
International Journal of Computer Applications (0975 – 8887)

Volume 185 – No. 48, December 2023

17

Implementation of Citra Technology to Identify the

Freshness of Shrimp for Consumption

Aris Prayogo
Yogyakarta University of Technology

Yogyakarta, Indonesia

Enny Itje Sela
Yogyakarta University of Technology

Yogyakarta, Indonesia

ABSTRACT

The increasing market demand for shrimp makes many parties

take advantage of this condition by selling shrimp that are not

suitable for consumption such as rotten shrimp, diseased

shrimp and formalin. To ensure the quality of shrimp received

by consumers, it is necessary to test the freshness, so far the

tests carried out through microbiological and chemical analysis

but in this way it is less effective because it takes longer time,

requires a lot of labor, requires a fairly expensive cost, so it

affects the production of shrimp. The method used in this

research is Convolutional Neural Network (CNN) which is

done through classification with a preprocessing stage

consisting of rescale, rotation range, horizontal flip, shear

range, fill mode, width shift range, height shift range and zoom

range. This classification stage produces shrimp freshness

output which is divided into 3 categories. System development

with the convolutional neural network method gets the best

accuracy of 99.39% by using a learning rate of 0.001 and max

epoch 100 with the results of the classification of the three

classes with the tested Citra is correct..

General Terms

VS Code, Jupyter Notebook, Python, Web Application

Keywords

Convolutional Neural Network (CNN), Shrimp, Freshness

1. INTRODUCTION
Shrimp is one of the main commodities in the fisheries sub-

sector that is expected to increase foreign exchange. Market

demand tends to increase and the available resources are

sufficient to provide enormous opportunities. An efficient and

integrated market ensures restoration of stability of prices

across geographically separated markets over the long run [1].

In recent years, research on keeping shrimp fresh has become

of great interest to aquatic product researchers [2]. Shrimp

freshness is the most basic indication in determining the quality

of shrimp before consumption because shrimp is a food that

quickly decays due to spoilage (perishable food). Therefore, to

protect the rights and interests of consumers, shrimp freshness

identification technology has received much attention in food

research [3].

Modern quality of life and consumer attitudes have increased

the interest in food safety, health, food quality, economic

issues, and environmental problems [4]. The freshness of

shrimp can be seen through changes that occur in the color of

the skin. Checking shrimp freshness through microbiological

and chemical analysis is ineffective as these methods are time-

consuming, labor-intensive and expensive. Detection and

identification that is fast, accurate and minimizes false

negatives is expected to provide the right treatment [5].

To address the current problem of time-consuming and costly

shrimp freshness detection, in order to be able to accurately

identify the freshness grade to which shrimp belong, and

provide a fast, accurate and low-cost identification method for

the cold chain transportation industry [6]. Convolutional

Neural Networks (CNNs) represent a category of deep learning

algorithms renowned for their exceptional capacity to extract

intricate features from image data [7]. In the process of the

development of computer vision technology, image

classification is the key to improve the level of technology

development, and it also relates to the efficiency of pattern

recognition [8]. Therefore, this research focuses on designing

an application that is used to identify the freshness of shrimp

using the Convolutional Neural Networks method because it

has been proven through several previous studies that this

method produces good enough accuracy so that the feasibility

test for shrimp consumption is well achieved.

2. RESEARCH METHOD
System design is an overview of the flow of the running system.

The system design is visualized in Figure 1 below.

Fig 1: Architecture Model

This system is web-based, users enter image data in the form of

images. The image that has been entered will be preprocessed

then continued by inputting the Library as a calculation and

classification stage using the Convolutional Neural Network

model. Data preprocessing is a fundamental stage in deep

learning modeling and serves as the cornerstone of reliable data

analytics [9]. Preprocessing aims to correct inconsistent data

errors to make it easier to understand and process. After the

data is classified, it will display the output results in the form

of a description of the condition of the shrimp. With these

results, users will immediately know the freshness condition of

shrimp so that they can avoid high bacterial content in shrimp

that are not fresh.

2.1 Data Collection Procedure
The data collection process in this study went through 2 stages,

namely observation and literature studies.

International Journal of Computer Applications (0975 – 8887)

Volume 185 – No. 48, December 2023

18

2.1.1 Interview
Researchers collected data through direct interviews with

relevant parties conducted for two weeks from November 6 to

November 20, 2022. Data obtained from shrimp farmers and

sellers were taken pictures as research material.

2.1.2 Literature Study
Researchers collect information sourced from scientific

journals and books available on the internet. A scientific work

in the form of theories in previous studies is needed with the

aim of knowing the basic concepts of a problem in the object

of research.

2.2 Conceptual Design
The complex product development project is a conversion

process from customers’ demands to a physical structure with

consideration of numerous design constraints [10]. Conceptual

design is the process of building information models that do not

depend on physical considerations such as application

programs, programming languages used, hardware platforms,

and others. A good conceptual design will produce a quality

system or application that meets user needs. Therefore, the

system design consists of algorithms described in the form of

flowcharts. Flowcharts provide an alternative approach to

teaching complex content, which allows students to organize

and summarize information that promotes meaningful learning

[11]. The use of flowcharts aims to facilitate understanding of

the process, identify problems, and help communication both

between developers, users, and other interested parties.

2.2.1 Convolutional Neural Network (CNN)
Convolutional Neural Network (CNN) is a popular deep

learning algorithm applied to image data due to its high

network depth.

Fig 2: Architecture CNN

Convolutional Neural Network architecture is divided into two

main parts, namely Feature Learning and Classification.

Feature Learning aims to process an input into features based

on the characteristics of the input in the form of numbers in

vector form, this layer is divided into two parts namely

Convolution Layer and Poling Layer. Classification aims to

classify neurons that have been extracted features,

classification is divided into three namely Flatten, Fully-

connected and Softmax.

2.2.2 Shrimp Identification
In Figure 3 is the data processing process using the CNN

method. The process flow will explain in detail the steps to

identify shrimp using the CNN method.

Fig 3: Shrimp Identification

The first stage is the input stage of the image data to be used.

Next is the pre-processing stage which functions to process the

inputted image data so that it can be used in the next process.

Furthermore, the data division stage becomes 3, namely

training data, testing data, and validation data. Then the

Training data performs a resize operation and is continued with

the first CNN convolution operation where the image will be

carried out a convolution operation that determines the number

of layers and is continued with a maxpooling operation that

determines the maximum value of each filter shift. Then flatten

which aims to change in matrix form into a vector.

Furthermore, the fully connected process at this stage will

calculate each neuron that produces an error value

using weights that are continuously updated using the

backpropagation method. The softmax stage produces the

output of class prediction results where the image data will be

put into a predetermined class. The Testing process aims to test

the data to get accuracy. The first process is to enter the image

data to be processed. Next do the Pre-processing stage. Then

input the CNN model that has been stored in the Training

process where at this stage it will determine the classification

of the image class. Finally, display the results and accuracy.

2.2.3 Resize
In Figure 4 is the Resize process, starting with entering the

path/file of the image to be resized and the desired new width

value. Next, the image is opened using the given path, and the

width and height of the image are taken. The height to width

ratio is calculated to preserve the aspect of the image. Then, a

new height is calculated based on the aspect ratio and the

desired new width.

Fig 4: Resize Process

International Journal of Computer Applications (0975 – 8887)

Volume 185 – No. 48, December 2023

19

After that, the image is resized according to the new calculated

width and height. The resizing process results in a resized

image. Finally, the resized image is returned as the output of

the function.

2.2.4 Augmentation
In the Augmentation process is a rescale process that aims to

change the scale of the image value. First is the rotation range

process of 180 followed by a horizontal flip to reflect the image

horizontally. Then the shear range serves to tilt the image. Fill

mode serves to fill areas that have no value.

Fig 5: Augmentation Process

Then in the width shift range, the number used is between 0.0

and 1.0. This number determines how much the image is

randomly shifted, either to the right or to the left. After that, the

height shift range works the same as the width shift range, but

the shift is done vertically. Finally, the zoom range serves to

enlarge the image.

3. DISCUSSION AND RESULT

3.1 Assumptions
The assumption in this study is that the identification of

freshness and survival of vanamei shrimp based on shrimp

color images can prevent the spread of disease due to

consuming shrimp that are not fresh.

3.2 Hypothesis
Based on the assumptions obtained, this research hypothesizes

that "Implementation of the Convolution Neural Network

(CNN) method to identify the freshness and feasibility of

shrimp can help people to know the level of freshness of shrimp

that is suitable for consumption".

3.3 Run an Experiment
After the model design and data collection are complete, the

next step is coding. This system uses a Jupyter notebook as the

main workspace in building the system. Jupyter Notebook (JN)

is an example of an innovative and efficient digital tool that can

be used effectively in higher education [12]. Jupyter Notebooks

have transformed the communication of data analysis pipelines

by facilitating a modular structure that brings together code,

markdown text, and interactive visualizations [13]. Then

Python was used as the programming language to create the

system. Python is an open-source programming language that

has been gaining popularity in research and development areas

[14]. Python provides a user-friendly and flexible environment

for implementing these analytical methods, allowing for more

efficient and reliable results [15]. Finally, researchers use

Visual Studio Code as a workspace in building web

applications.

3.4 Implementations
Implementation aims to apply the results of system analysis and

design into an application that can be used by the community

to determine the freshness of shrimp.

3.4.1 Implementation of CNN Model

3.4.1.1 Library Configuration
Setup library uses several libraries needed for this research

including numpy, pandas, matplotlib for data processing.

Tensorflow and Keras libraries for machine learning. And

system and openCV libraries for image preprocessing.

Fig 6: Library Configuration

3.4.1.2 Data Preparation
This research uses data in the form of images taken directly

from vanamei shrimp farmers and vanamei shrimp sellers. The

dataset in this study is an image or image with a total of 413,

the dataset is categorized into 3 groups, namely fresh shrimp

with a total of 279, less fresh shrimp 59 and not fresh shrimp

75.

Table 1. Sample Shrimp Data

No Citra Description

1

Fresh

2

Less Fresh

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

32

33

34

import tensorflow as tf

from tensorflow import keras

from tensorflow.keras import backend as K

from tensorflow.keras.layers import Dense,

Activation,Dropout,Conv2D, MaxPooling2D,BatchNormalization,

Flatten,Input

from tensorflow.keras.optimizers import Adam, Adamax

from tensorflow.keras.metrics import categorical_crossentropy

from tensorflow.keras import regularizers

from tensorflow.keras.preprocessing.image import

ImageDataGenerator

from tensorflow.keras.models import Model, load_model,

Sequential

from keras.callbacks import ModelCheckpoint

import numpy as np

import pandas as pd

from sklearn.model_selection import train_test_split

import matplotlib.pyplot as plt

from matplotlib.pyplot import imshow

import os

import seaborn as sns

sns.set_style('darkgrid')

from sklearn.metrics import confusion_matrix,

classification_report

from IPython.display import display, HTML

from PIL import Image

import random

International Journal of Computer Applications (0975 – 8887)

Volume 185 – No. 48, December 2023

20

3

Not Fresh

The second process is the dataset load process where a variable

with the name dataset is used to access the material folder.

Based on Figure 7 Load dataset, through the folder all files with

jpeg, jpg and png types will be collected in the form of a list.

The filepath list is created from the paths where the image files

are stored. The list is then merged together in the filepaths_ori

variable, converted into a dataframe along with the list of

labels, and stored in the df variable.

Fig 7: Calling Data

3.4.1.3 Data Preprocessing

Data Sharing
Separate the shrimp image data into training data with a ratio

of 80%, test data 10%, and validation data 10%.

Fig 8: Data Sharing

Resize
The resizing process produces a resized image to be returned as

the function output.

Fig 9: Resize

Augmentation
Augmentation is the process of modifying images such as

rotation, flipping, rescaling and others. Augmentation aims to

enable the model to recognize different image conditions and

improve model performance.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

sdir = r'C:/Users/acer/Documents/1 Proyek

Informatika/dataset/bahan'

filepaths = []

labels = []

classlist = os.listdir(sdir)

for klass in classlist:

 classpath = os.path.join(sdir, klass)

 if os.path.isdir(classpath):

 flist = os.listdir(classpath)

 for f in flist:

 fpath = os.path.join(classpath, f)

 filepaths.append(fpath)

 labels.append(klass)

df = pd.DataFrame({'filepaths': filepaths, 'labels': labels})

print(df.head())

print(df['labels'].value_counts())

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

30

31

32

33

34

train_split = 0.8

test_split = 0.1

valid_split = 0.1

Mendapatkan jumlah total data

total_data = len(df)

Mengacak indeks data

random_indices = list(range(total_data))

random.shuffle(random_indices)

Menghitung jumlah data untuk setiap subset

train_size = int(train_split * total_data)

test_size = int(test_split * total_data)

valid_size = total_data - train_size - test_size

Memisahkan data menjadi data latih, data uji, dan data

validasi

train_df = df.iloc[random_indices[:train_size]]

test_df = df.iloc[random_indices[train_size:(train_size +

test_size)]]

valid_df = df.iloc[random_indices[(train_size + test_size):]]

print('Panjang train_df:', len(train_df))

print('Panjang test_df:', len(test_df))

print('Panjang valid_df:', len(valid_df))

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

30

31

32

33

34

Fungsi resize gambar

def resize_image(image_path, new_width):

 image = Image.open(image_path)

 width, height = image.size

 ratio = height / width

 new_height = int(ratio * new_width)

 resized_image = image.resize((new_width, new_height))

 return resized_image

Folder tujuan untuk menyimpan gambar hasil resize

Tidak menggunakan direktori tujuan khusus

resized_train_dir = "C:/Users/acer/Documents/1 Proyek

Informatika/dataset/g"

resized_train_labels_dir = "C:/Users/acer/Documents/1 Proyek

Informatika/dataset/l"

Membuat direktori tujuan jika belum ada

if not os.path.exists(resized_train_dir):

 os.makedirs(resized_train_dir)

if not os.path.exists(resized_train_labels_dir):

 os.makedirs(resized_train_labels_dir)

Melakukan resize pada data training

for index, row in train_df.iterrows():

 image_path = row['filepaths']

 label = row['labels']

 resized_image = resize_image(image_path, 300)

 resized_image_path = os.path.join(resized_train_dir,

f"{index}.jpg")

 resized_image.save(resized_image_path)

 resized_label_path =

os.path.join(resized_train_labels_dir, f"{index}.txt")

 with open(resized_label_path, 'w') as f:

 f.write(label)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

30

31

32

33

34

height = 224

width = 224

channels = 3

batch_size = 64

img_shape = (height, width, channels)

img_size = (height, width)

length = len(test_df)

test_batch_size = sorted([int(length/n) for n in range(1,

length+1) if length % n == 0 and length/n <= 80],

reverse=True)[0]

test_steps = int(length / test_batch_size)

print('test batch size:', test_batch_size, 'test steps:',

test_steps)

gen = ImageDataGenerator(

 rescale=1./255,

 rotation_range=180,

 horizontal_flip=True,

 shear_range=0.3,

 fill_mode='nearest',

 width_shift_range=0.2,

 height_shift_range=0.2,

 zoom_range=0.1

)

train_gen = gen.flow_from_dataframe(

 train_df,

 x_col='filepaths',

 y_col='labels',

 target_size=img_size,

 class_mode='categorical',

 color_mode='rgb',

 shuffle=True,

 batch_size=batch_size

)

valid_gen = gen.flow_from_dataframe(

 valid_df,

 x_col='filepaths',

 y_col='labels',

 target_size=img_size,

 class_mode='categorical',

 color_mode='rgb',

 shuffle=True,

International Journal of Computer Applications (0975 – 8887)

Volume 185 – No. 48, December 2023

21

Fig 10: Augmentation

3.4.1.4 Creating CNN Models
Modeled a CNN using a library called keras. Three

convolutional layers with a matrix using the relu activation

function and three max pooling layers with a 2×2 matrix. Then

the flatten layer is used to make the input results from the

previous layer into one line. Followed by the hidden layer using

relu activation. Finally, the output layer uses softmax activation

with three outputs.

Fig 11: CNN Model

Fig 12: Result of CNN Model

3.4.1.5 Train the Model
The model was trained using the adam optimizer, with a

maximum epoch of 50. The steps per epoch and the validation

steps were adjusted according to the batch size and the amount

of data.

Fig 13: Train the Model

The following are the results of evaluating the accuracy and

loss of the test data obtained.

1/1 [==============================] - 8s 8s/step - loss: 0.1319 - accuracy:
0.9756
accuracy on the test set is 97.56 %

3.4.1.6 Visualization of Accuracy and Loss
Visualize the accuracy and loss results obtained after training

the model. The library used for visualization is matplotlib. The

x-axis is the epoch length y-axis is the sum of accuracy and

loss. The visualization results get a learning rate of 0.008.

Fig 14: Accuracy and Loss Value

Fig 15: Result of Accuracy and Loss Value

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

30

31

32

33

34

height = 224

width = 224

channels = 3

batch_size = 64

img_shape = (height, width, channels)

img_size = (height, width)

length = len(test_df)

test_batch_size = sorted([int(length/n) for n in range(1,

length+1) if length % n == 0 and length/n <= 80],

reverse=True)[0]

test_steps = int(length / test_batch_size)

print('test batch size:', test_batch_size, 'test steps:',

test_steps)

gen = ImageDataGenerator(

 rescale=1./255,

 rotation_range=180,

 horizontal_flip=True,

 shear_range=0.3,

 fill_mode='nearest',

 width_shift_range=0.2,

 height_shift_range=0.2,

 zoom_range=0.1

)

train_gen = gen.flow_from_dataframe(

 train_df,

 x_col='filepaths',

 y_col='labels',

 target_size=img_size,

 class_mode='categorical',

 color_mode='rgb',

 shuffle=True,

 batch_size=batch_size

)

valid_gen = gen.flow_from_dataframe(

 valid_df,

 x_col='filepaths',

 y_col='labels',

 target_size=img_size,

 class_mode='categorical',

 color_mode='rgb',

 shuffle=True,

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

base_model=tf.keras.applications.Xception(include_top=False,

weights="imagenet",input_tensor=Input(shape=(224,224,3)))

model_name = 'Udang'

print("Building model with", base_model)

model = tf.keras.Sequential([

 base_model,

 tf.keras.layers.Conv2D(filters=32,

padding='same', kernel_size=3, activation='relu', strides=1),

 tf.keras.layers.MaxPool2D(pool_size=2,

strides=2),

 tf.keras.layers.Dropout(rate=0.5),

 tf.keras.layers.Flatten(),

 tf.keras.layers.Dense(3, activation='softmax')

])

model.compile(optimizer=tf.keras.optimizers.Adam(learning_rat

e=0.008), loss='categorical_crossentropy',

metrics='accuracy')

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

Model: "sequential_1"

 Layer (type) Output Shape Param

===
====
 xception (Functional) (None, 7, 7, 2048)
20861480

 conv2d_9 (Conv2D) (None, 7, 7, 32) 589856

 max_pooling2d_1 (MaxPooling (None, 3, 3, 32) 0
 2D)

 dropout_1 (Dropout) (None, 3, 3, 32) 0

 flatten_1 (Flatten) (None, 288) 0

 dense_1 (Dense) (None, 3) 867

===
====
Total params: 21,452,203
Trainable params: 590,723
Non-trainable params: 20,861,480

1
2
3
4
5
6
7

epochs =100

history=model.fit(x=train_gen, epochs=epochs,

validation_data=valid_gen)

1
2
3
4
5
6
7

def tr_plot(tr_data, start_epoch):

 #Plot the training and validation data

 tacc=tr_data.history['accuracy']

 tloss=tr_data.history['loss']

 vacc=tr_data.history['val_accuracy']

 vloss=tr_data.history['val_loss']

 Epoch_count=len(tacc)+ start_epoch

 Epochs=[]

 for i in range (start_epoch ,Epoch_count):

 Epochs.append(i+1)

 index_loss=np.argmin(vloss)# this is the epoch with the

lowest validation loss

 val_lowest=vloss[index_loss]

 index_acc=np.argmax(vacc)

 acc_highest=vacc[index_acc]

 plt.style.use('fivethirtyeight')

 sc_label='best epoch= '+ str(index_loss+1 +start_epoch)

 vc_label='best epoch= '+ str(index_acc + 1+ start_epoch)

 fig,axes=plt.subplots(nrows=1, ncols=2, figsize=(20,8))

 axes[0].plot(Epochs,tloss, 'r', label='Training loss')

 axes[0].plot(Epochs,vloss,'g',label='Validation loss')

 axes[0].scatter(index_loss+1 +start_epoch,val_lowest,

s=150, c= 'blue', label=sc_label)

 axes[0].set_title('Training and Validation Loss')

 axes[0].set_xlabel('Epochs')

 axes[0].set_ylabel('Loss')

 axes[0].legend()

 axes[1].plot (Epochs,tacc,'r',label= 'Training Accuracy')

 axes[1].plot (Epochs,vacc,'g',label= 'Validation

Accuracy')

 axes[1].scatter(index_acc+1 +start_epoch,acc_highest,

s=150, c= 'blue', label=vc_label)

 axes[1].set_title('Training and Validation Accuracy')

 axes[1].set_xlabel('Epochs')

 axes[1].set_ylabel('Accuracy')

 axes[1].legend()

 plt.tight_layout

 #plt.style.use('fivethirtyeight')

 plt.show()

International Journal of Computer Applications (0975 – 8887)

Volume 185 – No. 48, December 2023

22

3.4.2 Implementation of WEB

3.4.2.1 Implementation of User Page
Implementation of the User page interface is the

implementation of web pages used by User web visitors that

contain information about the Shrimp Freshness Classification

System.

Fig 16: Implementation of User Page

3.4.2.2 Flask Module
The flask module is used to connect the web with machine

learning using the python programming language.

Fig 17: Flask Module

3.4.2.3 Home Page
After running the model and knowing the accuracy value both

on training data and on testing data, the next step is to make

predictions using data that has never been trained and tested

before. To make predictions, a python library is used, namely

Flask for WEB creation. Based on Figure 18 Implementation

of the main form before the image is inserted, in the figure the

flow is that the image is inserted using the insert button. When

the image is inserted, a condition check will be performed

whether the image is png, jpg, or jpeg format, otherwise the

system cannot accept the image.

Fig 18: Home Page

If all the conditions have been met, then it can be seen in Figure

19 which is the implementation of the main form after entering

the image. All images that appear will be resized so that the size

when displayed matches the frame that has been created. Next

is to detect the shape of the face by clicking the Shrimp

Freshness Prediction button where when the button is clicked it

will display the prediction results.

Fig 19: Result after Image Insertion

3.5 Discussion of Result
This stage will test the system results with different parameters.

The parameter to be compared is the learning rate. The learning

rate tested is divided into 3 namely 0.001, 0.01, and 0.1. The

comparison results that will be displayed are accuracy

evaluation, image classification, accuracy and loss

visualization. The following is a table of comparison results

with different learning rates.

1
2
3
4
5
6
7

<!DOCTYPE html>

<html lang="en">

<head>

 <meta charset="UTF-8">

 <meta http-equiv="X-UA-Compatible" content="IE=edge">

 <meta name="viewport" content="width=device-width,

initial-scale=1.0">

 <title>Image Classification</title>

 <link rel="stylesheet"

href="https://cdnjs.cloudflare.com/ajax/libs/twitter-

bootstrap/4.6.0/css/bootstrap.min.css">

 <style>

 body {

 background-color: #9aa1a7;

 }

 .container-box {

 display: flex;

 flex-direction: column;

 align-items: center;

 justify-content: center;

 height: 80vh;

 }

 .image-container {

 text-align: center;

 margin-bottom: 20px;

 }

 .image-container img {

 max-width: 30%;

 height: auto;

 }

 .result {

 margin-bottom: 10px;

 }

 .card {

 max-width: 600px;

 margin: 0 auto;

 }

 .form-container {

1
2
3
4
5
6
7

from flask import Flask, render_template, request

from tensorflow.keras.models import load_model

from tensorflow.keras.preprocessing import image

import numpy as np

import os

import tempfile

app = Flask(__name__, static_folder='static')

model = load_model('Udang-Udang-100.0.h5')

class_names = ['Udang kurang segar', 'Udang segar', 'Udang

tidak segar']

def preprocess_image(image_path):

 img = image.load_img(image_path, target_size=(224, 224))

 img = image.img_to_array(img)

 img = np.expand_dims(img, axis=0)

 img = img / 255.0

 return img

def predict_image(image_path):

 img = preprocess_image(image_path)

 predictions = model.predict(img)

 predicted_class = np.argmax(predictions[0])

 class_label = class_names[predicted_class]

 return class_label

@app.route('/')

def home():

 return render_template('index.html', prediction=None)

import os

import shutil

import os

import shutil

...

@app.route('/predict', methods=['POST'])

def predict():

 if request.method == 'POST' and 'image' in request.files:

 # Mengambil file gambar dari form

 image_file = request.files['image']

 # Menyimpan file gambar sementara di direktori lokal

 temp_dir = 'temp'

International Journal of Computer Applications (0975 – 8887)

Volume 185 – No. 48, December 2023

23

Table 2. Comparison Results

Architecture Variations Accuracy Learning rate

From Scratch

1 88.89 % 0,001

2 98.77 % 0,01

3 87.50 % 0,1

Xception

1 99.39 % 0,001

2 98.17 % 0,01

3 60.49 % 0,1

NASNetMobile

1 97.53 % 0,001

2 96.58 % 0,01

3 64.20 % 0,1

VGG16

1 91.36 % 0,001

2 81.48 % 0,01

3 71.60 % 0,1

In Table 2, the comparison results get the best accuracy for

learning rate 0.001 with correct classification results for all

three classes. For learning rate 0.01 and 0.01 also get good

accuracy but, for the less fresh shrimp class is classified as not

fresh shrimp. The difference is in the visualization of accuracy

and loss.

4. CONCLUSION
Based on the results of the research, a classification system of

shrimp freshness level has been made with three classes,

namely fresh shrimp, less fresh shrimp, and not fresh shrimp.

The freshness level of shrimp in this study is characterized by

color changes. Fresh shrimp is bright transparent in color while

less fresh shrimp is pale white and there are red and black spots

on the head of the shrimp and finally not fresh shrimp is reddish

in color.

System design using convolutional neural network model

Xception method Xception in this second variation gets the best

accuracy of 99.39% by using a learning rate of 0.001 and max

epoch 100 with the results of the classification of the three

classes with the tested image is correct.

5. REFERENCES
[1] N. D. Singh, M. Krishnan, N. Sivaramane, R. V. and V. R.

Kiresur, "Market integration and price transmission in

Indian shrimp exports," Aquaculture, vol. 561, 2022.

[2] F. Zhan, Z. Li, D. Pan, S. Benjakul, X. Li and B. Zhang,

"Investigating the migration hypothesis: Effects of

trypsin-like protease on the quality of muscle proteins of

red shrimp (Solenocera crassicornis) during cold storage,"

Food Chemistry: X, vol. 20, 2023.

[3] Y. Zhou, L. Jiao, J. Wu, Y. Zhang, Q. Zhu and D. Dong,

"Non-destructive and in-situ detection of shrimp freshness

using mid-infrared fiber-optic evanescent wave

spectroscopy," Food Chemistry, vol. 422, 2023.

[4] S. B. Hashim and et. al, "Enhancement of a hybrid

colorimetric film incorporating Origanum compactum

essential oil as antibacterial and monitor chicken breast

and shrimp freshness," Food Chemistry, vol. 432, 2024.

[5] E. I. Sela and A. Harjoko, "Deteksi Dan Identifikasi

Ukuran Obyek Abnormal (Studi Kasus : Citra Otak

Manusia)," Seminar Nasional Informatika (SEMNASIF),

vol. 1, no. 1, 2011.

[6] K. Wang, C. Zhang, R. Wang and X. Ding, "Quality non-

destructive diagnosis of red shrimp based on image

processing," Journal of Food Engineering, vol. 357, 2023.

[7] A. Jahedsaravani, M. Massinaei and M. Zarie,

"Measurement of bubble size and froth velocity using

convolutional neural networks," Minerals Engineering,

vol. 204, 2023.

[8] W. Chen and M. Li, "Standardized motion detection and

real time heart rate monitoring of aerobics training based

on convolution neural network," Preventive Medicine,

vol. 174, 2023.

[9] E. Oluwasakin, "Minimization of high computational cost

in data preprocessing and modeling using MPI4Py,"

Machine Learning with Applications, vol. 13, 2023.

[10] J. Mao, Y. Zhu, M. Chen, G. Chen, C. Yan and D. Liu, "A

contradiction solving method for complex product

conceptual design based on deep learning and

technological evolution patterns," Advanced Engineering

Informatics, vol. 55, 2023.

[11] A. E. Zimmermann, E. E. King and D. D. Bode,

"Effectiveness and Utility of Flowcharts on Learning in a

Classroom Setting: A Mixed-Methods Study," American

Journal of Pharmaceutical Education, 2023.

[12] J. Bascunana, S. Leon, M. Gonzales-Miquel, E. J.

Gonzalez and J. Ramirez, "Impact of Jupyter Notebook as

a tool to enhance the learning process in chemical

engineering modules," Education for Chemical Engineers,

vol. 44, pp. 155-163, 2023.

[13] D. J. Clarke, "Appyters: Turning Jupyter Notebooks into

data-driven web apps," Patterns, vol. 2, no. 3, 2021.

[14] A. J. Cerveira, "Automating behavioral analysis in

neuroscience: Development of an open-source python

software for more consistent and reliable results," Journal

of Neuroscience Methods, vol. 398, 2023.

[15] P. Jalili, A. Shateri, A. M. Ganji, B. Jalili and D. D. Ganji,

"Analytical analyzing mixed convection flow of nanofluid

in a vertical channel using python approach," Result in

Physics, vol. 52, 2023.

IJCATM : www.ijcaonline.org

