
International Journal of Computer Applications (0975 – 8887)

Volume 185 – No. 43, November 2023

8

Performance of JSON Updates using Different Storage Forms

Dušan Petković
Technical University of Applied Sciences

Rosenheim, 83024, Germany

ABSTRACT
This paper discusses performance of modification operations on

JSON documents, stored in different relational storage forms.

The first form is a “raw” document form, meaning that an exact

copy of the JSON data is stored into relational table. The second

one is the native form of MYSQL, which belongs to a group of

binary formats for storing JSON. We discuss first the update

primitives, which build a foundation for modification operations

on JSON data. The existing forms of SQL UPDATE of the

database system are used to implement these operations using

two pairs of tables, which significantly differ in relation to their

volume. We compare the performance of JSON updates on

documents stored using the TEXT data type when data are stored

in “raw” document form and using the JSON data type, when

data are stored in the native (binary) form. Our study divides the

update primitives in two groups: one for the modification

operations on objects (name-value pairs) and the other one for

the modification operations on arrays. For both groups of

operations, we measure the performance when the data are stored

in the proprietary binary format and in “raw” document one. Our

measures show that for all UPDATE operations, except for the

initial loading process, the modification of JSON data stored in

the binary form is significantly faster than the modification of the

same data stored in the “raw” document form. Additionally,

improvements in execution time of update statements are higher

in the case of the large JSON documents. In other words, the

bigger the JSON document, the more significant the performance

gains.

General Terms
Relational database systems

Keywords
RDBMSs, JSON, UPDATE, performance

Artifact Availability:

The data, and/or other artifacts have been made available at

https://doi.org/10.6084/m9.figshare.23805153.

1. INTRODUCTION
JSON is a simple data format used for data interchange. The

structure of JSON content follows the syntax structure for

JavaScript. This data format is built on two structures: a

collection of name/value pairs and an ordered list of values (see

Figure 1).

{"info": {"who": "Fred" ,"where": "Microsoft",

"friends":[{"name":"Lili","rank":5},{"name":"Hank","rank":7}]

}}

Figure 1: An example of JSON document

Generally, a JSON string contains either one or more name-value

pairs called objects or an array. An array is surrounded by a pair

of square brackets and contains an ordered list of values, which

are separated by commas from each other. An object is presented

inside a pair of curly brackets and contains a comma-separated

list of unordered name-value pairs. A name-value pair consists

of a field name, followed by the colon, followed by the

corresponding value. Each object can contain other objects and

arrays. (The same is true for arrays.) JSON supports also

elementary data types: string, number and Boolean.

Therefore, the JSON document in Figure 1 shows a JSON string

called info, which describes a single person, Fred, his affiliation,

specified as a name-value pair, and his friends, specified as an

array, which contains, in this example, two objects: name and

rank.

The current SQL/JSON standard [1] proposes the storage of

JSON data in relational tables using the existing standard data

types. In other words, this approach advocates to store JSON data

into character string columns that are defined within SQL tables.

That permits JSON documents to be used in SQL queries in the

same way as the data stored in other columns of the same tables.

By choosing to use columns declared using the standard data

types, the standardization committee avoids the overhead needed

to create a new SQL data type without losing any significant

advantages of standard data types.

The specified approach is “light-weight” one, meaning that an

exact copy of JSON documents is stored into relational tables.

(As the SQL standardization committee members quote, the

primary reason for taking this approach is to improve the chances

of its quick adoption into the SQL standard, as well as the rapid

implementation by vendors of relational database systems.)

The alternative way [2] would be to store JSON documents in a

form that is closely aligned with JSON semantics. This model

should include arbitrary levels of nesting and complexity and

should be automatically mapped by the system into the

underlying storage form.

2. RELATIONAL STORAGE OF JSON
There are two general techniques to store JSON documents in

relational form:

- Storage as a “raw” document

- Native storage

Storing data in its “raw” form means that an exact copy of the

data is stored into a relational table. In other words, relational

database systems use character string data types to store the data.

This storage form allows insertion of data in an easy way. The

retrieval of such data is very efficient if the entire document is

retrieved. To retrieve parts of the documents, special types of

indices are helpful.

Native storage means that the corresponding data are stored in

their parsed form. In other words, the document is stored in an

internal (usually binary) representation that preserves the content

of the data. Using native storage makes it easy to query

information based on the structure of the document. On the other

hand, reconstructing the original form is difficult, because the

created content may not be an exact copy of the document.

Note that an additional technique called shredding is also used.

In this case, a document is decomposed into separate columns of

one or more relational tables. For the decomposition process, the

International Journal of Computer Applications (0975 – 8887)

Volume 185 – No. 43, November 2023

9

schema of that document is used. This technique cannot be

applied to JSON data in general, because the corresponding

schema usually does not exist. Therefore, only schema-oblivious

approaches for mapping into relational tables can be generally

applied to JSON.

2.1 Native Storage vs “Raw” Storage
The native storage of JSON data has several advantages in

relation to storage in the “raw” form. These are:

- Richer type system

- Efficient updates

In case of native storage form, its binary format allows an

extension of the existing SQL type system, which contains

standard data types. On the other hand, the type system for JSON

comprises only three simple data types: string, number, and

Boolean.

In case of “raw” storage form, update operations are usually

performed so, that the entire document is rewritten, even when

only a small part of the document is modified. On the other hand,

the use of native storage allows so called partial updates,

meaning that only a portion of a document, which is referenced

by the modification operation is updated.

3. MYSQL BINARY STORAGE FORMAT
 In this paper we use Version 8 of the MySQL database system,

while it allows us to measure performance of UPDATE

operations on JSON data stored in the “raw” document form as

well as in the native form. MySQL supports “raw” form, when

JSON data are stored in the TEXT data type, and native one,

when the data is stored in the JSON type.

Note that another system, PostgreSQL, supports “raw” and

native form in the same way as MySQL, but the corresponding

UPDATE operations are not supported for the “raw” storage

form of this system.

3.1 Structure of the MySQL Binary Format
The storage of documents declared using the JSON data type in

My SQL Version 8 is achieved using the proprietary binary

format. The goal of the binary format is to allow storing,

querying and modifying JSON data efficiently. First, complex

and simple JSON data types are handled in the different ways [3].

In case of objects, the content is stored in three sections: table of

pointers, keys and values.

Table of pointers contains all the keys and values, in the order in

which they are stored. Each pointer comprises information about

where the data associated with the key or value is located. Having

a table of pointers to the keys and values at the beginning of the

binary representation makes it possible to look up a member in

the middle of the document directly without scanning past all the

members that precede it. In key-value pairs, the keys are ordered

by their length, and keys with the same length are sorted in

ascending order. The process of sorting using the length allows

the process of binary search, so that the content of the keys must

not be referenced. The values are sorted in the same order as their

corresponding keys.

If the document is an array, it has two sections: the dictionary

and the values. The dictionary contains the set of names of array

elements. Arrays are encoded by a single size prefixed offset

array containing the offsets of the elements in the array. If the

document is a scalar, it has a single section which contains the

scalar value.

3.2 Partial Update
Since Version 8, MySQL binary storage format supports partial

updates, meaning that modifications of JSON documents can be

made without replacing the entire document, as it is necessary in

case when JSON data is stored in “raw” form. Therefore, partial

updates are applied only for the columns declared using the

JSON data type. Also, this feature works only with the following

three SQL/JSON functions: JSON_SET(), JSON_REPLACE(),

and JSON_REMOVE().

Another feature concerning partial update concerns transaction

log. When partial update is activated, it causes the update

operation to write only the modified part(s) of the JSON

document to the after image in the transaction log, instead of

storing the whole document in the log. With this optimization,

transaction log size is proportional to the size of the modified part

rather than the full document size.

4. JSON UPDATE LANGUAGE
In this section we will discuss which primitives should be

implemented for update of JSON documents as well as the JSON

update operations implemented in MySQL.

4.1 JSON Update Primitives
We assume the presence of a SQL/JSON path expression to be

evaluated and to return tuples of references to the selected

objects. This will be the target of the sequence of operations

discussed below. Note that the term “path” in this and the

following subsections specifies the SQL/JSON path expression

as it is defined in the SQL/JSON standard [1].

An update operation is a sequence of primitive operations of the

following types [4]:

• Insert (content): inserts a new content.

The following case exists:

- Insert an object

• InsertBefore (path, content): inserts new content in front of

the referenced element.

The following cases exist:

- Inserts an object before another one

Note that the operation “inserting an object before another one”

is optional, because there is no ordering of objects, generally.

- Insert an array member before another array member (new array

member must be of the same data type as the existing members

of the array)

• InsertAfter (path, content)

Inserts new content directly after of the referenced element.

The following cases exist:

- Insert an array member after another array member (new array

member must be of the same data type as the existing members

of the array)

- Insert an object after another one

Note that the operation “inserting an object after another one” is

optional, because there is no ordering of objects, generally.

• Delete (content)

Deletes the content under the given path expression.

The following cases exist:

- Delete an object with the given name

- Delete the n-th element of the array with the given name

• Replace (content)

Replace the content under the given path expression.

The following cases exist:

- Replace the value of the object with the given name

- Replace the n-th element of the array with the given name

• Rename (property, name) Renames the specified object or

array.

4.2 MySQL: JSON Update Operations
MySQL Version 8 supports three SQL/JSON functions to update

JSON documents:

International Journal of Computer Applications (0975 – 8887)

Volume 185 – No. 43, November 2023

10

- JSON_SET()

- JSON_REPLACE()

- JSON_REMOVE().
These functions are defined inside the SQL UPDATE statement.

Note that MySQL supports several other SQL/JSON update

functions, but these functions do not support the partial update of

JSON data [5] and therefore cannot be used to measure

performance of JSON updates in MySQL.

The JSON_SET() function is used to modify JSON values as

well as to insert the new ones. In other words, this function

checks first whether the path declared in the statement exist or

not. If it exists, the function replaces values for the path. If not, it

adds the specified value for that path.

Example 1 shows how the JSON_SET() function can be used to

update an existing value, while Example 2 shows the inserting

functionality of the function. (All examples in this section are

related to the JSON document given in Figure 1.The document

is stored into the table called my_json using the CREATE

TABLE statement.)

Example 1

-- The value of the object called where is changed to “Google”

UPDATE my_json

 SET c1 = JSON_SET(c1, '$.info.where', 'Google')

 where JSON_EXTRACT (c1, '$.info.where') = 'Microsoft';

Example 2

-- The new object (name-value pair) will be inserted

UPDATE my_json

 SET c1 = JSON_SET (c1, '$.info.age', 47)

 where JSON_extract (c1, "$.info.who") = "Fred";

The JSON_REPLACE() function modifies existing values. The

UPDATE statement in Example 3 modifies the name of the

person called “Fred”.

Example 3

UPDATE my_json

 SET c1 = JSON_REPLACE (c1, '$.info.who', "Freddie")

 where JSON_extract (c1, "$.info.where") = "Google";

The JSON_REMOVE() function removes a value specified in

the path expression of the UPDATE statement and returns the

original JSON document without the values selected by the path

expression in case that they exist within that document. In

Example 4, the first element of the array called friends will be

the deleted.

Example 4

UPDATE my_json SET c1 =

 JSON_REMOVE (c1, '$.info.friends[0]')

 WHERE JSON_EXTRACT (c1, "$.info.who") = "Fred";

5. PERFORMANCE ISSUES
Before we start to discuss performance of different update

primitives, we will give some introduce preliminary issues.

5.1 Preliminaries
We compare the performance of JSON updates on documents

stored using “raw” document form and implemented with the

TEXT data type with the performance of JSON updates on

documents stored using native (binary) form and implemented

with the JSON data type. Also, we show that all JSON document

updates, except one, benefit when using the native storage form.

All experiments ran on a Windows 10 computer with Intel Core

i5-6200 and CPU with 2.4 GHz speed, as well as with 32 GB

RAM. Additionally, we use MySQL Version V8.0, which

supports “raw” form of JSON data as well as the native storage

form.

To measure performance of medium-size and very large JSON

document, we used two different data sets: the first one, called

ZIP data, contains the US zip codes [6]. The zip code data set

contains ca. 30,000 US zip codes. The structure of the JSON

sample data includes the name of the city (“city”), its population

(“pop”) and location (“loc”), as well as the acronym of the state

to which the city belongs (“state”). Each JSON document is 85

bytes long, in average.

The second data set, which is used to measure performance,

contains eight documents. Each of them is approximately 1 MB

large and the structure of them is similar with the JSON

document shown in Figure 1, plus an additional column called

data. The data column is a string of 1 MB length (see cases I3

and I4 in Figure 2a.)

According to the discussion above, we have the following four

tables, which we use for our tests:

- table_text_30K

- table_json_30K

- info_large_text

- info_large_json.

The first two tables are created using the SQL statements shown

in cases CT1 and CT2 of Figure 2a, respectively. The other two

tables are created using CT3 and CT4 of the same figure,

respectively. Analogously, cases I1 and I2 show how a JSON

document from the ZIP data set is inserted into the first two

tables, respectively. Also, I3 and I4 shows how a row of the large

data set is inserted into the second two tables, respectively.

5.2 Performance Measures
We measure performance of the following update primitives:

- Initial load

- Replace a value of an object

- Delete an object

- Insert an object

- Modify an array’s element

- Delete an array’s element

- Insert an array’s element

Note that the y-axis of all figures below shows the execution

time of the corresponding query, shown in seconds.

International Journal of Computer Applications (0975 – 8887)

Volume 185 – No. 43, November 2023

11

-- CT1 Create table with ZIP data (JSON data type)

CREATE TABLE table_JSON_30K (c1 JSON);

-- CT2 Create table with ZIP data (TEXT data type)

CREATE TABLE table_TEXT_30K (c2 TEXT);

-- CT3 Create large table (JSON data type)

CREATE TABLE info_large_json

(id INT PRIMARY KEY AUTO_INCREMENT,

 json_col JSON);

-- CT4 Create large table (TEXT data type)

CREATE TABLE info_large_text

(id INT PRIMARY KEY AUTO_INCREMENT,

 text_col LONGTEXT);

-- I1

-- Insert a row into ZIP table (JSON data type)

INSERT INTO table_json_30k VALUES ('{ "city" : "AGAWAM", "loc"
:[-72.622739,42.070206], "pop" 15338, "state":"MA","_id":"01001" }')

-- I2

-- Insert a row into ZIP table (TEXT data type)

INSERT INTO table_text_30k VALUES ('{ "city" : "AGAWAM", "loc" :
[-72.622739, 42.070206], "pop" : 15338, "state" : "MA", "_id" :
"01001" }')

-- I3

-- Insert a row into large table (JSON data type)

INSERT INTO info_large_json(json_col) VALUES

(JSON_OBJECT("who","Fred","where","Microsoft",

"friends",JSON_ARRAY(JSON_OBJECT("name","Lili","rank",1),

 JSON_OBJECT("name","Hank","rank",8)),

 "data", REPEAT("x", 100 * 100 * 100)));

-- I4

-- Insert a row into large table (TEXT data type)

INSERT INTO info_large_text(text_col) VALUES
(JSON_OBJECT("who", "Fred", "where", "Microsoft",
 "friends", JSON_ARRAY(JSON_OBJECT("name","Lili","rank",1),
JSON_OBJECT("name","Hank","rank",8)),
"data", REPEAT("x", 100 * 100 * 100)));

--UO1
-- Replace a value of an object (zip table, JSON type)
UPDATE table_json_30K

 SET c1 = JSON_SET (c1, '$.city', "NEW_BARRE")
 where JSON_EXTRACT (c1, "$.city") = "BARRE";

--UO2
-- Replace an object’s value (zip-table, TEXT type)

UPDATE table_text_30K

SET c2 = JSON_SET (c2, '$.city', "NEW_BARRE")

where JSON_EXTRACT (c2, "$.city") = "BARRE";

--UO3

-- Replace an object’s value (large able,TEXT type)

 UPDATE info_large_text

SET text_col = JSON_SET (text_col, '$.where', "Facebook")

WHERE JSON_EXTRACT (text_col, "$.where") = "Microsoft";

 --UO4

-- Replace an object’s value (large table,JSON type)

 UPDATE info_large_json

 SET json_col = JSON_SET (json_col, '$.where', "Facebook")

 WHERE JSON_EXTRACT (json_col, "$.where") = "Microsoft";

 --DO1

-- Delete an object (ZIP table, TEXT data type)

UPDATE table_text_30k

 SET c2 = JSON_REMOVE (c2, '$.state')

 WHERE JSON_EXTRACT (c2, "$.state") = "MA";

--DO2

-- Delete an object (ZIP table, JSON data type)

UPDATE table_json_30k

 SET c1 = JSON_REMOVE (c1, '$.state')

 WHERE JSON_EXTRACT (c1, "$.state") = "MA";

--DO3

-- Delete an object (large table, JSON data type)

UPDATE info_large_json

 SET json_col = JSON_REMOVE

 (json_col, '$.where')

 WHERE JSON_EXTRACT (json_col, "$.where") = "Facebook";

--DO4

-- Delete an object (large table, TEXT data type)

UPDATE info_large_text

 SET text_col = JSON_REMOVE (text_col, '$.where')

 WHERE JSON_EXTRACT

 (text_col, "$.where") = "Facebook";

Figure 2a: Examples of SQL/JSON Update Statements

International Journal of Computer Applications (0975 – 8887)

Volume 185 – No. 43, November 2023

12

--IA1
-- Insert an array’s element (ZIP table, JSON data type)

UPDATE table_json_30k

 SET c1 = JSON_SET (c1, '$.loc[1]', -70.00000);

--IA2
-- Insert an array’s element (ZIP table, TEXT data type)

 UPDATE table_text_30k

 SET c2 = JSON_SET (c2, '$.loc[1]', -70.00000);

--IA3
-- Insert an array’s element (large table, JSON type)

UPDATE info_large_json SET json_col =

 JSON_SET (json_col,'$.friends[1]',

 JSON_OBJECT("name","Peter", "rank",6));

--IA4
-- Insert an array’s element (large table, TEXT type)
UPDATE info_large_text

 SET text_col = JSON_SET (text_col,'$.friends[1]',
JSON_OBJECT("name","Peter", "rank",6));

-- UA1

Update an array’s element (zip table ,JSON type)

UPDATE table_json_30k

 SET c1 = JSON_SET (c1, '$.loc[0]', 0.00)

where JSON_EXTRACT(c1,"$.city")= "SPRINGFIELD";

-- UA2

-- Update an array’s element (zip table, TEXT type)

UPDATE table_text_30k

 SET c2 = JSON_SET (c2, '$.loc[0]', 0.00)

 Where JSON_EXTRACT (c2, "$.city") =

 "SPRINGFIELD";

-- UA3

-- Update an array’s element(large table,JSON type)

UPDATE info_large_json

 SET json_col =

JSON_SET (json_col, '$.friends[1].rank', 7);

-- UA4

-- Update an array’s element (large table, TEXT type)

UPDATE info_large_text SET

 text_col=JSON_SET(text_col,'$.friends[1].rank', 7);

-- DA1

-- Delete an element of an array(zip table,JSON type)

UPDATE table_json_30k

 SET c1 = JSON_REMOVE (c1, '$.loc[1]');

-- DA2

-- Delete an element of an array (zip table,TEXT type)

UPDATE table_text_30k

 SET c2 = JSON_REMOVE (c2, '$.loc[1]');

-- DA3

-- Delete an array’s element(large table, JSON type)

UPDATE info_large_json

 SET json_col = JSON_REMOVE (json_col, '$.friends[1]');

-- DA4

-- Delete an array’s element (large table,TEXT type)

 UPDATE info_large_text

SET text_col=

JSON_REMOVE(text_col, '$.friends[1]');

-- IO1

-- Insert an Object (zip table, TEXT type)

UPDATE table_text_30k

 SET c2 = JSON_SET (c2, '$.info.age', null)

 where JSON_EXTRACT (c1, "$.city") = "CUSHMAN";

-- IO2

-- Insert an Object (zip table, JSON type)

UPDATE table_json_30k

 SET c1 = JSON_SET (c1, '$.info.age', null)

Where JSON_EXTRACT(c1,"$.city") = "CUSHMAN";

-- IO3
-- Insert an Object (large table, JSON type)

UPDATE info_large_json

 SET json_col = JSON_set (json_col, '$.data112',

 REPEAT("x", 100 * 100 * 100))

where JSON_EXTRACT(json_col, "$.who") = "Fred";

 -- IO4

-- Insert an Object (large table, TEXT type)

 UPDATE info_large_text

 SET text_col = JSON_SET (text_col, '$.data112',
 REPEAT("x", 100 * 100 * 100))

where JSON_EXTRACT(text_col, "$.who") = "Fred";

Figure 2b: Examples of SQL/JSON Updates Cont.)

5.2.1 Initial Load
During the initial load, the four tables mentioned above are

loaded with JSON documents. The table_text_30K and

table_json_30K tables are loaded with the JSON data

concerning ZIP codes. The info_large_text and info_large_json

tables contain the same content: the number of inserted rows is

eight and each row comprises a JSON document of ca 1 MB

length.

Figure 3 shows the execution time needed for initial load of

tables table_json_30K, table_text_30, info_large_json and

info_large_text, respectively. The chart shows that loading the

ZIP data into the column of the TEXT type is a little bit faster

than the loading of the same data in the column of the JSON data

type. Also, loading the data into very large JSON documents

concerning the column of the TEXT data type is approximately

7% faster than the loading of the same data into the column of

the JSON data type. The difference in loading time is due to the

different format of both data types. In case of the TEXT data

type, the data is loaded “raw”, meaning that, during the loading

process, there are no transformations at all, while the JSON data

type involves certain transformations into the corresponding

binary storage form.

International Journal of Computer Applications (0975 – 8887)

Volume 185 – No. 43, November 2023

13

Figure 3: Initial Load

5.2.2 Replace an Object’s Value
The second modification on objects is updating an object’s value.

For this measurement we use cases UO1 and UO2 for the ZIP

data as well as UO3 and UO4 for the large JSON documents,

respectively (see Figure 2a).

Figure 4 shows an improvement of 3.9x in case of the

replacement of a value for the ZIP data and an improvement of

9x, in case of the same operation for large JSON documents. The

reason for these improvements is that in case of the JSON data

type, partial updates are executed, while in case of the TEXT data

type, after the update operation is performed, the entire JSON

document will be replaced. In other words, in case of the TEXT

data type the system generates a temporary new document to

fully replace the previous stored document.

The significant performance improvements in case of large

JSON documents are due to the additional optimization of the

transaction log entries for the JSON data type in relation to

modifications. In case of the TEXT data type, the database

system generates a log entry proportional to the size of the JSON

document. For the JSON data type, the improvement is that

transaction log size is usually proportional to the actual delta

update size rather than to the full document size. Therefore, the

larger the document, the better the response time.

Figure 4: Replace an Object’s Value

5.2.3 Delete an Object
The next update primitive on objects is deleting one or more

objects. For this measurement we use cases DO1 and DO2 for

the ZIP data as well as DO3 and DO4 for the large JSON

documents, respectively (see Figure 2a).

Figure 5 shows an improvement of 2x, when an object for the

ZIP data is deleted, and an improvement of 11x, in case of the

same operation for large JSON documents. The reason for these

improvements is the same as already described in the previous

subsection.

Figure 5: Delete an Object

5.2.4 Insert an Object
The last modification on objects is inserting one or more objects.

For this measurement we use cases IO1 and IO2 for the ZIP data

as well as IO3 and IO4 for the large JSON documents,

respectively (see Figure 2b).

Figure 6: Insert an Object

Figure 6 shows an improvement of 2x in case, when an object for

the ZIP data is inserted, and an improvement of 7.5x, in case of

the same operation for large JSON documents. The reason for

these improvements is the same as already described in the

previous subsection(s).

5.2.5 Modify an Array’s Element
In this subsection we show the performance measurements in

relation to replacement of an array’s element. For these

measurements we use cases UA1 and UA2 for the ZIP data, as

well as UA3 and UA4 for the large JSON documents,

respectively (see Figure 2b).

Figure 7: Modify an Array’s Element

Figure 7 shows an improvement of approximately 2.5x in case

when an element of an array for the ZIP data is modified, and an

improvement of 4.4x, in case of the same operation for large

JSON documents. The improvements in case of the ZIP data are

similar with the improvements in case of modification of an

object, described in the previous subsections.

0

1

2

3

4

“zip” data Large data

Initial LOAD

JSON
Type

0

0.5

1

1.5

2

zip data large data

Replace a Value of an Object

JS
O
N
Ty
pe

0

1

2

3

4

zip data Large data

Delete an Object

JSON
Type
TEXT
Type

0.00

2.00

4.00

6.00

“zip” tables Large tables

Insert an Object
JSON
Type

TEXT
Type

0

1

2

3

4

“zip” data Large data

Modify an Array's Elementl

JSON
Type

TEXT
Type

International Journal of Computer Applications (0975 – 8887)

Volume 185 – No. 43, November 2023

14

On the other hand, the improvements in relation to the large

JSON documents are smaller compared with the improvements

in relation to objects’ modifications, because they modify more

rows that require additional operations than in case of

modification on JSON objects.

5.2.6 Delete an Array’s Element
Another update operation on arrays is deleting an element of an

array. For these measurements we use cases DA1 and DA2 for

the ZIP data, as well as DA3 and DA4 for the large JSON

documents, respectively (see Figure 2b).

Figure 8 shows an improvement of approximately 1.6x in case,

when an element of an array for the ZIP data is deleted, and an

improvement of 4.5x, in case of the same operation for large

JSON documents. The improvements in case of the ZIP data are

similar with the improvements in case of modification of an

array’s element, described in the previous subsection.

On the other hand, performance improvements concerning large

documents are smaller for the native storage form in relation to

the “raw” storage form due to the same reason as in case of

modifying an array’s element.

5.2.7 Insert an Array’s Element
The last update primitive on arrays, which is discussed in this

paper is insertion of an array’s element. For these measurements

we use cases IA1 and IA2 for the ZIP data, as well as IA3 and

IA4 for the large JSON documents, respectively (see Figure 2b).

Figure 8: Delete an Array’s Element

Figure 9 shows an improvement of approximately 1.3x in case,

when a new element of an array for the ZIP data is inserted, and

an improvement of 4.1x, in case of the same operation for large

JSON documents. The improvements for this operation in case

of native (binary) storage form are similar as the corresponding

improvements described in both subsections above.

Figure 9: Insert an Array’s Element

6. RELATED WORK
Besides My SQL, several other RDBMSs support the JSON data

type. PostgreSQL[7] supports a proprietary native storage format

to implement the JSON type. Oracle [8] uses its own in-memory

binary storage to store JSON data, which is declared using the

JSON data type [9]. Teradata supports the JSON type with

different forms of storage formats [10]. To these formats belong,

among others, BSON [11] and UBJSON [12]. IBM Db2[13] uses

also BSON for the native storage of JSON documents. Several

NoSQL database systems, such as MongoDB [14] and

Couchbase DB [15] use BSON as a binary storage format to store

JSON data.

The design of binary storage of JSON data is similar by Oracle,

PostgreSQL and Sinew[16]. They all support the navigation

based on field key names, which are indexed in the binary format

to speed up query. Therefore, all of these binary formats achieve

faster query performance than “raw” document form.

Concerning partial update operations on JSON data, only

MySQL V8.0 [17] and Oracle V20.c [18] support this feature.

That way, all modification operations on JSON data do not

replace the entire JSON document(s), but only the part

referenced by the corresponding UPDATE statement.

7. CONCLUSIONS
This paper discusses the performance of modifications on JSON

documents, stored in “raw” form as well as in native form. To

measure performance, we use MySQL Version 8.0. Our

measures show that for all UPDATE operations, except for the

initial loading process, the modification of JSON data stored in

the binary form is significantly faster than the modification of the

same data stored in the “raw” document form. Additionally, the

following rule holds: the bigger the JSON document, the more

significant the performance gains.

8. REFERENCES
[1] SQL/JSON 2016 Standard: ISO/IEC TR 19075-6:2017,

Information technology Part 6: SQL support for JSON,

http://standards.iso.org/ittf/PubliclyAvailableStandards.

[2] D. Petković, SQL/JSON Standard: Properties and

Deficiencies, Datenbank Spektrum, Vol.17, No.3, 2017,

DOI: 10.1007/s13222-017-0267-4.

[3] JSON datatype and binary storage format,

https://dev.mysql.com/worklog/task/?id=8132

[4] D.Petković – Implementation of JSON Update Frameworks

in RDBMSs, International Journal of Computer

Applications 177(37):35-39, DOI:

10.5120/ijca2020919881.

[5] Partial Update in MySQL,https://dev.mysql.com/doc/

refman/8.0/en/json.html#json-partial-updates

[6] US ZIP Code Data Catalog,

https://catalog.data_gov/dataset1.

[7] PostgreSQL: The JSON data type,

https://www.postgresql.org/ docs/9.4/datatype-json.html

[8] Z.H. Liu, et al. JSON data management: supporting

schemaless development in RDBMS. SIGMOD Conference

2014, 1247-1258 2014, DOI: 10.1145/2588555.2595628

[9] Z.H. Liu, et al., Native JSON Datatype Support, Proc. Of

the VLDB Endowment, Vol.13, No. 12, 2020,

https://doi.org/10.14778/3415478.3415534

0.00

1.00

2.00

3.00

4.00

5.00

“zip” data Large data

Delete an Array's Element

JSON
Type

TEXT
Type

0.00

2.00

4.00

6.00

“zip” data Large data

Insert an Element of an Array

JSO
N
Typ
e

International Journal of Computer Applications (0975 – 8887)

Volume 185 – No. 43, November 2023

15

[10] Teradata JSON Datatype: https://docs.teradata.com/ reader/

C8cVEJ54PO4~YXWXeXGvsA/4IAzgRsj_8aRj5pCQoEq

zA

[11] BSON, http://bsonspec.org/

[12] UBJSON: http://ubjson.org/

[13] DB2 JSON support, https://www.ibm.com/support/

knowledgecenter/en/SSEPEK11.0.0/json/src/tpc/db2z_json

functions.html

[14] MongoDB storage formats,

https://www.mongodb.com/json-and-bson

[15] Couchbase JSON Support,

https://developer.couchbase.com/

docum/server/3.x/developer/dev-guide-3.0/using-json-

docs.html

[16] D. Tahara, et al: Sinew: a SQL system for multi-structured

data. SIGMOD Conference 2014: 815-826, DOI:

10.1145/2588555.2612183

[17] MySQL, Partial Updates of JSON Values,

https://dev.mysql. com/ doc/refman/8.0/en/json.html#json-

partial-updates.

[18] Oracle, Piece-wise update of JSON,

https://docs.oracle.com/en/database/oracle/oracle-

database/19/adjsn/overview-of-inserting-updating-loading-

JSON-data.html#GUID-94E37619-C242-44F0-B1C3-

9A63859AD0C5.

IJCATM : www.ijcaonline.org

