
International Journal of Computer Applications (0975 – 8887)

Volume 185 – No. 8, May 2023

18

A Design of Assistive Technology Application for

Visually Disabled Elderly Citizens

John-Tyler Sprankle
Ashland University

Ashland, OH

Selvanayaki Kolandapalayam Shanmugam
Assistant Professor/CS

Ashland, OH

ABSTRACT
In today’s world, the growth in technology diminishes or

eliminates the barriers faced by people with disabilities,

especially visually and hearing-impaired citizens. This research

study aims to design a device/application that could convert

text to voice and vice versa and impart any societal benefit

problems. The objective of this work is to create a program

using Python that utilizes available Python libraries to convert

a visual image of text into spoken words. In this case, a visual

image of text could be a newspaper article or other text that one

may encounter in daily life. One advantage of Python is that it

contains an extensive set of libraries that any user can make use

of. By utilizing libraries such as OpenCV, PyTesseract, and

Google-Text-to-Speech this task was completed. This research

work design is handled in three major steps: In the first step,

the input image is taken and preprocessed using image

preprocessing techniques; The second step includes the

detection and extraction of text from the preprocessed image;

The third and final step handles the process of converting the

extracted text to its related voice using supporting libraries and

techniques. The limitations could still apply to the hardware

used in this project. A possible enhancement could be

extending this system to have the features of speech-to-text.

General Terms

Pattern Classification, Data Preprocessing, Text Extraction.

Keywords

Data Preprocessing, Image Preprocessing, Text Extraction,

Text-To-Speech, TTS, Speech-to-Text, STT, PyTesseract,

OpenCV.

1. INTRODUCTION
There are many people throughout the world who are visually

impaired or hearing-impaired. One group of these people

includes the elderly who may experience problems with their

vision or hearing as they age. The objective of this project was

to create an application that would assist those who are visually

impaired by providing them with a text-to-speech (TTS)

converter. Through the utilization of Python’s various libraries,

an application was created that satisfied this objective.

The program currently assists those with visual impairments by

helping them to read words that they may encounter in day-to-

day life that they may otherwise be unable to read. This is done

by letting the user take a picture of the text in question and the

program will automatically convert the words in the picture into

audio that they can instead listen to. This is accomplished using

data preprocessing. Data preprocessing is the process of taking

data gathered in a raw form and turning it into a specific format

that can be utilized by a machine. In this case, the data that is

being preprocessed is the image that the user takes. Though

they may take a picture of text, say for example a newspaper

article, there may be things in the background of this image that

are distracting. The goal of data preprocessing is to remove

these unwanted distractions or noise from the image so that the

program can easily extract the text from the image.

This is a general-use application, but it could be specialized to

fulfill certain needs. Currently, it is optimized to read dark text

off a white sheet of paper, but it could be changed to read text

from different sources as well as perform various operations

with this information. One example could be the

implementation of the scanning of pill bottle labels. The

program could read the text from the labels and store useful

data such as instructions on how to take the drug, as well as the

specified refill date on the packaging. This data could then be

read back to the user who may otherwise have trouble reading

the label.

2. LITERATURE REVIEW
The first step in creating this application was learning the

architecture behind TTS and speech-to-text (STT) applications

as well as how to go about starting one. Existing systems were

reviewed for both TTS and STT conversion and a standard set

of steps for developing a speech recognition system was

developed (Lawrence et. al). The most important aspect of TTS

and STT conversion is to assure that any input speech/text that

is gathered should first be preprocessed to eliminate unwanted

background noise (Ayushi et. al). Only after preprocessing is

finished can the speech/text then be transferred to a pattern

classification algorithm where the input is recognized, and a

correct output can be created.

It was important to create an application that was user-friendly

to those who are visually disabled. Without the proper

accommodations, the application could be useless to users who

may need it. It was found that many people who are visually

disabled still use a standard keyboard while some use braille

keycaps or large print keycaps (Burgstahler). Some users will

have trouble viewing material on the screen, so it is important

to give information as well as instructions in an audio format.

Each Python library has its own official documentation that

informs the user how the library works as well as the methods

it contains and how to implement it into a program. For

instance, the Google-Text-to-Speech documentation (GTTS,

2023) goes in-depth on how to fully utilize the library. It

contains information such as the parameters that need to be

given to the TTS method including the text itself, the language,

and how fast the text should be read. Similar information for

each Python library can be found in its own documentation. A

review of such documentation is necessary when creating such

a project as it is important to fully understand how a library

works and whether it is suited for the application.

3. METHODOLOGY

3.1 gTTS
Google-Text-to-Speech or gTTS is a Python library that utilizes

International Journal of Computer Applications (0975 – 8887)

Volume 185 – No. 8, May 2023

19

Google Translates text-to-speech Application Programming

Interface (API). An API is a way for two or more computer

programs to communicate with each other. In this application,

this library is used to turn text within the program into an mp3

file which in turn can be played to hear the original text as

speech. This library has many different languages that it can

recognize such as English, French, and Mandarin. The library

also allows the user to manipulate how the text is spoken such

as reading the text aloud slowly (GTTS, 2023).

3.2 OpenCV
OpenCV is a large library of functions that is focused mainly

on real-time computer vision. In this specific project, it serves

two major purposes. The first is to capture video by capturing

individual frames and displaying them one after another in

quick succession. This is done by creating a loop in the program

where each iteration will show a single frame from a camera.

This loop continues to run until the user manually stops it, and

the last frame is then saved for use in the program (Getting

Started with Videos, 2023).

The second purpose of OpenCV is to preprocess an image by

removing the background through the process of masking.

Masking essentially removes unwanted parts of a specific

image. OpenCV performs masking by converting a specified

image into Hue Saturation Value (HSV) format. This format

allows individual colors within an image to be detected and

altered. After the image has been converted the user can specify

a range of HSV values that they wish to preserve. By running

OpenCV’s inRange() function with the parameters of the HSV

formatted image, and the upper and lower range, all other HSV

values will be removed from the image. The preserved colors

in this case are displayed as white while the removed colors are

all displayed as black (How to Use Background Subtraction

Methods, 2023).

3.3 PyTesseract
PyTesseract is an optical character recognition Python library.

When PyTesseract is given an image, it can recognize text that

exists within that image. It reads this text much like how a

person would read a book, from left to right and from top to

bottom (PyTesseract, 2023). Once this text is extracted from an

image it can either be saved as a text file, or as an object within

the program itself.

3.4 OS
OS is a library in Python that includes miscellaneous operating

system interfaces. In this application, the OS library has only

one purpose, to play the finalized mp3 file. This is performed

by simply running the OS library’s system command to open

the specified mp3 file, this will then cause the mp3 file to

automatically begin playing (OS, 2023).

4. PROPOSED SYSTEM
The proposed system follows a process of gathering an input

image, preprocessing that image, extracting text from the

image, and finally converting the text into an audio format that

can be played to the user (see Figure 1).

The first step of the TTS application is to get an image from the

user that contains some form of text. In this case, OpenCV is

used to open a camera that will be used to capture an image.

When the camera is opened audio instructions are given to the

user, and they read out “Press F to save an image of the text.”

A loop is then started within the program. This loop captures a

single frame from the camera and then displays it to the user.

This loop will continue to run indefinitely until the user stops

the loop with the press of a specified button, in this case, the F

key. Once the loop has been stopped the last frame is saved for

the next part of the program.

The next step of the program is to preprocess this image. The

only part of the image that is needed is the text, so everything

else within that image is considered noise that needs to be dealt

with, or else it may stop the program from running correctly.

Preprocessing the image is done with the help of OpenCV and

some of its various functions.

First, the image is converted into HSV form, which allows

operations utilizing HSV colors to be performed. Once this

conversion is completed the masking operation will take place.

First, a lower and upper bound is set. These bounds will

determine what range of colors will be allowed to remain

through the masking process and other colors will be filtered

out. In this case, the bounds were set such that dark blackish

colors, such as black ink on a piece of paper, would appear,

while lighter colors would be removed. These darker colors are

turned into a single white color, while the lighter unwanted

colors are turned into black (see Figure 2). The colors that are

masked do not need to follow this exact pattern and can be

changed depending on the text that needs to be read.

Figure 2: Side-by-side comparison of original and

preprocessed image

Figure 1: Flow diagram for the text-to-speech application

International Journal of Computer Applications (0975 – 8887)

Volume 185 – No. 8, May 2023

20

With all the background noise removed the image can easily be

processed with the image-to-string function in PyTesseract.

First, a language must be specified, in this case, English was

selected. Then the image is simply passed as a parameter along

with the language into the image-to-string function and the text

that is found is saved as an object. Referring to Figure 2,

PyTesseract extracts the text “This is text that will be spoken

with text-to-speech” and saves it as an object within the code.

The string object can then be used by the gTTS library to create

a new object that essentially contains the text in a spoken

format. Other parameters can be passed to gTTS depending on

the situation. For instance, if the user wanted the text to be read

to them slowly the parameter ‘Slow = True’ could be passed

which would cause the mp3 file to be read aloud at a slower

pace. This gTTS object can then be saved as an mp3 file using

the save method. With this mp3 file saved to the machine, the

OS library can be used to play the mp3 file. In this case, the

words “This is text that will be spoken with text-to-speech” will

be read aloud for the user to listen to.

5. RESULTS

5.1 General Results
Throughout the testing of the application, it was found to be

successful if it receives quality input. This is important as the

quality of the output completely relies on the quality of the

input. If the input image contains dark text and that text is

clearly displayed on a light background, the application will

translate the written text from the image into spoken audio.

Multiple different types of input were tested throughout the

development. For instance, handwritten text can be translated

if the handwriting is written neatly and if the writing utensil

such as a pen or pencil is dark enough for the application to

properly mask it.

5.2 Another Possible Preprocessing

Method
There were multiple different data preprocessing methods that

were reviewed throughout the development of this project. One

such method that was implemented and tested was blurring the

background of images using PixelLib. PixelLib separates an

image into separate objects and performs methods on these

objects based on the user’s needs (PixelLib’s Official

Documentation, 2023). This library worked consistently when

blurring out the background in images but the model that the

library was trained on only recognized certain things as

qualified objects. In this case, only things such as people,

vehicles, bikes, and some animals such as cats were recognized.

This made it impossible to not blur text unless a person was

holding an object with text in their hands, which is not always

the case. PixelLib would have been a potential option if there

was an existing model for recognizing text, as creating a new

model would not have been possible for the timeframe of this

project. Because of this, OpenCV was selected as the

preprocessing method using its masking process.

5.3 Problems with Image Masking
While image masking is the best choice when it comes to image

preprocessing for this application it does have its downsides.

As discussed previously, the bounds of the masking were set

such that dark blackish colors would appear, while lighter

colors would be removed. Because of this if the text on a page

of something like a magazine is too light, the program will filter

it out and it will not be able to be translated. See Figure 3 which

contains a side-by-side comparison of a non-preprocessed

image and a preprocessed image where the text on the page is

white with a yellow background. Because of the preset bounds,

the masking process masks out the white text as it is searching

for dark text. While this can easily be fixed by changing the

bounds to accommodate a light color text, it could be difficult

to do this in a real-world scenario as the bounds would need to

be changed in real-time. Currently these bounds are preset

within the program.

Figure 3: Side by side comparison of original and

preprocessed image with lighter colored text

5.4 Proper Hardware
A current limitation resides with the quality of the output as it

completely relies on the quality of the input. In the early stages

of the application’s development, a 1280x720 pixel resolution

camera was used to capture all the images. While this was

satisfactory for larger text, it had some trouble reading smaller

text as it often became blurry and therefore the program was

unable to translate it. The camera was replaced with a

1920x1080 pixel camera which eliminated this issue. To avoid

similar problems, users must make sure that the equipment that

is used is high quality to ensure proper output.

6. CONCLUSION AND FUTURE

ENHANCEMENTS
Using various Python libraries, the goal of phase one of this

project was accomplished. An application was created that

when given the input of an image, it will be able to convert the

text from that image into an audio output. By utilizing the

concept of data preprocessing the background noise was able

to be removed from the input and the program in turn became

more accurate in its data reading. Though limitations such as

the camera quality play a factor in the overall performance of

the application, this can easily be improved with the proper

equipment.

Currently, this application design assists those with visual

impairments, but the goal is to assist those who also have

hearing impairments. Currently, the program takes a visual

input of text and converts it into audio that the user can hear. In

the future, the program will be enhanced to also allow the user

to input audio such as spoken words. This audio will then be

converted into text that the user will be able to read. The

application could also be improved by implementing a

specialization such as a pill bottle scanner as mentioned in the

introduction. This would turn this specific application into an

application that serves a greater purpose.

7. REFERENCES
[1] Ayushi Trivedi, Navya Pant, Pinal Shah, Simran Sonik,

Supriya Agarwal, Speech to Text and Text to Speech

Recognition Systems- A review, IOSR Journal of

Computer Engineering, (2278-8727), Volume 20 No.2,

Mar-Apr 2018.

[2] Burgstahler Sheryl, Working Together: People with

Disabilities and Computer Technology. University of

Washington. Retrieved March 26, 2023, from

https://www.washington.edu/doit/sites/default/files/atom

s/files/Working_Together_People_with_Disabilities_and

_Computers_a11y.pdf.

International Journal of Computer Applications (0975 – 8887)

Volume 185 – No. 8, May 2023

21

[3] “Getting Started with Videos.” OpenCV. Retrieved March

26, 2023, from

https://docs.opencv.org/4.x/dd/d43/tutorial_py_video_dis

play.html.

[4] “GTTS.” GTTS. Retrieved March 26, 2023, from

https://gtts.readthedocs.io/en/latest/.

[5] “How to Use Background Subtraction Methods.”

OpenCV. Retrieved March 26, 2023, from

https://docs.opencv.org/3.4/d1/dc5/tutorial_background_

subtraction.html.

[6] Lawrence Rabiner, Biing-Hwang Juang,

B.Yegnanarayana, Fundamentals of Speech Recognition.

Retrieved March 26, 2023, from

https://dl.acm.org/doi/10.5555/153687.

[7] “OS.” Python Software Foundation. Retrieved March 26,

2023, from https://docs.python.org/3/library/os.html.

[8] “PixelLib's Official Documentation.” PixelLib's Official

Documentation - PixelLib 0.4.0 Documentation.

Retrieved March 26, 2023, from

https://PixelLib.readthedocs.io/en/latest/.

[9] “PyTesseract.” PyPI. Retrieved March 26, 2023, from

https://pypi.org/project/pytesseract/.

IJCATM : www.ijcaonline.org

