
International Journal of Computer Applications (0975 – 8887)

Volume 185 – No. 48, December 2023

1

Comparative Analysis of Different Binary Tree and

Priority Queue (Heap) Algorithms

Fakhruddin Amjherawala

Research Scholar
Sage University, Indore

Assistant Professor
IPS Academy, Indore, India

Sanjay Dubey, PhD

Head of Institute
Associate Professor

Institute of Computer Application
Sage University, Indore, India

Ummulbanin Amjherawala

Assistant Professor
School of Computers

IPS Academy, Indore, India

ABSTRACT

A tree is the core building block to arrange data in a specific

order. Different tree structure arrangement gives the capability

to store, retrieve, rearrange, find, and free the data more

efficiently. Numerous algorithms build to satisfy the overall

arrangement of tree data structure to minimize the complexity

in terms of time and space. The priority queue Algorithm uses

the tree structure to give the arrangement a direction so that data

must sort and place according to its priority. Sequencing in

priority impacts the mechanism to store and retrieve the data.

In this paper comparative study perform on different tree data

structures and how it will be beneficial when the tree structure

merges with the priority queue.

General Terms

Algorithms, Tree.

Keywords

Binary Tree, Binomial, Fibonacci, Index, Heap, Priority.

1. INTRODUCTION
In today's world data and its organization play a crucial role in

the field of IT. In every field managing, filtering, and predicting

forthcoming events based on previously well-organized

structured data as well as there is a challenge to form data

arrangement efficiently, there are many algorithms

implemented to improve the efficiency of storing and retrieving

data as fast as possible.

Analyses the cache performance of the priority queues, As the

difference in execution time between a cache miss and hit can

be anywhere from twofold to tenfold or more[1], rather than

viewing priority queues as just the sum of their operations, This

will be done by considering the priority queue implementations

in terms of the Principles of Locality.

1.1 Principles of Locality
The principles of locality are based on observations regarding

memory access patterns. These observations can be

summarized as follows: memory access patterns are not

random, accesses tend to repeat themselves in time, and

accesses are often followed by accesses to nearby addresses in

the memory address space [2]. The principles of locality are

split up according to the two observations Spatial Locality and

Temporal Locality.

1.1.1 Spatial Locality
Spatial locality refers to the phenomenon that memory accesses

are often followed by accesses to addresses nearby in memory

space. This arises from the programmer's and the compilers'

tendency to lump objects together [1 2]. A good practical

example of this is arrays. Arrays are allocated as contiguous

blocks in memory, if access data at the index i, likely going to

access the data at the index i+1 shortly. An obvious way to

optimize this so that not to pull every single piece of data into

the cache just as need it is to use some sort of look ahead.

Processors implement this via something called cache lines.

Cache lines are atomic storage units in the cache which are

larger than most primitive data types, in modern processors

cache lines are typically 64 Bytes. When data is accessed and

loaded into the cache, nearby data is also loaded into the cache

to fill up the entire cache line.

1.1.2 Temporal Locality
Temporal locality refers to the phenomenon that memory

accesses tend to repeat themselves in time. It is strongly

intertwined with spatial locality in the sense that the prediction

here is not only that nearby data will be accessed in the future

but the same piece of data. Support for this is implemented by

the very existence of caches, or the fact that data is loaded from

main memory into the cache. Cache replacement policies such

as LRU also adhere to this by evicting the least recently used

cache line in the cache of a write miss.

In this study, compare and analyze different Binary tree

implementations along with the role of it in the implementation

of Priority Queue with execution time.

2. LITERATURE REVIEW

2.1 Binary Tree
A binary tree [1] is a core building block data structure. In a

binary tree element arrangement and its representation can be

easily understood. The element defines in the form of node and

its organization reflects either a full or complete binary tree.

Visit element in the form of root to a child or vice versa.

While implementing it requires lots of storage space like using

Arrays, recursion, lots of movement required while setting and

removing elements, and visiting the child repeating root node

twice, due that its execution time going high.

2.2 Binary Search Tree
In the Binary Search tree [1] with the feature of Binary tree

focus on data ordering, so that less than or greater than property

merged in the sub-node (child), left sub node follow less than

and right sub node follows greater than the rule, each sub-tree

recursively follow this property while storing and searching the

data.

While implementing it requires lots of storage space like using

recursion (stack space), lots of movement is still there while

fetching the entire element. There is another issue related to its

structure depending on what element are arranging, so there

International Journal of Computer Applications (0975 – 8887)

Volume 185 – No. 48, December 2023

2

may be the chances of either a left-skewed binary search tree

or may be right skewed binary tree structure built due to less

than or greater than a rule, which makes their arrangement

linearly.

2.3 AVL Tree
In AVL tree [3] proposed an approach to a nearly balanced

binary search tree, an optimal shape achieved by associating

rebalancing factor, the tree loses its shape while randomly

inserting and deleting node elements. Maintain its height by

checking the balancing factor of the left and right sub-tree not

more than 1 [4].

Inserting data into the binary tree is just a Binary search tree,

but at the time new node insertion checked the balance, if it

breaks the rule then applies the single and double rotation to

rebalance the tree. According to it, if the left sub-tree is left-

skewed, then put up the single right rotation, and if it is right

skewed then put up the left rotation.

Efficiency in terms of time needs O(log 𝑛) [5] when each

time addition or deletion is performed due to checking of

balance factor to balance the tree. On the other side, efficiency

in terms of space to store the balance factor of each node. The

height of the tree is at most 1.44(log 𝑛), so time to search

approx. log n and when the size of n is an average number of

comparisons for searching about log n = 0.25 [6].

2.4 Red-Black Tree
In the Red-Black tree [7 8] nodes are either red or black, the

root is always black, if there is a red node then its child never

be red, while inserting a new node of red color and its parent

node is black otherwise change the parent node color and

sibling to black and its immediate parent node to red.

Compare with the AVL tree it requires less comparison during

deletion operation but the height is increased. Assume n

number of nodes in a red-black tree. The minimum and

maximum height would be log2 𝑛 + 1and 2 log2 𝑛 + 1. If the

height is h then the minimum and maximum number of nodes

are 2h/2-1 and 2h-1. On the other side, when n nodes in an

optimal balanced binary search tree then the height would be

log2 n + 1. The number of nodes in it of height h is between

2h-1 and 2ℎ − 1[9].

2.5 Optimizing BST by rebalancing with

 Sorting Algorithm
In optimizing the Binary Search tree [7] try to improve the

result as compared with the AVL tree and Red-Black tree.

In Binary search tree insertion create 𝑛! Number of different

structures (there is n number of nodes in a tree) with the same

data but different ordering. In this method apply basic Binary

search tree insertion along with data arrangement (sorting) to

balance the tree.

In AVL and other methods rearrange the tree after each

operation, in this method get the median by traversing the tree

using stack. The time complexity is 𝑂(𝑛) because of

rearranging each node at least once to achieve the optimal

shape. Memory Space is also one of the factors by the use of

the stack to show optimal tree structure. Still, there is an issue

of unbalance, so there is a need to rebalance it [7].

2.6 Threaded Binary Tree
Threaded binary makes use of null value to improve the

traversal process and tries to utilize the space of null values

(wasted) in the Binary Search tree because it points to nothing.

They add the concept of an in-order predecessor to utilize the

node left null pointer, in the same way as the node right pointer

which points to an in-order successor [8]. It means null are

replaced by references of other nodes which are called threads.

To visit a node, in the threaded binary tree there are at most

three paths, but in the binary search tree, there is one path. If

attaching a thread, the Boolean value there set to true otherwise

false, for the differentiation of either actual link or threaded

link. This Boolean value breaks the infinite processing. The left

pointer of the leftmost node and the right pointer of the

rightmost node are null.

There are three ways to implement a thread:

2.6.1 One-way threading (Single Threaded)
Where a right child is NULL, it refers to its in-order successor.

2.6.2 Two-way threading (Double Threaded)
Where both a left child and a right child are NULL, it refers to

its in-order predecessor and in-order successor respectively.

2.6.3 Two-way threading with the header
Those are either left-most or right-most nodes that do not have

their predecessor or successor respectively, then their Null field

refers to the header node which contains three fields, the left

contains root node reference, the data field is blank, and the

right refers to itself.

2.7 Balance Binary Search Tree Globally
In this approach rearrange the reference to balance the tree [10].

In this algorithm to rebalance, first, get the sorted data by

traversing the tree using in-order recursively which is executed

in linear time. The second approach is partitioning by the

folding method [10].

This algorithm [10] first finds the order of nodes by traversing

and storing the order's content into the list in such a way that

ith position compare with ith + 1 position for less than and with

ith-1 position for greater than. Next, find the left median
⌊n-1/2⌋ and start constructing a tree with the root node. The

values less than the left median are a part of the left sub-tree

otherwise be a part of the right sub-tree. Left sub-tree and right

sub-tree are continuously selected in the existing tree. This

algorithm requires extra space as a List using an array which

requires continuous memory which creates an issue when there

is a lack of consecutive space in memory. To sort the data

traverse each node which takes O(n) time.

2.8 Splay Tree
The splay tree [11] is based on the principle of temporal

locality; according to it 90% of the accesses are to 10% of the

data items [12]. In splaying, frequently retrieve elements are

adjusted and bring and set at the top of the tree for quick access

[11].

In splaying several operations say, zig, zig-zig, and zig-zag are

performed. To make it efficient there is no requirement to store

the balance factor as additional data. Performance is high in the

application where recently accessed data is required.

Accessing (running time) to a node becomes quite expensive in

the case where the splay tree is highly unbalanced. While

looking toward total running time into consideration then it is

inexpensive (efficient) due to amortized performance

O(log 𝑛). Worse time [6] complexity may be 𝑂(𝑛). The

disadvantage is that more adjustment and within a sequence

individual operation is there.

2.9 Day-Stout-Warren Algorithm

International Journal of Computer Applications (0975 – 8887)

Volume 185 – No. 48, December 2023

3

In FORTRAN recursion not there so Day's algorithm [10]

introduced a threaded binary search tree, which was modified

by tree rebalancing in optimal time and space [13].

In this approach, first Nodes are to be sorted, to achieve this

prepare a skeleton by performing right rotation until the left

reference become null. Next, prepare the complete or almost

complete binary tree by balancing from the top of the build

skeleton.

In a complete binary tree, all nodes are exactly two children and

all leaves are at the same level. Threaded binary trees require

extra memory compared with Binary search trees. This

algorithm first stores the initial tree, but compared with other

techniques do not require much extra space.

Execution times of the number of nodes are linear. This

algorithm does not require Stack and arrays to convert into an

intermediate form from the tree. The overall running time of

the algorithm is 𝑂(𝑛).

2.10 Anderson Algorithm
This is a red-black tree-based algorithm. It [14] includes the

extra feature of the left child may not be red along with the

existing red-black tree concept. It extracts half of the

restructuring computation. Different rotations are required

along with its deletion operation are trickery.

To ignore its colouring, each node level is stored and

maintained during implementation. AA algorithm is simplified

using skew and split operation. Remove left horizontal links

called skew operation and remove consecutive horizontal links

called split operation, balancing require 3 skews and 2 split

operations. When deletion is more often required to simplify

the operations with the rule of left child may not be red [9].

2.11 Heaps (Priority Queues)
In the priority queue, continuous additions and deletions

operation try to find the greatest and lowest element and set it

frequently on a priority basis.

One way to initialize arrays of elements, do a sequential search

𝑂(𝑛) time to find the smallest element and store it temporarily,

any manipulation regarding the smallest element repeats the

sequential search. Another way to sort the list of elements using

merge sort in O(nlog n) time. Any manipulation in priority and

then sorting will take O(log 𝑛) time using binary search, but

finding the highest priority element will be done in 𝑂(1) time.

This however seems to be quite repetitive and expensive. If

considered it is only the element with the lowest priority does

the entire list sorted at all times? This issue can be resolved

using heap more efficiently.

2.12 Implicit Heap
Implicit heaps are defined in arrays; this means that they are

allocated as a contiguous block of memory which is great for

the spatial locality. Explicit heaps on the other hand exhibit

poor spatial locality as each node will be allocated separately.

When considering explicit heaps and caches, the higher

constant factor is involved so that the explicit heaps will fill the

cache quicker which results in more cache misses for equally

sized heaps.

2.13 Binary Heap
A Binary Heap [15] is a form of a binary tree. The Binary Heap

must satisfy an additional constraint, the shape property. The

shape property implies that the Binary Heap must be a complete

binary tree, that is, all levels of the heap must be filled, except

for the last level, which is filled from left to right.

The Binary Heap has some nice properties due to the shape

property. Every layer of the heap, except the root, has a layer

with twice as many nodes above it. From this, it can be

conclude that a node at index i, will have a parent with index
⌊(i-1)/2⌋. Vice versa is true for the children of a node, they

can be found at the index i*2 + C where C ∈ {1,2}. This

relationship between parent and child nodes allows to

implicitly define the heap. Store all of the nodes in a contiguous

array in the order that they are traversed through the tree from

left to right, rather than explicitly defining the tree structure.

This significantly reduces the memory overhead and improves

the locality as mentioned in section 2.2

2.14 d-ary Heap
Generalized forms of binary heaps are d-ary heaps [16]. It

contains d child nodes instead of 2 as with binary heap (d =
2). In the d-ary heap d > 2 which makes finding the upward

node faster as it takes log dn, the height of the tree, compare

with the binary heap [16]. According to the selection of d,

Cache performance is better in the d-ary heap, it runs faster in

practice compared with the theoretical aspect of RAM model

[17]. The best choice when d=4, is because of the improvement

in the cache performance of the heap.

The implementation of a d-ary Heap is identical to that of a

Binary Heap, it is just a generalization. A node at index i will

have a parent with index ⌊(i-1)/d⌋ and potential children will

be at index i*d + C where C ∈ {1,2, … , d}.

2.15 RS Tree
A randomized search Tree was given by Seidel et al. [18]. In

this algorithm, nodes contain key values as a priority which

chooses randomly. It maintains a binary search tree with

priority.

An RS Tree may be max-heap or min-heap:

Max-heap: The parent node contains a larger value compared

with its child node.

Min-heap: The parent node contains a smaller value compared

with its child node.

For each insertion follow this step and rule [18]:

Step: As a Binary search tree insert data, here insert data with

priority then rotation is applied to set (compare parent and

child) node according to priority.

Rule:

a. If p is the left successor of q, then the value of node p will

be less than the value in node q.

b. If p is the right successor of q, then the value of node p will

be greater than the value in node q.

c. If p is a child of q, then the Priority assigned to node p will

be greater or equal to the priority of q.

2.16 Binomial Tree
To understand Binomial Heap one must first understand

Binomial Trees. A Binomial Tree of degree 0 is just a single

node. A Binomial Tree of degree 1 is formed by connecting the

roots of two Binomial Trees of degree 0. This process is

recursive; a Binomial Tree of degree is formed by joining two

Binomial Trees of degreek-1.

International Journal of Computer Applications (0975 – 8887)

Volume 185 – No. 48, December 2023

4

2.17 Binomial Heap
A Binomial Heap [19] is a type of heap that unlike the Binary

Heap, which takes on the form of a Binary Tree, takes on the

form of a collection of Binomial Trees. But much like the

Binary Heap, the Binomial Heap must also satisfy the heap

property constraint. In a binomial heap, there is at most one

Binomial Tree of a given degree. Because there can only be one

Binomial Tree of a given degree in a Binomial Heap, and the

number of nodes in a Binomial Tree of degree k is 2k, the

binary representation of the number of nodes in the heap will

tell us which degree of Binomial Trees are present in the heap.

For example, a Binomial Heap with 9 nodes gives us 9 = 1001

indicating that one tree of degree 3 and one of degree 0 in

collection. The binary representation of the number of nodes in

the Binomial Heap gives great insight into the structure of the

heap. This can also be used to understand the operations on a

Binomial Heap. Inserting into a Binomial Tree works just like

the addition of binary numbers. Inserting a new node into the

Binomial Heap with 9 nodes equates to 1001+0001 = 1010 =

10, which is the number of nodes after insertion. Every time to

carry the 1 a merge of two Binomial Trees is performed, when

performing this merge it's important to make sure that the heap

property is not violated.

Binomial Heaps are typically explicitly defined, but there are

ways to implicitly define them. However such implicit

definitions do not reduce the overhead as drastically as it does

with the Binary Heap if care about maintaining the worst-case

costs. One such implementation where the Binomial Heap is

implicitly defined as a contiguous array practically requires

 lg*n extra pointers and some extra information to be stored

compared to the implicit definition of the Binary Heap [20].

2.18 Fibonacci Heap
A Fibonacci Heap [21] is a forest of rooted trees, each fulfilling

the heap property constraint. Always keep track of which of the

trees in forest has the most extreme value, min or max

depending on requirement. Theoretically, the Fibonacci Heap

is really fast compared to the other heaps, especially if the

extract-min operations are few compared to the other

operations. However, practically the large overhead of the

Fibonacci Heap makes it less desirable for most applications.

Unlike the typical implementation of the Binomial Heap, which

is also based on a forest of trees existing in a root list, do not

care about having only one tree of each degree at all times. This

allows for inserting any item as a tree of degree 0 which can be

done in 𝑂(1) time. Instead, only care about this after performs

the pop-min operation, after performing pop-min, merge trees,

allowing at most one of a given degree. A similar approach is

taken to updates which are particularly required. If the key of a

node is updated such that it violates the heap property that node

is removed from the sub-heap and moved to the root list, and

its parent is marked a loser. If a parent node that is marked a

loser loses yet another node, then the parent node is also moved

to the root list. This is done to avoid a situation where a shallow

tree with a lot of nodes since extracting the minimum value

would then be expensive. This behavior is often referred to as

lazy and is based on the simple idea that doing work in bulk is

often more efficient.

2.19 Index Sequential Priority Queue
To implement Index sequential priority queue [22] abstract data

type in such a way that priority is set as an index so that it

maintains the order as well as sequentially inserts and deletes a

list of elements. Used of this approach removes the constraint

of linked list and heap. In this approach, set the size of the index

(list) as per minimum and maximum priority. For each priority,

the index inserts a list of elements without shifting any element

with their respective position. There is a rear pointer that shows

the end of each of the priority queues. There is a front pointer

that deletes an element from the queues sequentially and

according to the priority. Duplicate priority elements are also

placed at the same index position sequentially.

The execution time needed for an insertion and deletion

operation is 𝑂(1) time. An advantage of this algorithm is to

save time on swapping as well as on splitting the link while the

insertion and deletion of nodes occur. The length of the same

priority node is independent of the actual length of the queue.

This algorithm presented scalability according to time and

space as well as removing the task of exchanging the element

according to the precedence of an element in a queue by using

index sequencing. This algorithm minimizes the operation of

the heap and linked list by exploring the index mechanism as a

priority to implement the priority queue efficiently.

3. APPLICATION
The following table 1[23] shows the field and application

where Binary tree utilized.

Table 1．Application of Binary Tree.

Field Application

File System Organizing and storing files.

Search Engines Indexing and ranging web pages.

Sorting Binary insertion and quick sort

algorithms.

Math Representing math expressions for

evaluating and simplifying.

Data Compression Encoding character using

Huffman coding

Decision Trees Modeling decisions and

consequences in machine learning.

String Retrieval Storing and retrieving string using

trie data structure.

Game AI Modeling Possible moves and

outcomes in game artificial

intelligence.

Network Routing Routing data through computer

network.

Arithmetic coding Encoding character with variable

length codes using binary tree.

Priority Queues Efficient access to the item with

the highest priority.

Image Processing Representing image regions and

shapes

Cryptography Generating and managing

encryption and decryption keys.

International Journal of Computer Applications (0975 – 8887)

Volume 185 – No. 48, December 2023

5

4. CONCLUSION
Although the list of research is not anticipated to be exhaustive,

this study elaborates on research connected to several Binary

tree Algorithms that are used to create priority queues. Despite

this, the algorithm can be built very efficiently in terms of

execution. Hybridization and split it to make more efficient.

According to research, there are numerous more processes

needed to meet the requirements for either storage space or

execution time.

5. REFERENCES
[1] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D.

Ullman. "Compilers: Principles, Techniques, and Tools"

(2nd Edition). Addison-Wesley Longman Publishing Co.,

Inc., USA, (2006).

[2] Bruce L. Jacob, Spencer W. Ng, and David T. Wang.

(2008) "Memory Systems: Cache, DRAM", Disk. Morgan

Kaufmann.

[3] Adel'son-Vel'skii, G. M., and Landis, E. M. (1962), "An

Algorithm for the Organization of information",

Accession number: AD0406009.

[4] Michael T. Goodrich, Roberto Tamassia, and David M.

Mount, "Data Structures and Algorithms in C++", John

Wiley & Sons, Inc, ISBN: 0-471-20208-8.

[5] Michael. T. Goodrich, Roberto Tamassia, "Algorithm

Design Foundations, Analysis, and Internet Examples".

John Wiley & Sons, Inc. ISBN: 0-471-38365-1.

[6] Robert L. Kruse Alexander J. Ryba, "Data Structures and

Program Design in C++", Prentice Hall, ISBN: 0-13-

768995-0, 1998.

[7] W. A. Martin and D. N. Ness (1972) "Optimizing Binary

Search Trees Grown with a Sorting Algorithm" In

Communication of ACM, Vol. 15, Issue. 2, pp. 88-93.

[8] Day, A. C., 1976, "Balancing a Binary Tree", Computer

Journal, XIX, pp. 360-361.

[9] Mark Allen Weiss, "Data Structure and Problem Solving

using Java 3rd Edition" Addison-Wesley, ISBN:

9780321322135.

[10] His Chang and Sitharama Iyengar (1984) "Efficient

Algorithms to Globally Balance a Binary Search Tree", In

Communication of ACM, Vol. 27, Issue.7, pp. 695-702.

[11] Daniel Dominic Sleator and Robert Endre Tarjan (1985)

"Self Adjusting Binary Search Trees", In Journal of the

Association for Computing Machinery, Vol. 32, No. 3.

[12] William Stallings, "Computer Organization and

Architecture" 7th Edition, Pearson Edition, ISBN: 81-

7758-993-8.

[13] Quentin F. Stout and Belle L. Warren (1986) "Tree

Rebalancing in Optimal Time and Space", In

Communications of the ACM, Vol. 29, No. 9.

[14] A. Andersson. (1993) "Balanced Search Trees Made

Simple", WADS.

[15] J. W. J. Williams (1964) "Algorithm 232: Heapsort",

Communications of the ACM 7, 6, pp. 347-348.

[16] Donald B. Johnson. (1975) "Priority queues with an

update and finding minimum spanning trees". Information

Processing Letters, 4(3):53-57.

[17] Anthony LaMarca and Richard Ladner. (1996) "The

influence of caches on the performance of heaps". Journal

of Experimental Algorithmics, 1:4.

[18] Seidel, Raimund and Aragon, Cecilia R. (1996)

"Randomized Search Trees", Algorithmica 16 (4/5): pp.

464-497.

[19] Vuillemin, Jean: (1978) "A data structure for

manipulating priority queues”. Communications of the

ACM. 21 (4), pp. 309–315.

[20] Svante Carlsson, J. Ian Munro, and Patricio V. Poblete.

(1988) "An implicit binomial queue with constant

insertion time". In Rolf Karlsson and Andrzej Lingas,

editors, SWAT 88: 1st Scandinavian Workshop on

Algorithm Theory Halmstad, Sweden, Springer Berlin

Heidelberg. LNCS 318, pages 1-13.

[21] Thomas H. Cormen, Charles E. Leiserson, Ronald L.

Rivest, and Clifford Stein. Introduction to Algorithms,

Third Edition. The MIT Press, 3rd edition,(2009).

[22] F. Amjherawala, U. Amjherawala. (2019) 'A New

Algorithm to Implement Priority Queue with Index

Sequential Chaining', Springer International Conference

on Advanced Computing Networking (ICANI), Advances

in Intelligent Systems and Computing 870, pp 421-428.

[23] Kumar A (2023) Application of Binary Tree.

https://www.codingninjas.com. Accessed 11 August

2023.

IJCATM : www.ijcaonline.org

https://www.codingninjas.com/

