2  … 𝑑19)
𝑇 

Given n, the number of ground control points (GCPS) and the 

corresponding image points, the matrix form of Equation can 

be written as 

 

[

𝑣𝑟1

𝑣𝑟2

⋮
𝑣𝑟𝑛

]    

=

[
 
 
 
 
 
 
 
1

𝐁1
0 ⋯ 0

0
1

𝐁2
0 ⋮

⋮ 0 ⋱ 0

0 ⋯ 0
1

𝐁𝑛]
 
 
 
 
 
 
 

 .  

[
 
 
 
1 𝑍1 ⋯ 𝑋1

3 −𝑟1𝑍1 ⋯ −𝑟1𝑋1
3

1 𝑍2 ⋯ 𝑋2
3 −𝑟2𝑍2 ⋯ −𝑟2𝑋2

3

⋮ ⋮ ⋱ ⋮ ⋮ ⋱ ⋮
1 𝑍𝑛 ⋯ 𝑋𝑛

3 −𝑟𝑛𝑍𝑛 ⋯ −𝑟𝑛𝑋𝑛
3]
 
 
 

 .  𝐉 

−   

[
 
 
 
 
 
 
 
1

𝐁1
0 ⋯ 0

0
1

𝐁2
0 ⋮

⋮ 0 ⋱ 0

0 ⋯ 0
1

𝐁𝑛]
 
 
 
 
 
 
 

   .  [

𝑟1
𝑟2
⋮
𝑟𝑛

] 

Or 

 Vr =WrMJ - WrR 

Where 

M = 

[
 
 
 
1 𝑍1 ⋯ 𝑋1

3 −𝑟1𝑍1 ⋯ −𝑟1𝑋1
3

1 𝑍2 ⋯ 𝑋2
3 −𝑟2𝑍2 ⋯ −𝑟2𝑋2

3

⋮ ⋮ ⋱ ⋮ ⋮ ⋱ ⋮
1 𝑍𝑛 ⋯ 𝑋𝑛

3 −𝑟𝑛𝑍𝑛 ⋯ −𝑟𝑛𝑋𝑛
3]
 
 
 

    , 

R = [

𝑟1
𝑟2
⋮
𝑟𝑛

]  ,  Wr  =

[
 
 
 
 
 

1

𝐁1
0 ⋯ 0

0
1

𝐁2
0 ⋮

⋮ 0 ⋱ 0

0 ⋯ 0
1

𝐁𝑛]
 
 
 
 
 

 

Wr can be considered as the weight matrix for the residuals and 

consequently, the obtained normal equation is 

 

MTWr
2MJ - MTWr2R = 0 

 

If Wr is set to be identity matrix, the direct solution of RFCs 

can be represented as 

J = (MTM)-1MTR 

Similarly, for pixel K = (MTM)-1MTC 

The inverse of the matrix is calculated using singular value 

decomposition in the software implementation 

2.5 Results and data sets used 
Features in Google reference image and generated product 

were identified manually and following results are obtained. 

The four points at the corner and one point in the centre of the 

scene were selected in both Google reference image and in the 

IRS-1C  satellite LISS-III  scenes 96_49,96_55,96_62 as in 

figure 2 figure 3 and figure 4 respectively shown  after 

correction with RPC and same procedure is applied on IRS-1D 

data also analysed but in this paper only IRS-1C results are 

published due to similarity of results and sensor.  

The following points with Lat/Lon and the offset/error from the 

same point in Google reference image. The distance was 

measured with the accuracies in kilometres and shown in the 

table. Similarly for other scenes, same procedure was adopted 

and the results are shown in the table 2.1 

Table 2.1 RPC accuracy results of IRS-1C LISS-III sensor 

S

. 

N

o 

Se

nso

r 

Sat

ellit

e 

DO

P 

Req.

ID 

Path

/Ro

w 

Lati

tud

e 

Lon

gitu

de 

 

Radi

al 

erro

r 

offse

t in 

kilo

mete

rs 

1 LI
SS-

III 

IRS

-1C 

 1925
0131

1 

96/4

9 

30.4

593 

77.8

977 

0.77 

      30.2

729

8 

78.4

2433 

0.89 

      31.6
524

3 

77.3

2006 

0.95 

      30.9

335 

77.6

240 

0.76 

2 LI
SS-

III 

IRS

-1C 

041

020 

1925
0132

1 

96/5

5 

24.6
544

5 

75.6

0262 

0.76 

      23.9

699

2 

76.7

4979 
0.32 
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      24.5

144

7 

76.5

3457 

0.08 

      24.5

061 

76.3

277 
0.16 

3 LI

SS-

III 

IRS

-1C 

 1925

0133

1 

96/6

2 

14.8

410

4 

74.1

1629 

0.51 

      15.1
293

8 

73.9

3159 

0.57 

      15.8

516

1 

73.6

1255 

0.52 

      16.1

559

6 

74.6

2691 

0.79 

      16.1

354

6 

74.6

4037 

0.93 

The reverse RPC were also computed for the above scenes and 

the Mean and RMSE for line and sample are shown in this table 

Table 2.2 Mean and RMSE for (Lat, Long, Hei) to (line, 

Sample) Conversion 

S

. 

N

o 

Se

ns

or 

Sa

tel

lit

e 

D

O

P 

Re

q.I

D 

Pat

h/

Ro

w 

Lin

e 

Mea

n 

Lin

e 

RM

SE 

 

Sam

ple 

Mea

n 

Sam

ple 

RM

SE 

1 LI

S

S-

III 

IR

S-

1C 

04

10

20 

192

501

311 

96/

49 

0.26

080

043 

0.51

068

623

4 

0.17

455

464

4 

0.41

779

737

2 

2 LI
S

S-

III 

IR
S-

1C 

04
10

20 

192
501

321 

96/

55 

0.21
510

863

8 

0.46
379

805

8 

0.18
946

404

7 

0.43
527

468 

3 LI
S

S-

III 

IR
S-

1C 

04
10

20 

192
501

331 

96/

62 

0.43
225

329

4 

0.65
660

197

1 

0.45
635

999

9 

0.67
554

422

4 

 

 

Fig. 2 RPC was applied to raw 1C_96_49 scene and result 

visualized in QGIS viewer 

 

Fig. 3  RPC was applied to raw 1C_96_55 scene and result 

visualized in QGIS viewer 

 

Fig .4  RPC was applied to raw 1C_96_62 scene and 

result visualized in QGIS viewer 

 

2.5 CONCLUSION 
Through RFM generated RPCs based on LOS model and  

validated with known GCP’s on IRS-1C/1D data and future 

scope is  same methodology can be implemented  for other 

sensors of IRS-1C/1D. 
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