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ABSTRACT
The Internet of Things (IoT) has been increasingly developed
worldwide for the last five years. The need for businesses to use
Computer Vision and Machine Learning in their IoT devices has
grown significantly. These demands can come from using IP cam-
eras, webcams, or anything requiring camera modules. People must
transfer data from these devices to different personal computers
(PCs) or mobile devices, especially in real-time with low latency, to
get the information on time. In this article, we propose an architec-
ture that helps businesses make IoT devices that can stream video
and process the data in real-time to satisfy their demands using
Edges AI Devices. The architecture is easy to implement and strong
to serve. It is a flexible and secure architecture, which has already
worked with some accelerators, having high speed and accuracy.
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1. INTRODUCTION
In recent years, we have witnessed the rise of trends using IoT de-
vices in various fields. The number of businesses using IoT tech-
nologies has increased from 13 percent in 2014 to about 25 percent
today, along with the number of IoT-connected devices that tend
to be 43 billion 2023 [1]. IoT may become one of the most crucial
things in the future because of its usefulness and capabilities. Many
companies provide solutions to stream video from end to end in the
market, making real-time streaming closer to users. However, the
previous solutions are more suitable for medium and large-scale
companies due to their expensive cost. Therefore, it is necessary to
have an architecture for individuals and small companies to access.
This paper proposes real-time processing with camera architecture
to enable browsers to communicate “Peer-to-Peer” (P2P) without

installing third-party plugins. The proposed system is based on
Web Real-Time Communication (Web RTC), a web Application
Programming Interface (API) developed by the World Wide Web
Consortium. Thanks to OpenCV, complicated tasks such as object
detection, classification, and recognition can be performed.
The main contribution of this paper is to propose an architecture
that is easy to set up to solve real-world problems with high ac-
curacy and speed. The operation speed of the proposed architec-
ture must be over 30 frames per second. Previously, IoT Camera
was typically used with cloud computing because of the resource
and energy-constrained edge devices, while video processing tasks
require much power and resources. Our architecture may be the
solution for small companies and individuals who need a fast and
reliable real-time image processing camera equipped with machine
learning algorithms. Besides, the proposed system can be employed
in portable, portable, low-power wearable devices.
The structure of this article is organized as follows. Section 2 pro-
vides the knowledge-related work concerning the WebRTC, Real-
Time Streaming Protocol (RTSP), and the accelerators used to test
with our system–Google Coral and Intel Neural Compute Stick 2.
Section 3 describes the components of our architecture in detail.
Section 4 presents the experimental result tested with Google Coral
and Intel Compute Stick. Finally, Section 5 concludes our paper.

1.1 Web RTC
Since its first appearance in 2011, Web RTC has always claimed
to be a revolutionizing way that helps users communicate, both
in the consumer and enterprise world [3]. WebRTC has attracted
many researchers. A simple search with the keyword “WebRTC”
in Google Scholar found nearly 39 thousand results. That means
there are nearly 3 thousand studies related to WebRTC per year.
WebRTC is written in JavaScript so that it can be used and sup-
ported by almost all currently used browsers. Web RTC, as it is
called, can support video streaming in real-time context with a P2P
connection, making it one of the fastest solutions with zero latency
and having a high-quality image. Web RTC, with its capabilities,
can also be applied in many applications, such as streaming from
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Fig. 1. Web RTC Model [2]

the camera or sharing the screen in a native web application. How-
ever, although various papers are using WebRTC as their solution
to stream video, to our knowledge, no current research has com-
bined AI with image processing directly on stream (y nay nen dua
len introduction). Figure 1 shows operations of WebRTC.
It is shown that WebRTC handles only the media stream between
two browsers/clients. A protocol named “Signaling” establishes a
P2P connection to transfer media streams directly from end-users
to end-users without a server to stream as fast as possible. One
of the main problems Signaling has to resolve is to overcome the
Network Address Translator (NAT) to get the correct IP with the
correct port. In this situation, the TURN and STUN servers will
be implemented to access each user, which can act to establish the
peer-to-peer connection.
WebRTC provides three main APIs, including getUserMedia(),
RTCPeerConnection(), and RTCDataChannel(). In this situation,
the getUserMedia() API is to get access to the camera and micro-
phone. After this step, IP and port are collected to create connec-
tions despite NATs or firewalls. When the P2P connection is con-
stituted, the other two APIs are called to share the media stream.
On the way to decide whether to choose WebRTC or other tech-
nologies for our architecture, following Bart Jansen and his part-
ners, we found that WebRTC consumes a reasonable bandwidth as
presented in Figure 2. This result is acceptable for most areas glob-
ally, with an average bandwidth of 31.95 Mbps with mobile de-
vices and 74.32 Mbps with fixed broadband, as shown in Figure 3.
Therefore, WebRTC is the possible solution for video transferring
peer-to-peer, even within a small group of end-users.
Performance is one of the main things that needs to be investigated.
In this perspective, WebRTC shows impressive results. Figure 4
shows the experimental results from four Spanish researchers. In
that research, they create a new user every second to test the latency
if 1–200 concurrent users join to view. The result confirms the real-
time capability of WebRTC (less than 500ms) with a size of 180
simultaneous users. WebRTC is an excellent solution for real-time
media streaming.

 

Fig. 2. Average data rates for 2, 3, and 4 people meshed calls [4]

 
Fig. 3. Average mobile and fixed broadband download and upload speeds
worldwide as of January 2020 (in Mbps) [5]

 
Fig. 4. End-to-End Latency vs. Number of clients [6]

1.2 RTSPs
The media is encoded with the h264 standard to transfer files be-
tween users and then transmit on the line with Real-Time Stream-
ing Protocol (RTSP) as shown in Figure 5. RTSP is a protocol that
provides essential functions to control the video’s flow and is com-
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bined with the Real-Time Transport Protocol (RTCP) to distribute
the media flow.

 
Fig. 5. RTSP Model [7]

RTSP is commonly used in camera devices (IP cameras or secu-
rity cameras) to transfer media to a server or another client. As it
was born to be a real-time streaming protocol, RTSP is suitable for
use cases in many fields. It is widely used in IP cameras, IoT, and
mobile devices. Although RTSP is easy to use and implement, it
is not natively supported by HTML5 browsers. Hence, in our ar-
chitecture, we must use WebRTC to handle and display the RTSP
stream on the browsers. With the help of WebRTC, we can display
the RTSP stream in real-time with close to zero latency.

1.3 Google Coral
Developed by Google, Coral is a complete toolkit for developers to
build products with local Artificial Intelligence (AI) [8]. It consists
of:

—Dev Board: a single-board computer with a removable system-
on-module featuring the Edge Tensor Processing Unit (TPU).

—USB Accelerator: an Edge TPU USB compatible with Windows
10, macOS, and Debian Linux (including Raspberry Pi) host
computer.

—Mini PCIe Accelerator, M.2 Accelerator A+E Key, M.2 Accel-
erator B+M Key: PCIe devices that enable easy integration of
the Edge TPU into existing systems; support Debian Linux host
computer.

The Edge TPU (Tensor Processing Unit) coprocessor is the whole
Coral ecosystem’s heart. A TPU is an AI accelerator application-
specific integrated circuit explicitly built for neural network opera-
tion and particularly compatible with the Google TensorFlow deep
learning framework. The Edge TPU is designed for a high volume
of low-precision computation (as low as 8-bit precision), which au-
thorizes an inferencing speed of 4 trillion operations per second
while only being powered by a supply of 2 watts.
The coral USB accelerator is chosen because it is compatible with
Debian Linux and other popular operating systems such as Win-
dows 10 and macOS. Besides, being powered by a USB port makes
it easier for Google Coral to attach to any edge devices or PC ma-
chine, while the other accelerators with an M.2 connector make it
more difficult. A USB 3.0 port preferably powers the USB accel-
erator to get the best result, as USB 2.0 is still compatible, but the
speed is much slower.
The USB accelerator, like every other Coral brand device, supports
only the TensorFlow deep learning framework. Thus, it is easier for
developers, especially those with TensorFlow experience, to build

and deploy deep learning models to their systems. Besides, with ev-
erything wrapped in one enormous hardware-software ecosystem,
Coral products are well-optimized and perform excellently in infer-
encing speed. In their “comfort zone” (which means running deep
learning models trained by TensorFlow, quantized to 8-bit preci-
sion, using TensorFlow Lite APIs), Coral Edge TPU devices can
perform an image classification task at approximately 400 FPS us-
ing version 2 of MobileNet architecture pre-trained on ImageNet
dataset [8].
Seven years ago, in 2013, Google had already foreseen the need
for high-speed neural network inferencing. One of their projections
showed that if a person spent an average of three minutes searching
by voice per day using speech recognition deep neural networks,
their data centers’ computation demand would double [9]. Con-
ventional CPUs or GPUs would be unable to handle such an enor-
mous amount of computation. Facing this vital problem, Google
launched a high-priority project to produce hardware that speeds up
the neural network inferencing ten times (compared to GPUs). In
just 15 months, the TPU was completed and deployed in Google’s
data centers.
The TPU is designed to be a coprocessor. That means it can be
attached to systems similar to the Graphics Processing Unit (GPU).
Moreover, the TPU does not fetch instructions but receives them
from the host system, making it closer in spirit to a floating-point
unit (FPU) than a GPU.
Since the very beginning, Google TPU has produced four genera-
tions of TPU. The first generation was announced in May 2016 at
Google I/O. One year later, the second generation was announced.
There is a big difference between the two generations. While the
first generation is limited to integer operation, the second one can
calculate in floating-point, making the second helpful generation
at training and inferencing machine learning models. Google also
made these TPUs available on their cloud computing service called
Google Compute Engine (a Google Cloud). In May 2018, Google
announced the third generation with twice the computation power
of the second generation. The fourth generation, the Edge TPU,
was announced in July 2018 and released in January 2019 under
the Coral brand. Unlike the three previous generations (used in
data centers), this Edge TPU was designed for edge computing,
resulting in an incredible inferencing speed and much smaller size
and energy consumption. Hence, it is challenging to conduct the
back-propagating calculations (although it is possible to perform
lightweight transfer learning) and the floating-point operations.

1.4 Intel Compute Stick 2
We can deploy many complex graphs on a small mobile de-
vice, such as Raspberry Pi, a single-board computer with high-
performance computing. To improve the performance of these de-
vices, Intel provides the “Intel Neural Compute Stick” series. Neu-
ral Compute Stick 2 is a USB accelerator powered by the Intel Mo-
vidius X VPU to deliver industry-leading performance, wattage,
and power. It supports OpenVINO, a toolkit that accelerates solu-
tion development and streamlines deployment. The Neural Com-
pute Stick (NCS) 2 offers plug-and-play simplicity, support for
common frameworks, and out-of-the-box sample applications. Use
any platform with a USB port to prototype and operate without
cloud computing dependence. The Intel NCS 2 delivers 4 trillion
operations per second with an 8X performance boost over the first
generations. Today, the Intel Compute Stick with OpenVINO is be-
coming more popular as it is convenient and has excellent com-
puting capability. Intel Neural Compute Stick 2 is synchronized
with the OpenVINO toolkit [10]. The toolkit helps quickly deploy
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deep neural networks and maximize device performance using In-
tel hardware (such as Intel Neural Compute stick) to extend Com-
puter Vision workloads. With the support of Intel in both hardware
and software, a deep learning model is easily embedded in many
mobile devices. Therefore, researchers and developers can develop
many products in AI and related fields.
With the workflow of the toolkit, there are many ways to deploy
deep learning models. For instance, Intel has developed an inte-
grated module with OpenCV, called OpenCV, with OpenVINO-
InferenceEngine. The module allows us to read models directly
from Tensorflow, Caffe. Nevertheless, it is preferable to use In-
termediate Representation (IR) to enhance performance, accuracy,
and speed. IR format has an XML file to store model architecture
and a bin file to store the model weights. Since we have a deep
learning network, we can easily convert to the IR format by Mode-
loptimizer API [11]. IR format can be deployed efficiently in object
detection and image. Figrure 6 presents OpenVINO workflow.

 

Fig. 6. OpenVINO workflow [10]

Intel document provides a full tutorial about setting up, running,
and evaluating the deep learning model. Intel also has a large, free
pre-trained model hub, from which we can use many deep learn-
ing models trained with massive datasets and can reach an accu-
racy above 98%. In this field, various researches about using a pre-
trained model to solve problems such as recognition, detection, and
segmentation with high accuracy [12]. The other approach is to use
Intel devices FPGAs to optimize deep learning models [13] and de-
ploy them in specific applications [14]. In our problem, we provide
a solution with deep learning embedded in the real-time interacting
system. To optimize the framerate and the deep learning model’s
accuracy, we must determine the communication method for real-
time responding.

2. PROPOSED ARCHITECTURE
2.1 General Architecture
Figure 7 shows our proposed architecture, which can be split into
three main components: (1) Interior Transfer Component, (2) Ex-
terior Transfer Component, and (3) Process Data Component (see
Figure 7). The details of each component will be described in 3.2
to 3.4.
As shown in Figure 7, our architecture first captures the video from
the camera frame by frame. Later, with the help of the accelera-
tor, our system processes frames and then wraps them to the RTSP
stream (0.a) to send to the media server. After this step, the media
server is ready.
Simultaneously, in the Exterior Transfer Component, devices are
connected to a web server and fetch the website content (0.b) (in-
cludes functions calling to WebRTC API). Next, browsers use these
APIs (0.c) to establish a P2P connection to transfer the media
stream directly. After the connection is established, browsers can

 

Fig. 7. Proposed Architecture

receive the RTSP stream and handle the RTSP stream with We-
bRTC to watch on browsers. That is the endpoint of the traditional
WebRTC application.
However, our architecture provides a solution to respond to the re-
quests of users to blur objects, object detection, and object recog-
nition. Browsers sent these requests to the web server. Then, the
web server forwarded it to Process Data Component, proposing to
change the properties of the stream to complete requests. Conse-
quently, the stream to the end-user will be processed and just be
shown on the browser. That is the endpoint of our web application
cycle.

 

Fig. 8. Proposed Architecture Sequence Diagram

Our architecture uses WebRTC-based streamers to handle the video
with WebRTC. However, the original itself has a JavaScript library
for object detection. Therefore, this cannot go further with our cus-
tom model with the recognition problems. Our architecture solved
this by creating the Process Data Component that enables users to
customize their algorithms to solve their problems. Also, they can
directly control the way data are processed as well as the perfor-
mance of the system. Moreover, our architecture allows users to
combine their projects in Raspberry Pi with different accelerators
to save much time for developers to change or demo their projects
to customers.
Furthermore, to protect the stream from being attacked and prevent
users with no permission from accessing the raw video, we decided
to process directly on the server and send the processed frame on
stream, which may reduce the possibility of leaking sensitive infor-
mation on the line. This approach increases the CPU load on the
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server side but decreases the CPU users use to process and enhance
the security.
To visualize the model, we captured our current system, which we
used to test within the paper in Figure 9.

 

Fig. 9. Our system

2.2 Exterior Transfer Component
This component is an excellent open-source project licensed under
the “Unlicense” license, and the code is public on GitHub. Hence,
it provides the ability to use multiple purposes under no circum-
stances. Since using WebRTC, our architecture has its impressive
property – low latency. The stream within the architecture can be
processed and then sent to the end-user in real-time.

2.3 Interior Transfer Component
Our Media Server uses v4l2rtspserver, which does not natively sup-
port the format that results from processing images with OpenCV.
Therefore, to prepare a stream for the Media Server, after getting
a processed frame from the accelerators, we must compress the
resulting frame with the h264 standard to make it available with
the v4l2rtspserver. After this, we can successfully send clients the
frame as the RTSP Stream.
On the way to request sending from browsers to a server, we imple-
mented an API server to get the parameters passed to the Process
Data Component to change the stream properties.

2.4 Process Data Component
This component requires an external module (Google Coral and In-
tel Compute Stick 2 in our architecture). The camera will capture
the frame and pass it as a parameter to the accelerator to ensure the
system’s stability. Raspberry Pi does not have to process the image
with such a complicated task. This approach may reduce the over-
load of Raspberry Pi and enhance the system’s performance due to
the fast computing capability of Google Coral and Intel Compute
Stick.

3. EXPERIMENTS
The following result was seen in a laptop with Intel 6300HQ, 8GB
RAM, using Nvidia Geforce 940MX on Windows 10. The size of
the image was 640 × 480 px during our experiments. We also in-
vestigated the latency of the proposed system.

3.1 Google Coral experiment
This subsection has tested with Google Coral attached to Raspberry
Pi 4 directly to Raspberry Pi 4 via the USB 3.0 standard. The exper-
iment was conducted in different environmental conditions, indoors
and outdoors. This test intends to ensure that the system can work
in different conditions, indoors and outdoors, with low light condi-
tions. This experiment investigated the system’s operation and the
camera module from Raspberry Pi in low light conditions. Google
Coral, the Edge TPU device, is connected. The latency is under 1
second, from the Raspberry Pi camera input passes through our ar-
chitecture to the end-user. We have tried to detect multiple faces in
these conditions to test the system’s compatibility. Our manuscript
calculated the Frame rate Per Second (FPS) based on the processing
speed, as it can handle each frame in less than 20 ms.
Figure 10 shows the experimental result with the indoor conditions
and stable light. The system could detect all faces in the frames.
The FPS in this test was over 55.

 

Fig. 10. Result from Google Coral With Indoor Scenario

We also tested with outdoor conditions. Figure 11 presents the re-
sult of testing at sunset (06:19 PM in Vietnam) when the light
condition is considerably worse. In this case, the architecture with
Google Coral can still operate with an acceptable result. The faces
are still detected, but the accuracy went down. However, the sys-
tem works stable as the theoretical FPS can be maintained at high
speed.
Considering the processing speed as a crucial criterion, the perfor-
mance of our system qualified for real-time demand. With Coral
Edge TPU as the accelerator, our system maintains a stable pro-
cessing speed of 50 FPS in face detection. Table I below compares
the results from the Coral benchmark test and our results.
Despite having a slightly slower speed than the benchmark tests of
Coral Dev Board, our result is still considered coequal, as Coral
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Fig. 11. Result from Google Coral With Outdoor Scenario

Table 1. Time per inference, using MobileNet v2 SSD,
quantized to 8-bit precision.

Host system Language Inference time
Coral Dev Board C++ 14 ms
Raspberry Pi 4 + USB Accelerator Python 19 ms

claims that benchmarking with Python results in slower speed due
to overhead from Python [8]. This result shows the effectiveness
of AI accelerators in general and Edge TPU, particularly in our
architecture.

3.2 Intel Compute Stick 2 experiment
Besides Google Coral, we employed another state-of-the-art edge
device called the Intel Compute Stick 2 (ICS2) to investigate the
compatibility of this device with our architecture. In this experi-
ment, the ICS2 and the camera were put in Japan, and the server
was set up in Vietnam.
From the experimental results, the system may still work with Intel
Compute Stick 2, providing a latency of less than 1 second, includ-
ing line latency from Japan to Vietnam. Therefore, it can meet the
real-time requirement. Moreover, the system may reach 39 theoret-
ical FPS, as shown in Figure 12.

4. CONCLUSION AND FUTURE WORK
Throughout the paper, we demonstrated our real-time architecture,
which is fast, reliable, flexible, and secure. Our architecture was
implemented within a local area network (LAN) and showed pre-
liminary results. The architecture is tested with Google Coral, Intel
Compute Stick 2 having acceptable results, especially in Google
Coral with the impressive 55 FPS. Our system also worked in
Ubuntu OS when we tried. However, we mainly focus on the em-
bedded systems with flexibility and power-saving. Hence, the ar-
chitecture can be developed to work cross-platform with high per-
formance.
Future research will improve the operation speed and make the ar-
chitecture work on the Internet. We will test the system with the
higher resolution camera, optimize the system to work more effi-
ciently, and try with more accelerators to ensure the compatibility

 

Fig. 12. Result from Intel Compute Stick 2 Scenario

of the architecture. Furthermore, we will apply the proposed archi-
tecture to solve real-world problems. It could be used in an online
study with quantity limit pupils. Moreover, it can be used in an at-
tendance system to help teachers and students.
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