
International Journal of Computer Applications (0975 – 8887)

Volume 185 – No. 39, October 2023

23

Implementing Flutter Clean Architecture for Mobile

Tourism Application Development

Ristu Aji Wijayanto
University of Technology Yogyakarta

Yogyakarta, Indonesia

RR. Hajar Puji Sejati
University of Technology Yogyakarta

Yogyakarta, Indonesia

ABSTRACT

The rapid advancement of technology has been a catalyst for

several innovative developments across diverse disciplines.

The tourism sector is being actively promoted as one of the

fields of focus. An increasing number of vendors are currently

exploring the development of applications that have the

capability to present comprehensive information regarding

tourism sites. One issue arises when several vendors engage in

application development, as the programs frequently encounter

interruptions and upgrades are subject to prolonged durations.

Despite the implementation of maintenance practices, the code

remains unreadable, exhibiting deficiencies in both its overall

pattern and the organization of individual units of code. In the

context of existing applications, there exist some limitations,

like the absence of enhancements in the authentication

functionality and the non-functionality of the maps feature.

This study aims to explore the principles of designing

applications with a well-organized structure and implementing

clean architecture as a structural pattern to enhance the

scalability and maintainability of systems. The implementation

of a clean architecture facilitates the long-term development

and targeted testing of applications. By implementing a

segregation of data layers, domains, and clean presentation

architecture, the process of categorizing unit code based on its

functionality will be facilitated. By employing Test-Driven

Development (TDD), a software development approach that

prioritizes testing over producing code units, the frequency of

errors can be significantly reduced.

General Terms

Clean Architecture, E-Tourism, LCOV

Keywords

Mobile Application, Tourism, Flutter, State Management, Unit

Testing

1. INTRODUCTION
The concept of Smart Tourism is closely bound up with the use

of digital technology, since it enables organizations to

efficiently access an extensive range of information resources.

In contemporary businesses and institutions, the integration of

technology has become universal. As a result, a location is able

to improve its overall visitor experience by using technology

and social components in a synergistic manner [1]. According

to statistics obtained from the Central Statistics Agency (BPS),

it is evident that there has been a consistent upward trend in

the number of tourist arrivals in Indonesia. According to

available data, the quantity of international visitor arrivals in

Indonesia surpassed 7 million visits in 2010 and shown a

consistent upward trend until 2019, when the number exceeded

16 million visits [2]. Tourism is a highly popular destination

for both domestic and international travelers, owing to its

special attraction and appeal. In 2019, Bantul Regency, a

constituent of the Special Region of Yogyakarta, documented

over 250 tourism spots and attracted a visitor count over 5

million [3]. The proliferation of tourism locations has the

potential to significantly contribute to the area economy. The

use of the E-Tourism idea is promoted as a method for

disseminating information via mobile applications. E-Tourism

refers to the use of technology for the purpose of disseminating

information and facilitating communication in order to attract

tourists. This is achieved by the provision of accessible media

services to consumers [4]. However, the advancement of this

technology is now limited by challenges related to scalability

and application maintenance. The creation of applications is a

significant challenge, as it requires continuous adaptation to

market demand, technological advancements, competitive

business landscapes, and organizational priorities [5].

The undeniable influence of mobile technology applications is

seen across several demographics, including millennials,

explorers, and experimental travelers. Despite the increasing

popularity and significance of mobile applications, a study

revealed that over 50% of travelers exhibited a lack of interest

in utilizing such programs for their travel purposes [6]. The

development and rapid advancement of mobile technology

have significantly transformed the human experience. Mobile

devices are utilized by individuals for the purposes of engaging

in activities such as reading news articles, accessing social

media platforms, and playing games. In addition to this,

numerous organizations and institutions employ mobile

devices as a means of promotion, in response to the rapid

expansion of smartphone users. Mobile applications are

executed on portable handheld devices that are compact, user-

friendly, and capable of being accessed from any location [7].

Thus, mobile applications are regarded as effective platforms

for advertising in the sector of tourism [8]. The mobile e-

tourism application is designed to offer a range of beneficial

functionalities, including access to event details, the ability to

locate tourist attractions, curated lists of recommended

destinations, interactive maps, and the option to save preferred

locations for future reference. These elements aim to enhance

the whole holiday experience by providing users with

convenient tools and resources.

This research identifies and utilizes a scalable and maintainable

mobile tourist application development technique. Flutter clean

architecture is used to construct this research application. An

architecture design strategy that helps organize, maintain, and

test application development across time is needed. In this

research, a clean development architecture that leverages

dependency inversion to segregate high-level and low-level

components is preferable. This architecture also promotes

software flexibility and maintainability [9]. Clean architecture

guides code structure and layer dependencies. Clean

architecture in flutter includes data, domain, and presentation

layers. Since each layer has separate duties, structure separation

makes the codebase modular and manageable [10].

Development with a clean architecture requires dart and flutter

International Journal of Computer Applications (0975 – 8887)

Volume 185 – No. 39, October 2023

24

state management and research support. It generates a simple

dart class, using optional arguments, a factory, an interface, and

dart to write its functions. Thus, programmers' familiar

language and usability make it suitable for complicated system

implementation [11]. Application system design requires code

knowledge and appropriate architecture. Continued

development is planned.

2. CLEAN ARCHITECTURE
In general, develop an application using flutter can be uses a

single code base. Otherwise, there are a lot of architecture

design patterns that programmers use for Flutter. They are all

different ways of managing an app's state. The goal of a design

pattern is to provide a clean standard for how our work will be

organized, how the components will interact with each other,

separate layers so that a change in one is transparent to the

others, and most importantly, promote the reuse of blocks of

code [12]. This can be done by using a clean architecture that

separates components separately and has their own

responsibilities, according to predefined logic and flow. Even

so, clean architecture is a relative architecture, it does not have

a fixed standard, mainly because each state management has its

own clean architecture suitability, but still has the same

workflow of separating business logic for easy testing and

maintainable applications.

Fig. 1 Flutter Clean Architecture Folder Structure

Clean architecture in the context of Flutter typically consists of

three fundamental layers: the data layer, the domain layer, and

the display layer, which are organized within a features folder

[10]. The clean architecture employed in this study is founded

on the author's assumptions and afterwards verified with the

relevant stakeholders. This study involves a collaboration with

the Head of Marketing at the Bantul Regency Tourism Office,

who serves as the primary stakeholder and supplier of data. The

primary objective of this architectural design is to achieve a

clear separation of concerns and enhance scalability. According

to the source cited as [13], the separation of a system into layers

that protect business logic from platform-specific

implementation can uphold three essential concepts in Software

Engineering. These principles include External Modules

Framework Agnosticism, Testability, and Isolation.

2.1 Framework Agnosticism
The continual evolution of the mobile application features a

design architecture that enables it to operate autonomously

without reliance on any particular framework. This is achieved

via the implementation of a layered design approach. The

application's business logic operates autonomously, without

reliance on other libraries or frameworks. Within the realm of

Flutter, the business layers of the application are implemented

only in Dart, devoid of any cognizance regarding their

integration within a Flutter application.

The achievement of increased portability is realized via the

development of business logic that is not reliant on any

particular framework. This methodology facilitates the

utilization of Dart code in web applications and its

subsequent transformation into JavaScript [14]. When

developers decide to transition from Flutter to an alternate

framework such as React Native, they may quickly convert

the framework-agnostic business logic to JavaScript,

enabling the reuse of both the code and the logical flow of

the application.

Furthermore, by employing a framework-agnostic

architectural model, frameworks may be utilized as mere

instruments, rather than occupying a central role inside the

application, as the business logic of the application will not

contain any code specific to the framework [13]. However,

the application ensures that the framework stays separate

from the business logic levels, offering just interfaces and

abstract classes. By maintaining a pure Dart layer within the

application, it would offer barrier to the frequent changes

that occur at the framework level.

2.2 Testability
Testing is flexible using Flutter's Clean Architecture.

Business logic is clearly separated from UI and database

components, making testing easier [13]. Business rules and

the UI can be tested separately, simplifying testing. The

inheritance of abstract classes in the core layer simplifies

dependency replication during testing. This allows

independent, precise evaluation of business rules regardless

of implementation. Separate tests for authentication rules

can be run independently of the authentication

implementation. Software product development requires

application testing. Flutter has unit, widget, and integration

testing. Unit tests check one function or method under

different scenarios. Integration tests complete apps or parts

to ensure widgets and services work. Automatic functional

testing verifies business logic implementation [15].

2.3 Isolation

The Clean Architecture is a system where the business layer

is at the center, isolated from the implementation, allowing

for the swapping of outer modules without affecting the

business logic. This structure is structured like an onion,

with inner layers consisting of more abstract parts and outer

layers being more verbose and implementation-specific.

Data and Platform layer is the outermost layer, consisting of

platform-specific implementations of enterprise and

business logic [13]. It includes the GUI, classes that interact

with the iOS or Android platform, and classes that interact

with databases locally and through the web [15].

Repositories in this layer implement interfaces from the

Domain layer, which are injected into the inner layers and

used polymorphically to abide by dependency rules.

Fig. 2 Flutter Clean Architecture Layer Diagram

International Journal of Computer Applications (0975 – 8887)

Volume 185 – No. 39, October 2023

25

Application layer, consisting of Flutter widgets, widget states,

event handlers, view controllers, presenters, and navigation

controllers, handles all user events issued from the GUI and

redirects them to their appropriate use cases in the inner layers.

The controllers either update the UI or pass it to the presenter,

which executes the appropriate usecases and prepares the result

appropriately for the UI [13]. In summary, the Clean

Architecture is a system where the business layer is at the

center, with the UI and other elements being outer modules that

do not impact the business logic.

Fig. 3 Flutter Clean Architecture Workflow

The Domain layer is a crucial part of an application

architecture, divided into two parts. The outer part is the

business rules layer, which contains the main business logic and

orchestrates data flow throughout the application [16]. It should

not be aware of any outer layers or platform, and can use

language-specific libraries like RxDart or the Dart language.

The domain layer also contains repositories, interfaces that

outline behavior needed by usecases. These repositories allow

for dependency injection from the outermost layer into the

business rules layer, allowing usecases to call methods through

polymorphism. The inner layer, the enterprise rules layer, is

comprised of enterprise entities used throughout the

application. These entities only interact through usecases that

connect them, and are unaware of any other layer. The only

reason to modify this layer is if enterprise rules change, as it can

be used without being aware of the platform. Inner layers are

neither aware of nor dependent on outer layers, but both are

aware of and dependent on inner layers. Outer layers represent

the concrete mechanisms by which business rules and policies

operate, while inner layers are completely independent from

implementations. This rule is vital for the success of the

architecture, as inner layers are not aware of any classes,

functions, names, libraries, etc., present in outer layers [13].

3. RESULT AND DISCUSSION

3.1 Assumption and Hypotheses
The program will provide users with data in the form of

informative content regarding various tourist attractions,

including comprehensive details about each attraction.

Furthermore, the incorporation of clean architecture in the

development process of Bantul Tourmate would enhance the

ease of application maintenance and testing for developers. The

hypothesis of this study proposes that the Bantul Tourmate

application can effectively present information about tourist

attractions in the Bantul area through the implementation of

clean architecture and the utilization of unit testing within the

project.

3.2 Implementation
During this phase of implementation, the researchers will

explain the process of implementing a clean architecture, as

seen in (Fig. 1), by utilizing the Flutter framework and

employing GetX state management for data and UI control. The

initial phase of implementation involves organizing the folder

structure and dividing it according to the levels described in the

previous section.

Fig. 4 Main Layer Clean Architecture

The provided visual representation (Fig. 4) illustrates the clean

architecture, which comprises two primary components: the

feature layer and the infrastructure layer.

3.2.1 Infrastructure Layer
Within the context of Clean Architecture, the Infrastructure

Layer serves as a boundary between the internal core, which

encompasses the business logic and entities, and the external

environment. The major objective is to ensure the integrity of

the application's core by keeping it free from irrelevant

variables, hence facilitating its maintenance, testing, and

adaptability to evolving technologies. This layer additionally

facilitates the application's high modularity and pluggability,

hence enabling the seamless replacement or update of external

dependencies while minimizing any adverse effects on the core

functionality.

International Journal of Computer Applications (0975 – 8887)

Volume 185 – No. 39, October 2023

26

Fig. 5 Layer Infrastructure layer contains core folder or

building block for dependencies

3.2.2 Feature Layer
The feature layer is a component within the program that serves

to organize and separate distinct features. It specifically

separates components such as data, domains, controller, and

presentation. The features layer comprises of several

architectural layers, including controller, data, domain, and

presentation, which are designed based on clean architectural

principles. These layers serve the purpose of dividing the code

base into separate components.

3.2.2.1 Data Layer
This layer is responsible for the management of datasources,

repositories, and models. The system is responsible for

managing the retrieval and storage of data.

Fig. 6 Three folders in the Data Layer allow network and

local data access and administration.

1. Datasources

Data sources establish a connection between the

application and various data repositories, such databases,

application programming interfaces (APIs), or local

storage. They are responsible for managing data retrieval

and storage processes.

2. Models

This layer is responsible for the management of data

sources, repositories, and data models. The system is

responsible for the retrieval and storage of data. The

model consists of two components, specifically the answer

and request. In the response layer, it is necessary to

establish the definition of variables that are reliant on data

gained from the API. Meanwhile, the request layer

encompasses a model that is used as a parameter for

transmitting to the API in order to acquire a response.

3. Repositories

The function of this component is to facilitate the

exchange of information between the presentation,

domain, and data layers. The system manages user input,

directs it to the domain layer's business logic, facilitates

data transfers, and governs the flow of information,

encompassing navigation and routing. It effectively

coordinates the many architectural components of an

application.

3.2.2.2 Domain Layer
For maintainable and scalable applications, the domain layer is

crucial. Without disrupting other system components,

developers can adjust and improve the application's functioning

by centralizing the important business logic under this layer.

Code reuse, testability, and business adaptability are improved

by this architectural approach.

Fig. 7 The domain layer has entity, repositories, and use

case folders. The layer encapsulates the data layer model.

1. Entities

Entities are essential elements or abstract ideas inside the

context of business. They contain both data and behavior

that connects with a certain concept.

2. Repositories

Repositories are conceptual structures that establish the

formal agreement for accessing and storing data

pertaining to the domain entities. The abstraction of data

storage and retrieval is employed to ensure the decoupling

of the domain layer from the actual data source.

Repositories facilitate efficient data retrieval and

contribute to the preservation of the principle of separation

of concerns.

3. Usecases

Use cases are a means of representing discrete actions or

procedures that an application has the capability to

accomplish. Software components are responsible for

encapsulating the essential business logic necessary to

accomplish a certain job or objective.

3.2.2.3 Presentation Layer
The Presentation Layer functions as the primary interface via

which users access the program, and their initial perceptions of

the application are frequently shaped by the quality of

interaction facilitated by this layer. Thus, it is crucial to provide

intuitive and captivating visual elements and interactive

features within the Presentation Layer.

International Journal of Computer Applications (0975 – 8887)

Volume 185 – No. 39, October 2023

27

Fig. 8 All folders in the presentation layer display domain

and data layer data

1. Contents

Within this particular layer, the component is responsible

for the processing of data received from the controller.

Subsequently, it presents this processed data in the form

of a user interface (UI).

2. Widgets

The Widget is charged with the task of presenting the

processed display on the levels of information and

displays.

3. Screens

The screen layer primarily receives data that has been

processed by the content layer, which functions as a user

interface (UI). This data is further refined at the screen

layer to provide more particular information.

3.2.2.4 Controller Layer
The controller assumes a crucial position within the broader

framework of an application as it assumes responsibility for

managing user input, facilitating interactions between the

model and view components, managing UI-related logic, and

assuring the application's responsiveness and maintainability.

The promotion of a clear separation of concerns facilitates the

development of a codebase that is characterized by modularity

and testability

3.3 Testing Method
The utilization of clean architecture is closely aligned with a

development approach that prioritizes the preservation of code

maintainability, scalability, and testability. The process of

testing serves as a valuable tool for assessing the functionality

and performance of our code. Flutter encompasses three

commonly utilized types of testing: unit testing, widget testing,

and integration testing. Each test possesses unique capabilities.

The TDD (Test-Driven Development) approach was employed

by the researchers. Test-driven development (TDD) is a

component of agile development. However, academics

employing this approach do not primarily emphasize agile

development itself, but rather its execution. TDD also

constitutes a component of the implementation process for

application development. Test-driven development (TDD) is a

software development approach in which unit tests are written

before the corresponding unit code. The primary objective of

TDD is to provide a systematic and quantifiable development

process that yields well-functioning systems that are

straightforward to maintain. LCOV is also utilized in the

process of testing. LCOV is a valuable tool that facilitates

comprehensive coverage of testing outcomes and presents them

in a user interface format, hence enhancing the visibility of the

extent to which our unit code is functioning.

3.3.1 User Interface

3.3.1.1 Login Screen
The Login page serves as the primary mechanism for verifying

the user's identity, determining if they have registered

previously. Additionally, it offers a create account functionality

for users who do not possess an account.

Fig. 9 Login Screen Bantul Tourmate Application

3.3.1.2 Home Screen
The homepage will exhibit the user's name and salutation,

along with their location and profile picture. In addition, there

are numerous features accessible, including explore, event,

weather, and support functionalities. In addition, there are

suggested destinations available to assist users who may be

uncertain in selecting a tourism location.

Fig. 10 Home Screen Bantul Tourmate Application

3.3.1.3 Explore Screen
A page that displays various tourist attractions which are the

main features in the application. This feature makes it easier for

users to find interesting tourist attractions that suit their tastes.

International Journal of Computer Applications (0975 – 8887)

Volume 185 – No. 39, October 2023

28

Fig. 11 Explore Screen Bantul Tourmate Application

3.3.1.4 Profile Screen
Users can view their entire name, username, email, and city on

their profile. Settings includes an account logout button.

Fig. 12 Profile Screen Bantul Tourmate Application

3.3.1.5 Maps Screen
The page includes geographical markers and provides

information about various areas using maps.

Fig. 13 Maps Screen Bantul Tourmate Application

3.3.1.6 Bookmark Screen
The bookmark page shows data about favorite tourism

attractions to help people plan trips.

Fig. 14 Bookmark Screen Bantul Tourmate Application

3.3.2 LCOV Experimental Testing
The experiment was conducted utilizing the previously

outlined methods. LCOV provides a thorough summary of all

tests, encompassing unit tests, widget tests, and integration

tests. The author presents information using tabular data

derived from tests conducted on the key features, displaying the

collected results in the following manner.

Table 1 Compilation of unit testing outcomes categorized

by characteristics utilizing LCOV

Featured Total Case Result

Auth 164 93,57%

Maps 78 100%

Profile 22 98%

International Journal of Computer Applications (0975 – 8887)

Volume 185 – No. 39, October 2023

29

Bookmark 23 100%

Home 119 97,6%

Total 406 97,83%

According to the data presented in (Table 1), the LCOV report

indicates that a total of 406 successful tests were conducted,

encompassing integration testing, unit testing, and widget

testing. The ultimate outcome achieved was 97.83% when

measured as the proportion of tasks executed accurately.

Despite the imperfect nature of the acquired results, the

implementation of this clean architecture has proven to be

effective in terms of functionality, and the anticipated interface

is suitable.

Fig. 15 Classification of Code eligibility indicator on

LCOV

The test percentage achieved a value of 97.83% based on the

given parameters, placing it in the high category. The findings

are highly gratifying since they fall into the green category,

signifying that the code is functioning correctly and is prepared

for utilization.

3.3.3 Questionnaire Data Sampling
Taking questionnaires to programmers was carried out

randomly with programmers who were in accordance with their

profession and were related to using Flutter.

Table 2 List of programmer questionnaire questions

No Questions Answer

1 Does adopting Clean Architecture aid in

isolating business logic from

infrastructure code better than not using

Clean Architecture?

Yes/No

2 Does the adoption of Clean Architecture

allow for easier code maintenance

compared to not utilizing it?

Yes/No

3 Does applying Clean Architecture demand

more time and effort in the initial

development compared to not using it?

Yes/No

4 Can code be tested more effectively with

Clean Architecture than without it?

Yes/No

5 Does the adoption of Clean Architecture

considerably reduce the complexity of

your project compared to not utilizing it?

Yes/No

Table 3 Result of Questionnaire

User Q1 Q2 Q3 Q4 Q5

Joko Yes Yes No Yes No

Herlambang Yes Yes Yes Yes Yes

Nurjaman No Yes Yes Yes Yes

Difa No No No Yes No

Retno Yes Yes Yes Yes No

From Based on the acquired results, developers predominantly

opt for the affirmative choice from the range of responses

between yes and no. Based on these findings, the use of clean

architecture can enhance the quality of code development by

promoting tidier and more organized code structure, as well as

facilitating regular and systematic testing.

3.4 Analysis
The clean architecture pattern is popular. Clean Architecture

has been shown to improve code understanding, scalability, and

application maintainability. This application uses TDD to

arrange its architecture. The architecture has three layers: data,

domain, and display.

Data layer testing verifies application-server communication.

Data validation and user interface business logic control are

handled by the domain layer. Finally, the presentation layer is

tested to ensure the displayed information satisfies

expectations.

Several auxiliary modules are checked, including the repository

module, which verifies the application-server and data layer

connections. Module controller testing checks the controller's

operation, which is the application's business logic and

connects the user interface to the repository's data. Unit test

results showed 97.83% passing.

To analyze program authoring and testing efficacy after

implementing clean architecture, the author collected

questionnaire data from 5 proficient programmers who had

expertise with Flutter or mobile apps. The data showed 17 yes

and 8 no answers to 5 questions from 5 developers. This shows

that it can help developers improve code quality, manage

applications, and test them easily.

4. CONCLUSION
The Bantul Tourmate initiative serves as a means to facilitate

the transition towards e-governance and to bolster the

development of Bantul city as a smart city. The Bantul

Tourmate program offers a range of features that assist users,

particularly travelers, both local and international, in

discovering tourist attractions within Bantul Regency. This task

is facilitated by the presence of several features, including but

not limited to tourism exploration, event information, maps,

and more supportive functionalities. The adoption of Clean

Architecture has emerged as a prevalent software development

paradigm, which has been effectively applied. Empirical

evidence, obtained through the utilization of Test-Driven

Development and LCOV methodologies for test outcome

visualization, indicates a success rate of 97.83% for unit tests,

widget tests, and integration tests. According to the Indicator,

the application reaches a state of moderate development,

indicating its potential to transition into the production category

with continuous maintenance. The successful execution of

clean architecture is seen in its ability to effectively present the

intended data. In the context of application development, there

is an expectation that the implementation of Lean UX

methodologies will enable the delivery of a user interface that

optimizes the user or client experience. Additionally, it is

desirable for the application to be accessible to a wide range of

users.

5. REFERENCES
[1] A. S. Dasuki, M. Djamin, and A. Y. Lubis, “The strategy

of photovoltaic technology development in Indonesia.”

[Online]. Available: www.elsevier.com/locate/renene

[2] A. Mun’im, “PENYEMPURNAAN PENGUKURAN

KONTRIBUSI PARIWISATA: ALTERNATIF

PERCEPATAN PERTUMBUHAN EKONOMI

INDONESIA Improvement on the Measurement of

Tourism Contribution: An Alternative to Accelerating

Indonesia’s Economic Growth,” 2022.

[3] D. Widiyastuti et al., “Analisis Tingkat Perkembangan

Destinasi Wisata Kabupaten Bantul, Daerah Istimewa

International Journal of Computer Applications (0975 – 8887)

Volume 185 – No. 39, October 2023

30

Yogyakarta,” Spatial Development Journal, vol. 02, no.

01, p. 2023.

[4] S. Saniati, M. A. Assuja, N. Neneng, A. S. Puspaningrum,

and D. R. Sari, “Implementasi E-Tourism sebagai Upaya

Peningkatan Kegiatan Promosi Pariwisata,” International

Journal of Community Service Learning, vol. 6, no. 2, pp.

203–212, Jul. 2022, doi: 10.23887/ijcsl.v6i2.45559.

[5] C. Chen, R. Alfayez, K. Srisopha, B. Boehm, and L. Shi,

“Why is it important to measure maintainability and what

are the best ways to do it?,” in Proceedings - 2017

IEEE/ACM 39th International Conference on Software

Engineering Companion, ICSE-C 2017, Institute of

Electrical and Electronics Engineers Inc., Jun. 2017, pp.

377–378. doi: 10.1109/ICSE-C.2017.75.

[6] N. Alif Amri Nik Hashim, N. Abu Bakar, E. Noreni

Mohamad Zain, N. Dalila Mat Yusoff, and N. Hafizah

Muhammad, “Travel Mobile Applications Technology:

Examining the Reliability and Validity of Instruments,”

International Journal of Advanced Science and

Technology, vol. 29, no. 6s, pp. 3882–3885, 2020.

[7] M. R. Islam and T. A. Mazumder, “Mobile Application

and Its Global Impact,” 2010. [Online]. Available:

https://www.researchgate.net/publication/308022297

[8] X.-S. Yang and Institute of Electrical and Electronics

Engineers, Proceedings of the World Conference on Smart

Trends in Systems, Security and Sustainability (WS4

2020) : July 27-28, 2020, virtual conference.

[9] D. Esteban, S. Rodriguez, A. E. Rojas, H. Florez, and D.

Sanchez, “Towards a Clean Architecture for Android

Apps using Model Transformations.” [Online]. Available:

https://developer.android.com/jetpack

[10] “Flutter — Clean Architecture. Clean Architecture is a

software design… | by Samra Khan | Medium.”

https://medium.com/@samra.sajjad0001/flutter-clean-

architecture-5de5e9b8d093 (accessed Sep. 11, 2023).

[11] I. Firman Ashari, M. Fazar Zuhdi, M. Tyaz Gagaman, and

S. T. Denira, “Kolepa Mobile Application Development

Based on Android Using SCRUM Method (Case Study:

Kolepa Minigolf and Coffe Shop),” 2022. [Online].

Available: http://jurnal.polibatam.ac.id/index.php/JAIC

[12] S. Y. Ameen and D. Y. Mohammed, “Developing Cross-

Platform Library Using Flutter,” European Journal of

Engineering and Technology Research, vol. 7, no. 2, pp.

18–21, Mar. 2022, doi: 10.24018/ejeng.2022.7.2.2740.

[13] S. Boukhary and E. Colmenares, “A clean approach to

flutter development through the flutter clean architecture

package,” in Proceedings - 6th Annual Conference on

Computational Science and Computational Intelligence,

CSCI 2019, Institute of Electrical and Electronics

Engineers Inc., Dec. 2019, pp. 1115–1120. doi:

10.1109/CSCI49370.2019.00211.

[14] “Dart overview | Dart.” https://dart.dev/overview

(accessed Sep. 12, 2023).

[15] N. Kuzmin, K. Ignatiev, and D. Grafov, “Experience of

Developing a Mobile Application Using Flutter,” 2020,

pp. 571–575. doi: 10.1007/978-981-15-1465-4_56.

[16] “Flutter Clean Architecture [1]: An Overview & Project

Structure - DEV Community.”

https://dev.to/marwamejri/flutter-clean-architecture-1-an-

overview-project-structure-4bhf (accessed Sep. 13, 2023).

IJCATM : www.ijcaonline.org

