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ABSTRACT 

Ischemic stroke is an acute cerebrovascular disease that causes 

long-term disability and even death. Acute lesions that occur in 

most stroke patients can be eliminated with careful diagnosis 

and treatment. The presence of acute lesions in a majority of 

stroke cases necessitates precise diagnosis and treatment for 

elimination. Despite the sensitivity of MRI imaging to these 

lesions, accurately gauging their location and volume manually 

poses challenges for physicians. The manual examination of 

numerous MRI-generated cross-sections is time-consuming 

and susceptible to human error. Consequently, the consensus 

among medical practitioners is that automated segmentation 

procedures for ischemic stroke lesions can significantly 

expedite the commencement of treatment. Various methods 

have been developed to attain this objective, with deep neural 

networks emerging as notably effective, producing outcomes 

that are both superior and more precise. Within the realm of 

deep learning algorithms, the U-Net algorithm has gained 

popularity in recent years for its accurate response, high 

precision, rapid processing and learning capabilities, and its 

independence from large datasets for learning. The U-Net 

algorithm has become a favored choice for identifying and 

segmenting image components in the processing of medical 

images. The proposed segmentation framework comprises two 

distinct networks: the U-Net convolutional neural network 

serves as the primary structure of the model, while the 

Inception convolutional neural network is integrated into each 

layer of the U-Net network. Incorporating the Inception 

network within the U-Net network has notably enhanced 

segmentation accuracy. This report focuses on elucidating the 

algorithm's intricacies, encompassing its architectures, pre-

processing techniques, data pre-preparation, and post-

processing methods. The structural aspects of the algorithm, 

particularly its convolutional network, are explored in depth. 

Additionally, the optimal configuration for the algorithm's 

parameters and super parameters is investigated to enhance and 

achieve peak accuracy in the segmentation of stroke-related 

images. 
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1. INTRODUCTION 
Very small accumulations of blood or Cerebral microbleeds 

(CMB) in the brain are more commonly found in patients with 

stroke, dementia, and cardiovascular disease [1]. The diagnosis 

of CMBs can contribute to predicting stroke. Furthermore, 

recent clinical studies have underscored that Cerebral 

Microbleeds (CMBs) can contribute to cognitive impairment, 

including conditions like dementia [2]. Magnetic Resonance 

Imaging (MRI) is employed for CMB detection, leveraging its 

advantages over alternative imaging modalities. Among the 

various methods of magnetic resonance imaging, two 

techniques, T2-star and 2SWI, are utilized. [3] showed that 

Susceptibility weighted imaging (SWI) increases the number of 

CMBs detected. 

Image processing for automatic detection of CMBs faces 

challenges: a) different sizes of CMBs between 2 and 10 mm, 

b) different locations of CMBs [1], and c) there are many 

pseudo-CMBs, that makes the diagnosis difficult. In current 

clinical practice, CMBs are labeled manually. [4] Manual 

labeling proves to be difficult, time-consuming, and error-

prone. Consequently, numerous automated and semi-

automated algorithms have been developed. Existing 

algorithms exhibit a substantial number of positive false 

positives (FP), diminishing their value and necessitating 

ongoing research in this domain. The following section reviews 

some examples of prior works. 

Reference [5], provides a semi-automated method for detecting 

CMBs. In this study, a threshold algorithm is initially employed 

to distinguish CMBs from pseudo-CMBs. Subsequently, a 

support vector classifier (SVM) (4) is utilized, and finally, 

manual post-processing is conducted. Reference [6] employed 

a random forest classifier and achieved a sensitivity of 92.04%. 

The extracted properties were then classified using the 5ISA 

network and support vector machine classifier with 89.44% 

sensitivity. In reference [8], a new structure of convolutional 

neural network (CNN) with a 6RBAP layer was presented, 

achieving an accuracy of 97.18%. In reference [9], optimal 

convolutional neural network parameters led to a sensitivity of 

99.74%, while in reference [10], a method based on ResNet-50 

was proposed, reporting a sensitivity of 95.71%. 

The paper endeavors to enhance the evaluation parameters for 

CMB detection through various experiments on adjustable 

convolutional neural network parameters. Ultimately, a 

network with three convolution layers, two pulling layers, and 

one fully connected layer is proposed. 

The present manuscript is structured into four sections: The 

second section introduces the proposed algorithm. The third 

section covers experiments and the evaluation of the proposed 
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method, while the fourth section provides a summary of the 

work. 

2. PROPOSED CNN NETWORK 

STRUCTURE 
To address the challenge of detecting Cerebral Microbleeds 

(CMB) using SWI images, a CNN network has been introduced 

as a proposed solution. The algorithm outlined encompasses a 

pre-processing step and the integration of a convolutional 

neural network. In efforts to enhance the CNN network's 

performance, a series of experiments were conducted to assess 

factors influencing its effectiveness. The parameters for 

evaluating the network structure were then selected based on 

the obtained results. The illustrated CNN network structure is 

presented in “Figure 1”. 

 

Fig 1: The proposed CNN network structure

Next, convolution and preprocessing neural networks were 

described as prerequisites. 

2.1 Convolution layer 
The convolutional layer serves as the primary network layer, 

housing a collection of adaptable filters. Each filter is spatially 

compact but extends across the depth of the input mass. In 

simpler terms, a filter is a three-dimensional structure defined 

by a specific number. However, it's important to note that a 

higher number of filters increases the computational load. 

The activator function applied to the convolution layer's output 

can be either linear or nonlinear. Nonlinear functions are 

employed to distinguish data that lacks linear separability. In 

this study, Rectified Linear Unit (ReLU), Leaky ReLU, and 

Parametric ReLU (PReLU) functions were investigated as 

activation functions, defined by equations (1), (2), and (3), 

respectively.  

𝑦 = 𝑚𝑎𝑥(0‚𝑥)  (1) 

y = {
0.01x      x < 0
x              x > 0

    (2) 

𝑦 = {
𝑎𝑥           𝑥 < 0
𝑥            𝑥 > 0

 (3) 

2.2 Max pooling layer 
The max pooling layer is usually placed after the convolution 

layer, and by maximizing 8 or averaging 9, the number of pixels 

in the width and height of the convolved feature map will be 

reduced, followed by a decrease in the number of parameters 

and the complexity of the calculations. The pooling operation 

is executed independently at each depth. 

2.3 Fully connected layer 
True to its name, every neuron in this layer establishes 

connections with neurons in the preceding layer. The fully 

connected layer amalgamates all features to categorize the 

input image. 

2.4 Preprocessing 
In the preprocessing step, as described by relation (4), 

normalization is applied to the input data represented by X0. 

The normalization formula is given by. 

(4 ) 𝑋 =
𝑋0

𝑚𝑎𝑥 (𝑋0)
 

This normalization process ensures that the maximum pixel 

size in the input data is limited to one. The primary objective 

of normalization is to bring uniformity to the distribution of 

input pixels. This uniformity is crucial for enhancing the 

training process of the neural network, leading to faster 

convergence. 

The convolutional neural network (CNN) proposed for this 

study comprises a total of 6 layers. The architecture of the 

network is summarized in "Table 1," detailing the layers, filter 

sizes, filter numbers, and output dimensions at each stage. 

These layers collectively form the architecture of the proposed 

CNN. Each convolutional layer is followed by a LeakyReLU 

activation function, and specific pooling layers contribute to 

dimensionality reduction at strategic points in the network. 

This architecture is designed to capture hierarchical features in 

the input data, leading to effective representation learning. 

Table 1. Proposed network layers 

No. Layers 
Filter 

size 
Filter 

number 

Output 

dimensions 

1 
Pre-processed 

input patch 
- - (1‚61‚61 )  

2 
Convolution + 

LeakyReLU 
11×11  32 (32 ‚61 ‚61 )  

3 
Maximum 

pooling 
- - (32 ‚30 ‚30 )  

4 
Convolution + 

LeakyReLU 
3×3  32 (32 ‚30 ‚30 )  
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5 
Maximum 

pooling 
- - (32 ‚15 ‚15 )  

6 
Convolution + 

LeakyReLU 
3×3  32 (32 ‚15 ‚15 )  

Empirical findings have demonstrated superior outcomes with 

the Leaky-ReLU activator function and the max-pooling layer. 

Consequently, these elements were incorporated into the 

proposed network. To finalize the classification of input images 

into CMB or non-CMB categories, a fully connected layer was 

positioned at the end, guided by the training algorithm. 

 

3. TESTS AND EVALUATIONS 
In this part of the research, the database for network training, 

evaluation criteria, and results are introduced. 

Implementations in the Python programming language are 

done on Google Colab. 

For validation in this research, the 10-folder cross-validation 

method has been used. In this method, the database is randomly 

divided into 10 subsets. In each subset, some data is stored as 

validation data for model testing, and the rest of the data is used 

as training data. The results are then averaged to produce a 

single estimate. 

3.1 Data Preparation 
In this study, 20 volumes of SWI-CMB database images that 

are available to the public [11] have been used. Most images 

are 150 × 512 × 512 in size. By separating and saving the slides 

from the image size, 2982 images were created, which is 63 

images from this CMB collection. 10SNP [12] with a 

61×61×61 slider was used to create input patches and tags. The 

reason for choosing the 61×61×61 size for the patch is that this 

size preserves useful information for detection [9]. The central 

pixels of the patch, which contained CMB, was labeled one and 

non-CMB labeled zero. “Figure 2” and “Figure 3” show 

examples of patches labeled one and zero, respectively. 

Because there were several CMBs in some of the CMB images, 

the number of CMB patches was reduced to 74 patches after 

the separation of these CMBs, and to 1776 patches by adding 

plugin data from symmetry, rotation, and displacement. 

Non-CMB images yielded 1500 non-CMB patches. In total, 

3276 patches were employed for training and evaluating the 

network, with 90% allocated for training and the remaining 

10% for evaluation. It is crucial to emphasize that plugin data 

for the test set has been excluded from this analysis. 

 

Fig 2: Sample CMB patches 

 

 

Fig 3: Sample non-CMB patches 

3.2 Evaluation parameters 
To evaluate the classification results, three indicators were 

used: sensitivity, specificity and accuracy. The mentioned 

indicators are commonly used metrics to assess the 

performance of a classification model. In the context of this 

study, positive and negative refer to the classes "CMB" 

(cerebral microbleeds) and "non-CMB" (no cerebral 

microbleeds), respectively. 

Sensitivity (True Positive Rate) is a measure of how well the 

model identifies instances of the positive class (CMB). It is 

calculated using the formula (5). Sensitivity, also known as the 

True Positive Rate or Recall, tells the proportion of actual 

positive instances correctly identified by the model. 

Specificity (True Negative Rate) measures the model's ability 

to correctly identify instances of the negative class (non-CMB). 

It could be calculated as formula (6). Specificity indicates the 

proportion of actual negative instances correctly identified by 

the model. 

Accuracy provides an overall assessment of the model's 

correctness by considering both true positives and true 

negatives, as well as false positives and false negatives. The 

formula for accuracy is equation (7). Accuracy gives the 

percentage of correctly classified instances among all 

instances. 

These metrics are valuable for assessing the performance of 

classification model, providing insights into its strengths and 

weaknesses in differentiating between CMB and non-CMB 

cases. 
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𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

(𝑇𝑃 + 𝐹𝑁)
 (5) 

𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

(𝑇𝑁 + 𝐹𝑃)
 (6) 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
(𝑇𝑃 + 𝑇𝑁)

(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑁 + 𝐹𝑃)
 (7) 

3.3 Experiments 
A series of experiments were meticulously conducted to attain 

the desired model structure and comprehensively assess the 

effectiveness of the proposed algorithm. The optimization 

process employed the Adam optimizer, known for its efficiency 

in terms of low memory usage and rapid convergence. This 

choice of optimizer was crucial to enhance the overall training 

efficiency of the algorithm. 

The cost function, a pivotal aspect of the research methodology, 

was formulated as a reciprocal entropy function. This particular 

choice of cost function holds significance in guiding the model 

towards optimal convergence, aligning with the goals of the 

study. 

The Convolutional Neural Network (CNN) underwent 

initialization with random weights, a crucial step in the training 

process. Notably, the adjustment of initial weights extended to 

13, contributing to the model's capacity to learn and adapt to 

the intricacies of the dataset. Furthermore, a batch size of 128 

was employed during the training process, facilitating efficient 

updates to the model parameters and enhancing the 

convergence speed. 

In the fully connected layer of the CNN, the softmax function 

was employed. The softmax function, a key component in 

multiclass classification tasks, facilitated the conversion of raw 

model outputs into probability distributions over multiple 

classes. This utilization of the softmax function added a layer 

of interpretability to the model's predictions. 

In summary, the experimental setup encompassed the use of the 

Adam optimizer, a carefully selected cost function, strategic 

initialization of CNN weights, and the incorporation of the 

softmax function in the fully connected layer. These choices 

were made with the intent of optimizing the algorithm's 

performance, achieving the desired model structure, and 

ensuring a thorough evaluation of its capabilities. 

• Experiment I: Set the number of IPAC algorithms 

In this experiment, the algorithm was executed 10 times per 

number of different IPACs and the average evaluation criteria 

per 10 times performed are shown in “Figure 4”. As can be seen 

from “Figure 4”, the number of ipak equals 11 will be a good 

choice. 

 

Fig 4: Set the number of IPAC algorithms 

• Experiment II: Adjust the number of layers 

Research shows that the number of layers can affect CNN 

performance, especially convolutional layers used to extract 

features. The average results obtained from 10 executions for 

different layer arrangements are given in “Table 2”. As can be 

seen from “Table 2”, the arrangement of the layers in the form 

of Conv / Pl / Conv / Pl / Conv, respectively, will be a good 

choice. 

Table 2. The effect of layer layout on CNN network 

performance. 

Layers 

Average 

Accuracy 

(%) 

Average 

Feature 

(%) 

Average 

Sensitivity 

(%) 

Conv 96/32 46 /97  75 

Conv/Pl 34 /97  4/98  5/77  

Conv/Pl/Conv 34 /97  2/98  25 /81  

Conv/Pl/ 

Conv/Pl 
10 /98  1/98  95 

Conv/Pl/Conv 

/Pl/Conv 
3/98  2/98  25 /96  

Conv/Pl/Conv

/ Pl/Conv/Pl 
35 /98  2/98  95 

 

• Experiment III: Activation and pulling function 

Diverse combinations of activation and pooling functions result 

in varied network behaviors, necessitating the testing of various 

combinations. The algorithm underwent 10 iterations for each 

pairing of activation and pooling functions, with the mean 

values of the evaluation criteria presented in "Table 3." As per 

the findings in “Table 3”, the effectiveness of the average-

based pooling layer is inferior to that of the max-based pooling 

layer. 

Table 3. The effect of different combinations of activation 

and pulling functions on CNN network performance. 

Activator 

Function 

Pooling 

based on 

Average 

accuracy 

(%) 

Average 

feature 

(%) 

Average 

sensitivity 

(%) 

ReLU Max. 67 /98  8/98  25 /96  

PReLU Max. 4/97  6/97  75 /93  

Leaky 

ReLU 
Max. 24 /99  26 /99  75 /98  

ReLU Average 9/97  2/98  5/92  

PReLU Average 01 /96  53 /96  25 /86  

Leaky 

ReLU 
Average 84 /97  8/97  75 /98  
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• Experiment IV: Size and number of filters in the 

convolution layer 

In the first convolution layer, to achieve the best detection 

performance of CMBs, different numbers and sizes of the 

corresponding filter in this layer were examined, the algorithm 

was run 10 times per mode, and the mean values of the 

evaluation parameters in “Table 4” and “Table 5” is brought. 

Thus, as shown in these Tables, the filter size was set to 5 and 

the number of filters to 32. 

Table 4. The effect of first convolution layer filter size on 

CNN network performance. 

Filter 

size 

Average 

accuracy (%) 

Average 

feature (%) 

Average 

sensitivity 

(%) 

3 98/98 99 98/75 

5 99/43 99/46 99 

7 99/05 99 99 

9 99/05 96/06 98/75 

11 98/98 96/06 97/5 

 

Table 5. The effect of the number of first convolution layer 

filters with dimensions of 5*5 on the efficiency of the CNN 

network. 

Num. 

of 

Filters 

Average 

accuracy 

(%) 

Average 

feature (%) 

Average 

sensitivity (%) 

8 98/48 98/73 93/75 

16 99/17 99/13 98/91 

32 99/22 99/2 99/9 

64 99/24 99/2 99/8 

128 98/92 98/86 99/93 

 

• Experiment V: The proposed network 

performance 

In order to improve the classification performance of CMBs, 

experiments were performed to test almost all the factors that 

could affect CNN performance. Finally, a convolutional neural 

network consisting of three convolutional layers, two pulling 

layers, and a fully connected layer achieved better 

performance. To avoid randomness, the evaluation results were 

performed 10 times. The mean and deviation from the mean are 

shown in “Figure 5”. 

 

Fig 5: Evaluation results in 10 times the implementation of 

the proposed network. 

The efficiency of the proposed network with other methods is 

shown in “Table 6”. As can be seen, the proposed method has 

better results than other methods. 

Table 6. Comparison of the proposed method with 

previous articles. 

- [8] [9] [10] 
Proposed 

method 

Year 2017 2018 2019 2022 

Images 

format 
SWI SWI SWI SWI 

Accuracy 

(%) 
18 /97  32 /98  46 /97  41 /99  

Feature 

(%) 
18 /97  89 /96  21 /99  39 /99  

Sensitivity 

(%) 
94 /96  74 /99  71 /95  9/99  

 

4. CONCLUSION 
In conclusion, this paper introduces an automated approach for 

detecting cerebral hemorrhages, leveraging the robust 

capabilities of convolutional neural networks. The necessity for 

automation arises from the inherent challenges associated with 

manual processing, including its difficulty, time-intensiveness, 

and susceptibility to errors. The pivotal step of image feature 

extraction is addressed through the application of a 6-layer 

convolutional neural network with compact dimensions, 

striking a balance between reducing network parameters and 

maintaining accuracy for classification. 

The experiments conducted on the SWI image database affirm 

the efficacy of the proposed method, showcasing superior 

results compared to reference methods. The demonstrated 

success paves the way for broader applications in medical 

image analysis, particularly in the early and accurate 

identification of cerebral hemorrhages. 
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Looking ahead, the future scope of this research encompasses 

further refinement and extension of the proposed algorithm. 

Continuous exploration and optimization of convolutional 

neural network architectures, activation functions, and pre-

processing techniques can contribute to even more precise and 

efficient hemorrhage detection. Additionally, the integration of 

emerging technologies such as explainable artificial 

intelligence and transfer learning could enhance the 

interpretability and generalizability of the model. 

Furthermore, the adaptability of the algorithm to diverse 

medical imaging datasets beyond SWI, along with its potential 

integration into real-time clinical workflows, remains a 

promising avenue for future investigation. Collaborations with 

healthcare professionals and experts in the field can provide 

valuable insights for refining the algorithm's applicability and 

ensuring its seamless integration into clinical practice. 

In conclusion, while this paper addresses a critical aspect of 

automated cerebral hemorrhage detection, the journey 

continues towards advancing and fine-tuning the proposed 

method, fostering a positive impact on the realm of medical 

image analysis and contributing to improved patient outcomes. 
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