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ABSTRACT 

Survival analysis is a branch of statistics where it is a collection 

of statistical procedures for data analysis where the outcome 

variable of interest is time until an event occurs, such as failure 

in mechanical systems. Hazard rate estimation for the lifetime 

event is a basic tool for processing survival analysis. Kernel 

estimators are boundary effects near the endpoints of the 

support of the hazard rate and some solutions have been 

proposed to solve this problem, including the use of 

asymmetric kernel functions like the Gumbel type 2 kernel 

function. We study the non-parametric estimation of the hazard 

rate function using the Gumbel type 2 kernel function for 

identically independent data. The bias, variance and optimal 

bandwidth will be investigated, then AMSE of the proposed 

estimator were obtained. 
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1. INTRODUCTION 
Kernel density estimation is a useful statistical tool. Often 

shortened to KDE, it’s a technique that let’s you create a 

smooth curve given a set of data. It appeared in early 1950 by 

Parzen and Rosenblatt . Although the method was introduced 

in the middle of the last century until recently it remained 

unpopular because of its computationally intensive nature. The 

kernel function is a good alternative to the histogram, where the 

histogram is an estimator of the probability function but the 

histogram can not provide us with the probability of the event 

of interest, While the kernel function treats these 

disadvantages. Therefore, the kernel function can be used as an 

estimator for the unknown probability density function. For 

more details in this regard, we may refer the reader to [4], [10], 

[12] and [11]. In this regard, the non-parametric estimation of 

hazard rates for lifetime data has become a common tool for 

statisticians, as it is an essential tool for processing survival 

analysis. Focusing on kernel estimators, it was observed that 

bias problems occur when estimating near the endpoints of the 

data. These are called a boundary effect. Boundary effects are 

a major complication when smoothing hazard rate. Estimators 

of the hazard function based on kernel smoothing have been 

studied widely. For more details, see [6] and [8]. Recently, [3] 

suggested a nice way to circumvent the well-known boundary 

bias or edge effect that appears in standard kernel density 

estimation. There are many symmetric parametric kernel 

estimators in the literature. Specifically, [8] introduced the 

inverse Gaussian kernel estimator and examined some 

properties, such as bias and variance. It is proved to be 

boundary bias-free and achieve a significant rate of 

convergence for the asymptotic mean integrated squared error 

(AMSE). Besides, prove these properties to hazard rate 

function estimation. On the same methodological basis,[9] and 

[1] developed the Weibull and inverse Gaussian hazard rate 

kernel estimators, respectively. 

Some example of kernel functions such as Gaussian, Linear, 

Cosine and others in figures 1, 2 and 3.  

 

Figure 1: Plots of the kernel functions 

 

Figure 2: Plots of the kernel functions 
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Figure 3: Plots of the kernel functions 

The remainder of the paper is outlined as follows. In Section 2, 

we introduce the cumulative and hazard rate of Gumbel type 2 

kernel function. In Section 3, we define the Hazard rate 

function of Gumbel type 2 kernel estimator. In Section 4, we 

get the theoretical properties, such as bias, variance and optimal 

bandwidth. In Section 5, we conclude the paper.  

2. THE CUMULATIVE AND HAZARD 

RATE OF GUMBEL TYPE 2 KERNEL 

FUNCTION 
Let X1, . . . , Xn be n independent and identically distributed 

random variable with a common pdf denoted by f(x). Hence, a 

general form of a kernel estimation of f(x) is given by: 

 

where 𝑘𝑥,ℎ(t) = 
1

ℎ
k (

𝑥−𝑡

ℎ
), k (t) is a kernel function and h is called 

a bandwidth. We use the Gumbel type 2 kernel function, which 

was introduced by [2]. The following Gumbel type 2 is selected 

as the kernel function in this paper: 

 

where t, x > 0, h ∈ (0, 1) and Γ(x) = ∫
+∞

0
 𝑡𝑥−1 𝑒−𝑡 

dt is the standard gamma function. x and h refer to the 

secondary parameters and the main one being the variable t. 

2.1 This kernel function is defined by 

the following cumulative kernel function: 

 

The flexibility of the shapes for K∗ G;x,h(t) is 

illustrated in Figure4. 

 

Figure 4: Plots of the Gumbel type 2 cumulative kernel 

function for some values of the parameters. 

2.2 The hazard rate of Gumbel type 2 

kernel function is defined by: 

 

The flexibility of the shapes for rG;x,h(t) is illustrated in Figure 

5. 

 

Figure 5: Plots of hazard rate of the Gumbel type 2 kernel 

function for some values of the parameters.  

3. HAZARD RATE FUNCTION OF 

GUMBEL TYPE 2 KERNEL 

ESTIMATOR 
Place Tables/Figures/Images in text as close to the reference as 

possible (see Figure 1).  It may extend across both columns to 

a maximum width of 17.78 cm (7”). 

 

The hazard rate function can be written as the ratio of the 

density function and the survivor function, as the following: 

r(x) = 
𝑓(𝑥)

𝑠(𝑥)
                                                    (4) 

where, S(x) = 1−F(x) and the kernel estimator 

for the survivor function can defined as 𝑆̂(x) 

= 1 − 𝐹̂(x) and 𝐹̂(x) = ∫
𝑥

0
 𝑓ˆ(t)dt = 

1

𝑛
 ∑𝑛

𝑖 = 1 ∫
𝑥

0
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K𝐺𝑥,ℎ(t)dt. Through equation (4), the proposed estimator for 

the hazard rate function is given by 

 

As preliminary assumptions, in the whole 

paper, we suppose that the pdf f(x) is defined 

on (0, +∞) such that f(x) has a continuous 

second derivative. Among others, this 

implies that ∥f ′′(.)∥∞ is bounded, where 

∥g(.)∥∞ = 𝑠𝑢𝑏𝑡∈(0,+∞) |g(t)| denotes the 

supremum norm of a function g(t). These 

assumptions will be used in the calculations 

related to the bias and the variance. The bias 

and variance of the Gumbel type 2 kernel 

estimator was proven in the paper Bakouch et 

al. (2021). 

3.1 Lemma 

 

3.2 Lemma 

 

4. BIAS, VARIANCE AND RATE OF 

CONVERGENCE OF HAZARD RATE 

KERNEL ESTIMATOR 
The bias and variance of the hazard rate Gumbel type 2 kernel 

estimator 𝑟̂(x) defined by Equation (5) are the objects of this 

section. Thus, we aim to provide a theoretical performance of 

𝑟̂(x). 

4.1 Bias 
We recall that its mathematical definition is Bias[𝑟̂(x)] = 

E[𝑟̂(x)] − r(x).  

4.2 Proposition  4.1. The bias of 𝒓̂(x) 

satisfies 
 

 

Proof. The following proposition based on lemma 3.1, it is 

noteworthy that 

 

Hence 

 

This ends the proof of Proposition 4.1. 

From Proposition 4.1, by applying h → 0 when n → +∞, we can 

use the equivalence 
𝛤(1−2ℎ)

(𝛤(1−ℎ))2
 − 1 ∼ π 2 6 h 2 → 0, we 

get 

 

Implying that  

  Bias(ˆr(x)) → 0. 

Hence, the estimator ˆr(x) is asymptotically unbiased, 
Proposition 4.1 implies the existence of a constant C∗ > 0 such 
that 

   Bias[𝑟̂(x)]| ≤ C∗ℎ2                               (6) 

Thus, this shows that the bias depends on the bandwidth h and 
x, and it goes to zero as h → 0. 

4.3 Variance 
The following proposition is based on lemma 3.2, to investigate 

the variance of 𝑟̂(x).  

4.4 Proposition  4.2. suppose that ||.−𝟏f(.)|| ∞ 

exists. Then, the variance of rˆ(x) satisfies 

 

Proof.  

 

This ends the proof of Proposition 4.2. 

From Proposition 4.2, By applying h → 0 and nh → +∞ when n 

→ +∞, since 
𝛤(1−2ℎ)

(𝛤(1−ℎ))2
 − 1 ∼ 

𝜋2

6
 h 2 → 0, and [

1

𝛤(1−ℎ)
]

1

ℎ ∼ e −γ where γ denotes 

the Euler constant, i.e., γ ≈ 0.5772, we get 

 

Hence 

 Var[𝑓(x)] → 0. 

Proposition 4.2 implies the existence of a constant 𝐶∗∗ > 0 such 

that  

Var[𝑓(x)] ≤ 
𝐶∗∗

𝑛ℎ
 .                                              (7) 

This result will be important for determining the optimal 

bandwidth for ˆr(x) in the next section. 

4.5  Bandwidth selection 
Bandwidth selection plays an important role in kernel 

estimation, the estimate will be important when the bandwidth 

is very small. For more details see [7] and [5]. In order to get 

optimal bandwidth (hopt), we define the AMSE of ˆr(x) as 
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follows AMSE[𝑟̂(x)] = E [ (𝑟̂(𝑥)  −  𝑟(𝑥))2]  . Based on 

Equations (6) and (7), and the underlying assumptions, we have 

AMSE[𝑟̂(x)] = {Bias[𝑟̂(x)]} 2 + Var[𝑟̂(x)] ≤ 𝐶∗
2 ℎ4 + 

𝐶∗∗

𝑛ℎ
 

By choosing h such that 

 h = (
𝑐∗∗

𝑐∗
2 )

1

5 𝑛−
1

5                                   (8) 

5. CONCLUSION 
In this paper, estimation the hazard rate function based on the 

Gumbel type 2 kernel function has been introduced, hazard rate 

of the Gumbel type 2 kernel estimator is characterized as free 

of boundary bias. We have then derived the bias, variance, and 

optimal bandwidth for hazard rate estimation. The theory 

proves the convergence of these quantities to zero under some 

conditions. 
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