
International Journal of Computer Applications (0975 – 8887)

Volume 185 – No. 8, May 2023

22

Enhancing the Time Complexity of Mathematically

Intensive Algorithms; the Case of Cryptography

Paul K. Arhin Jnr
Dept. of Computer Science and I. T

University of Cape Coast
Cape Coast, Ghana

Michael Asante
Dept. of Computer Science

Kwame Nkrumah University of
Science and Technology

Kumasi, Ghana

Linda Otoo
Dept. of Computer Science and I. T

University of Cape Coast
Cape Coast, Ghana

ABSTRACT

This article aims to compare the performance of the RSA

encryption algorithm on two different hardware architectures,

namely a CPU and a GPU CUDA. The RSA encryption

algorithm is widely used for secure data storage and

transmission. The algorithm requires complex mathematical

processes that can be computationally demanding and can take

significant time to execute, particularly for keys with larger

sizes. In this paper, A parallelization technique is proposed in

this article, which leverages the capabilities of GPUs to speed

up the RSA algorithm. The research is done by experiment

using different key sizes to measure the performance of RSA

on both platforms; CPU and GPU. The proposed approach

involves the parallelization of the most computationally

intensive parts of the RSA Algorithm, including modular

exponentiation and multiplication. GPU implementation of the

RSA algorithm is done using CUDA, a programming model

developed by NVIDIA for parallel computing on GPUs. The

experimental results show the effectiveness of using GPUs to

accelerate the RSA algorithm thus resulting in a faster and more

efficient cryptographic solutions. This has significant

implications for real-world applications, especially those that

are mathematically intensive and demand secure and effective

data transmission, like e-commerce, banking, and other

financial services.

Keywords

RSA, CUDA, GPU, Cryptographic Algorithm, GPU

1. INTRODUCTION
RSA cryptographic algorithm is one of the most popularly used

asymmetric cryptographic algorithms for secure data

transmission and communication over the internet. It is built on

the mathematical problem of factoring large integers. Even

tough RSA is very popular and strong in security, it is

computationally intensive and needs a lot of computing power,

particularly for large key sizes [1].

In order to address and solve this problem, researchers have

explored the use of GPUs to enhance RSA algorithms

calculations and computations due to their parallel processing

capabilities that can perform many calculations simultaneously

[2][3][4]. This makes them excellent accelerators for

computationally intensive tasks like cryptography.

To efficiently evaluate the performance of RSA algorithm on

GPU-based implementation, execution time using different key

sizes and fixed messages size will be recorded and then

compare our implementation's efficiency with that of current

CPU-based implementations and assess the speedup brought on

by the benefit of using GPUs as RSA accelerator [5].

Applications that use RSA encryption, like blockchain, cloud

computing, and safe online transactions, may benefit

practically from the research's conclusions [6].

2. PROBLEM STATEMENT
RSA encryption is computationally intensive and slow on

conventional CPUs because it requires numerous modular

exponentiations and big prime number processes [7][8][9]. The

performance of RSA encryption must therefore be improved,

and it is necessary to discover an effective and scalable solution

that can enhance the performance of RSA encryption. The

power of GPUs, which are built to manage parallel processing

and can carry out the required mathematical operations more

rapidly and effectively than CPUs, can be leveraged to address

this issue. This project's objective is to investigate how GPUs

might be used to speed up RSA encryption and assess the

efficiency gains made by this strategy and to offer

recommendations for choosing the best platform for various

application domains that are mathematically intensive.

3. REVIEW OF LITERATURE
Popular cryptographic method RSA (Rivest-Shamir-Adleman)

makes use of the idea of public key cryptography. Researchers

have looked into using graphics processing units (GPUs) to

improve RSA speed in recent years. The most recent advances

in using GPUs to improve RSA are outlined in this literature

analysis.

Shen et al. (2005) made one of the first proposals for RSA

execution on GPUs [10]. The most time-consuming process in

RSA, modular exponentiation, was sped up using NVIDIA's

CUDA programming model. According to the experimental

findings, the CPU application could be sped up by up to 34

times.

A GPU-based RSA implementation utilizing a modified sliding

window method was suggested by Satoh and Takano (2008)

[11] in a different study. They used ATI's Stream SDK and

outperformed the CPU version by up to 69 times. They also

compared their approach with that of Shen et al. and reported

improved performance.

Later, using the OpenCL programming model, Li et al. (2010)

[12] suggested a hybrid CPU-GPU implementation of RSA.

They separated the RSA computation into CPU and GPU

components and independently optimized each component. In

comparison to the CPU implementation, the experimental

results revealed a considerable speedup of up to 127 times.

A multi-precision arithmetic-based CUDA-based RSA

implementation was suggested by Vaidya and Jadhav (2021)

[13] in recent research. They used NVIDIA's Tesla K80 GPU

and outperformed the CPU version by up to 13.5 times.

Numerous studies have been done on improving RSA using

International Journal of Computer Applications (0975 – 8887)

Volume 185 – No. 8, May 2023

23

GPUs, and the results have demonstrated appreciable speedups

compared to the CPU implementation.

4. METHODOLOGY
In many disciplines, including computer science, experiment is

a potent research methodology that can be used to try and assess

the efficacy of various methods and tools. An illustration of

how experimentation can be used to improve the performance

of RSA encryption algorithms using GPUs is provided by the

research done by Yu et al. [14]. Observation as a methodology

will then be employed to collect data for further analysis. For

researching how algorithms and systems behave in practical

contexts, observation is a useful research technique.

The fundamental operations of the RSA cryptographic

algorithm, namely encryption and decryption, were

implemented in this work on a CUDA – Enabled GPU and a

multi-core CPU using different key sizes and a data size of 400

bits, and the performance metrics; encryption time, and

decryption time were gathered. For the Time complexity of

both RSA encryption and decryption on GPU and CPU, the

operation was run 12 times and the average value recorded as

shown in equation 1. The length of time it takes an encryption

method to convert plaintext into ciphertext is known as the

encryption time and the time required by the decryption method

to create plaintext from ciphertext is referred to as the

decryption time. The RSA encryption and decryption processes

are implemented on both the CPU and GPU platforms; on CPU,

the environment used was C++ and on GPU, the environment

used was Compute Unified Device Architecture (CUDA). The

results of the benchmark tests are analyzed and the performance

of RSA on GPU and CPU compared. The data is plotted and

visualized to draw meaningful conclusions. All execution times

are measured in milliseconds (ms)

𝑬𝒙𝒆𝒄𝑻𝒊𝒎𝒆 =
𝑒𝑥𝑒𝑐1+𝑒𝑥𝑒𝑐 2+⋯+𝑒𝑥𝑒𝑐_12

12
 ------ Equ (1)

4.1 RSA KEY GENERATION
The subsequent stages are used to create the public and private

keys.:

Step 1: p and q, two large, random primes, are originally

generated.

Step 2: Then the modulus of n is computed as n = pq.

Step 3: Choose an odd public exponent e that is comparatively

prime to p - 1 and q - 1 and lies between 3 and n-1.

Step 4: From e, p, and q, calculate the secret exponent d.

Step 5: Print the public key as (n, e) and the private key as (n,

d).

4.2 RSA ENCRYPTION
Encryption Algorithm: c = Encrypt (m) =
𝑐 = 𝑚𝑒 𝑚𝑜𝑑 𝑛

The methods below describe how to encrypt a message (m)

using the RSA public key (n, e):

1. Represent the message as an integer m, where 0 <=

m < n

2. Calculate 𝑐 = 𝑚𝑒 𝑚𝑜𝑑 𝑛

The ciphertext is the integer c

4.3 RSA DECRYPTION
Decryption Algorithm: m = Decrypt (c) = 𝑚 = 𝑐𝑑 𝑚𝑜𝑑 𝑛

The methods below describe how to decrypt ciphertext, c using

the RSA private key (n, d):

1. Calculate m = 𝑚 = 𝑐𝑑 𝑚𝑜𝑑 𝑛

2. The plaintext is the integer m

4.4 EXPERIMENTAL SETUP
The computer used for this project has a graphics device with

CUDA support made by NVIDIA. The information shows

some basic specifications of the computer and the tool which is

used in conducting the experiment.

Cuda – Enabled GPU

NVIDI A GeForce GT 130M

o 1.5 GHz with 32 Cores

o Process or clock of 1500MHz

o Memory Clock of 800MHz

o Memory Interface width of 128-bit

CPU

 Intel i5 CPU with speed of 2.67GHz

Nvidia CUDA

Operating System

 Microsoft Windows 11

5. THE MATHEMATICS OF

CRYPTOGRAPHY
The art of secure communication, or cryptography, enables the

flow of data without the threat of fraud or unauthorized access.

It has grown in significance along with the development of

digital communication, and it significantly depends on the use

of mathematical procedures to guarantee the confidentiality of

the encoded message.

The application of mathematical ideas like modular arithmetic,

prime numbers, one-way functions and elliptic curves is one of

the core principles of cryptography.

5.1 MODULAR ARITHMETIC
This kind of arithmetic, known as a modulus, works with

integers that fall inside a specific range. In cryptography, such

as the RSA technique, modular arithmetic is utilized to execute

operations on integers that are too huge to handle directly.[15]

5.2 PRIME NUMBERS
In cryptography, prime numbers are essential since they are

used to create the encryption keys. The security of some

cryptographic algorithms, such as RSA and Diffie-Hellman, is

based on the difficulty of factoring large composite numbers

into their prime factors [16].

5.3 ELIPTIC CURVE
This kind of cryptography relies on the characteristics of

elliptic curves. Several digital signature techniques and key

exchange protocols employ elliptic curve cryptography in

contemporary cryptographic systems [17].

5.4 ONE WAY FUNCTIONS
These mathematical operations are simple to perform in one

way but are either impossible or very difficult to compute in the

opposite direction. In order to assure that encrypted data cannot

be simply decoded by an adversary, one-way functions are

utilized in cryptographic algorithms [18].

International Journal of Computer Applications (0975 – 8887)

Volume 185 – No. 8, May 2023

24

5.5 HASH FUNCTIONS
Hash functions are mathematical operations that accept as input

data and output a hash with a specified length. They are utilized

in cryptography for digital signatures and data integrity checks.

SHA-1, SHA-2, and SHA-3 are a few common hashing

algorithms [19].

5.6 DIGITAL SIGNATURES
Authentication and non-repudiation of digital messages or

documents are provided through mathematical systems known

as digital signatures. They are produced using public-key

cryptography and enable the recipient to confirm the message

or document's validity and the sender's identity. [20].

5.7 ZERO-KNOWLEDGE PROOFS
Zero-knowledge proofs are mathematical methods that let one

party convince another that they are aware of some information

without actually disclosing that information. They are

employed in cryptography to demonstrate possession of a

secret key without actually disclosing the key [21].

In general, mathematical techniques and concepts are deeply

ingrained in the subject of cryptography, and it is crucial to

have a firm grasp on these ideas in order to build and execute

secure cryptographic systems.

6. RESULT
Encryption Process on CPU and GPU

In this experiment, the RSA encryption algorithm is

implemented using different key sizes on 400bits of data on

multi-core CPU and a CUDA enabled GPU. Twelve runs of the

experiment on the encryption process were completed, and the

average time complexity in milliseconds recorded.

Table 1: The time complexity (latency) in milliseconds for

CPU encryption of a file with a length of 400 bits using

various key sizes.

Bit Key Size Data Size CPU GPU

512 400 1.97 1.21

1024 400 4.94 4.01

2048 400 11.88 10.44

3072 400 30.06 23.45

4096 400 57.12 36.64

Decryption Process on CPU and GPU

In this experiment, the RSA decryption algorithm is run using

different key sizes on 400bits of data on multi-core CPU and a

CUDA enabled GPU. Twelve runs of the experiment on the

decryption process were completed, and the average time

complexity in milliseconds recorded.

Table 2: The time complexity (latency) in milliseconds for

CPU decryption of a message with a length of 400 bits

using various key sizes

Bit Key Size Data Size CPU GPU

512 400 4.23 3.33

1024 400 8.01 5.52

2048 400 32.88 20.13

3072 400 110.94 60.22

4096 400 190.72 90.4

7. ANALYSIS AND DISCUSSION
On a GPU with CUDA support and a general-purpose CPU,

comprehensive experimental study and processing of the RSA

cryptographic algorithm have been successfully completed.

The previous section shows the outcome in a table. The results

have been analyzed and discussed in this chapter.

The results of this work reveal that, during the encryption

process, the GPU's speed remains greater. When encrypting

using the RSA cryptographic algorithm, the GPU outperforms

the CPU in terms of speed as shown in figure 1. According to

figure 1, the CPU would need 1.97 milliseconds to encrypt a

400-bit message with a 512-bit key, whereas the GPU would

need 1.21 milliseconds.

Fig. 1: The Time in Milliseconds for Encrypting A 400 Bits

Message Length with Different Key Sizes

The results in figure 2 are not all that dissimilar from those in

figure 1. It was also noted in figure 2 that the time required to

decrypt a message of 400 bits in length using the CPU and GPU

is still very different. In the decryption process, the GPU

completely outperforms the CPU. For instance, the GPU

decrypted a message with a key size of 512 bits in 3.33

milliseconds while the CPU required 4.23 milliseconds.

Similarly, when the key size was 4096 bits, the GPU decrypted

the message in 90.4 milliseconds while the CPU required

190.72 milliseconds. It is clear that it takes longer to decrypt a

message than it does to encrypt one.

Fig. 2: The Time in Milliseconds for Decrypting A 400 Bits

Message Length with Different Key Sizes

It was noted in this research that, the bottleneck for RSA

Algorithm lies primarily in the key size, that means making use

of large prime numbers. When small prime numbers were used

to generate the smaller key sizes (say, 512 and 1024), RSA

algorithm computes faster on both the CPU and GPU, since

they required less computational power and memory resources.

Unfortunately, small key sizes will also render RSA algorithm

less secure and more susceptible to attacks. Larger keys will

International Journal of Computer Applications (0975 – 8887)

Volume 185 – No. 8, May 2023

25

make a more secured RSA but the research proves that, it has a

drastic effect on speed as more computational power is needed.

The parallelised nature of GPU made it more advantageous

over the CPU when it comes to large key sizes. The speed

difference for smaller key sizes remains small whiles the speed

difference between large key sizes is very huge. In the

encryption process, a key size of 512 bits yielded a speed of

1.97ms when RSA was executed on CPU whereas with the

same key size, GPU run at a speed of 1.21ms. there was a delay

of only 0.76ms by the CPU. On the other hand, when a 400mb

data was executed on RSA with key size of 4096 bits, it took

the CPU 57.12ms to complete the execution, whiles the GPU

used 36.64ms to complete the execution. A speed difference of

20.48ms was noticed. This means, it took the CPU, an extra

time of 20.48ms to complete RSA implementation with a key

size of 4096 on 400mb data size.

Comparing the time difference of a smaller key size (512bits);

0.76ms and a larger key size (4096bits); 20.48ms, we can make

the conclusion that, the parallelized nature of the CUDA

enabled GPU gives it a higher advantage over the CPU in

implementing mathematically intensive algorithms such as

cryptographic algorithms.

8. CONCLUSION
The study made a thorough investigation into the

implementation and performance analysis of RSA

Cryptographic algorithm, a popular cryptographic algorithm

used for secure data transmission and storage using a CUDA

enabled GPU and a general-purpose CPU. The machines

involved were a CUDA enabled Nvidia GeForce GT 130m and

an Intel i5 CPU with speed of 2.6 GHz. The main focus of the

study was to measure and compare their performance in terms

of their Latency (execution time).

The study was conducted based on the hypothesis that, due to

their architecture and design, GPUs are usually faster than

CPUs at implementing RSA. GPUs have a large number of

more specialized, parallel-optimized cores than CPUs, which

have a limited number of powerful computing cores. Numerous

modular exponentiations are required for RSA encryption and

decryption; these can be parallelized to make use of a GPU's

numerous cores.

RSA cryptographic algorithm was implemented on a CUDA-

enabled GPU and a general-purpose CPU and their average

execution time for different key sizes recorded and compared.

The results of the study showed that the GPU implementation

of RSA was faster than the CPU implementation, confirming

the hypothesis.

Overall, the research indicates that, GPUs are a better option

for high-performance computing activities, such as

mathematically intensive algorithms.

The study also identified future works to consider, such as the

measurement of other performance metrics such as speed

factor, throughput, memory consumption, and energy

consumption. Overall, the study presents a thorough

investigation into the implementation and performance analysis

of RSA Cryptographic algorithm using a CUDA-enabled GPU

and a general-purpose CPU.

9. ACKNOWLEDGMENTS
Our gratitude to all the people and groups who helped to

complete this study piece. Our gratitude is also expressed to the

research team and our colleagues, who helped us out by sharing

their skills, information, and encouragement. They played a

critical role in carrying out the studies and collecting the results.

Lastly, our appreciation goes to the organizations and

individuals that gave us the tools and funding we needed to do

this study.

10. REFERENCES
[1] Rivest, R. L., Shamir, A., & Adleman, L. M. (1978). A

method for obtaining digital signatures and public-key

cryptosystems. Communications of the ACM, 21(2), 120-

126

[2] Dullweber, M., Schoppmann, P., Rechberger, C., &

Schrammel, P. (2011). RSA on GPU: Fast factorization

and secure implementation. In International Conference

on Selected Areas in Cryptography (pp. 205-222).

Springer, Berlin, Heidelberg.

[3] Ananthakrishnan, S., & Mehta, S. (2014). Implementation

of RSA on CUDA platform. International Journal of

Computer Applications, 93(8), 25-28.

[4] Dong, Y., Zhang, W., & Liu, X. (2017). GPU-accelerated

RSA key generation and encryption. Journal of

Supercomputing, 73(10), 4528-4541

[5] Liu, Y., Sun, Z., Zhang, Q., & Chen, C. (2019). A GPU-

accelerated RSA cryptosystem using CUDA. IEEE

Access, 7, 114330-114339

[6] Narula, R., Bonneau, J., Felten, E., Miller, A., &

Goldfeder, S. (2016). Bitcoin and Cryptocurrency

Technologies: A Comprehensive Introduction. Princeton

University Press.

[7] Kumar, P., Srinivasan, S., & Rawat, S. (2018). A

comparative study of CPU and GPU performance for RSA

algorithm. International Journal of Computer

Applications, 181(32), 29-33.

[8] Wang, Y., Li, H., Li, X., & Li, Z. (2019). Implementation

and comparison of RSA algorithm on CPU and GPU

platforms. 6th International Conference on Information

Technology and Quantitative Management (ITQM).

[9] Zhang, Y., Wang, X., & Wang, Q. (2021). A comparative

study of RSA algorithm performance on CPU and GPU.

IEEE International Conference on Computational Science

and Engineering (CSE).

[10] Shen, C., Chen, Y., & Chen, K. (2005). Implementation of

RSA cryptosystem on GPU. In International Symposium

on Parallel and Distributed Processing and Applications

(pp. 839-844). Springer.

[11] Satoh, A., & Takano, K. (2008). Fast RSA implementation

using a GPU with modified sliding-window method. In

International Workshop on Cryptographic Hardware and

Embedded Systems (pp. 344-360). Springer

[12] Li, X., Yang, C., & Dai, Y. (2010). A hybrid CPU-GPU

implementation of RSA based on OpenCL. In

International Conference on High Performance

Computing and Communications (pp. 505-510). IEEE.

[13] Vaidya, S., & Jadhav, A. (2021). GPU-Based

Implementation of RSA Algorithm Using Multi-Precision

Arithmetic. International Journal of Computer Science

and Network Security (IJCSNS), 21(2), 12-20.

[14] Yu, X., Li, M., Li, J., & Liao, X. (2020). GPU-accelerated

RSA encryption algorithm based on Chinese Remainder

Theorem. The Journal of Supercomputing, 76(2), 1083-

1096. doi: 10.1007/s11227-019-02911-2

International Journal of Computer Applications (0975 – 8887)

Volume 185 – No. 8, May 2023

26

[15] Shoup, Victor. A Computational Introduction to Number

Theory and Algebra. Cambridge University Press, 2005

[16] Crandall, Richard E., and Carl Pomerance. Prime

Numbers: A Computational Perspective. Springer Science

& Business Media, 2012

[17] Hankerson, Darrel, Alfred J. Menezes, and Scott

Vanstone. Guide to Elliptic Curve Cryptography. Springer

Science & Business Media, 2010

[18] Dwork, Cynthia, and Moni Naor. "On the Practicality of

One-Way Functions." Proceedings of the Twenty-Second

Annual ACM Symposium on Theory of Computing.

ACM, 1990.

[19] Katz, Jonathan, and Yehuda Lindell. Introduction to

Modern Cryptography. CRC Press, 2014

[20] Schneier, Bruce. Applied Cryptography: Protocols,

Algorithms, and Source Code in C. Wiley, 1996.

[21] Goldwasser, Shafi, Silvio Micali, and Charles Rackoff.

"The Knowledge Complexity of Interactive Proof

Systems." SIAM Journal on Computing, vol. 18, no. 1,

1989, pp. 186-208

IJCATM : www.ijcaonline.org

