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ABSTRACT 

For public health and safety reasons, face masks were required 

worldwide during the COVID-19 epidemic. However, this 

poses challenges for face recognition systems as the face is 

partially covered. Face recognition is a widely used and cost-

effective biometric security system, but it faces difficulties in 

accurately identifying individuals wearing masks. Existing 

algorithms for face recognition have struggled to maintain 

efficiency, accuracy, and performance in the context of masked 

faces. To address these challenges and improve cost-

effectiveness, a new machine learning model is required. This 

manuscript describes a lightweight deep learning methodology 

that is flexible and efficient in recognizing masked faces. The 

HSTU Masked Face Dataset (HMFD) is utilized, comprising 

frontal and lateral faces with various colored masks. Our 

proposed method involves a lightweight CNN model designed 

to enhance the accuracy of masked face identification. To 

enhance operational efficiency, methods like batch 

normalization, dropout, and depth-wise normalization are 

integrated which are tailored to meet particular specifications, 

aiming to optimize overall performance. These techniques 

improve the efficiency and accuracy of the model while 

minimizing overall complexity. In this research, the accuracy 

of the model is evaluated in comparison to other well-

established deep learning models, including VGG16, VGG19, 

Extended VGG19, MobileNet, and MobileNetV2. The results 

demonstrate that our lightweight deep learning model 

outperforms these models, achieving a high recognition 

accuracy of 97%. By considering the needs of the task and 

carefully optimizing the model architecture, our proposed 

method offers an effective and efficient solution for 

recognizing masked faces in real-world scenarios.   
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1. INTRODUCTION 
There has been a lot of interest in face recognition technology 

in the past several decades, and researchers all over the world 

have been working hard to perfect the technology [1-5]. 

Considerable gains have been achieved in this domain through 

the development of technology and artificial intelligence [6-7]. 

Consequently, there has been a widespread use of facial 

recognition systems by both public and commercial 

organizations with the aim of bolstering security measures and 

managing access control across diverse environments such as 

airports, educational institutions, workplaces, and communal 

areas [8-12]. The COVID-19 pandemic has prompted 

government authorities to enforce biosafety measures in order 

to mitigate the transmission of illnesses [13-15]. One rule that 

has been implemented is the compulsory utilization of facial 

coverings in public settings, as empirical evidence has 

demonstrated their efficacy in safeguarding persons and the 

surrounding population [16-18]. Nevertheless, the 

implementation of this fundamental procedure has presented 

security obstacles in contemporary technology. Security 

systems that rely on face recognition technology encounter 

challenges when individuals wear masks, which is a common 

occurrence in various public settings like transportation hubs, 

shopping malls, schools, and companies [19]. Traditional face 

identification systems often rely on persons fully exposing their 

faces to the camera in order to accurately recognize and identify 

them. However, this approach becomes unworkable in light of 

the current advise to wear masks when outside the home [20]. 

In order to effectively mitigate this concern and bolster security 

protocols, the present study posits the use of a concealed facial 

recognition framework. This research study has made several 

significant contributions, which are outlined below: 

1. The proposed model is a lightweight deep learning 

model specifically designed for masked face 

recognition, taking into account the reduced Region of 

Interest (ROI) caused by face masks. 

2. Our model employs a minimal number of layers and 

incorporates techniques such as dropout, batch 

normalization, and depthwise batch normalization to 

improve performance. 

3. A comparative analysis of the proposed model is 

conducted with well-known deep learning models, 

including VGG16, VGG19, Mobilenet, MobilenetV2, 

and Extended VGG19. The effectiveness and efficiency 

of masked face recognition are appraised by the 

proposed model through the evaluation of outcomes 

derived from these models. 

4. This study primarily aims to overcome the issues 

presented by face masks in image recognition systems 

through the introduction of a lightweight Convolutional 

Neural Network (CNN) model. Additionally, a 

thorough comparison is conducted between this 

proposed model and other well-established models.  

2. LITERATURE REVIEW 
In light of the prevailing COVID-19 circumstances, the 

utilization of face masks has been deemed obligatory as a 

means to mitigate the transmission of the virus. Nevertheless, 

this is a considerable obstacle for face recognition systems, as 
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they significantly depend on facial characteristics to achieve 

precise identification. The objective of this study, as described 

in citation [21], is to overcome the constraints encountered by 

facial recognition systems in handling masked persons by the 

utilization of sophisticated deep learning techniques. This work 

suggests the utilization of two distinct datasets, namely the 

Masked Face Detection Dataset (MFDD) and the Real-World 

Masked Face Recognition Dataset (RMFRD), as a means to 

address the difficulties associated with identifying faces that 

are covered by masks. This approach is motivated by the 

absence of publicly accessible datasets that are especially 

tailored for this particular objective. 

Furthermore, this study presents a revolutionary methodology 

known as RetinaFaceMask, which incorporates a face mask 

detector that is both extremely precise and efficient. The 

purpose of this strategy is to tackle the public health challenges 

that have emerged as a result of the COVID-19 epidemic. The 

RetinaFaceMask system utilizes a feature pyramid network to 

integrate high-level semantic information from many feature 

maps. Additionally, a novel context attention module has been 

incorporated to enhance the precision of face mask 

identification. The approach outlined in this research 

showcases a heightened degree of precision, exhibiting 

enhancements of 2.3% and 1.5% in comparison to the presently 

existing state-of-the-art procedures. These advancements were 

assessed utilizing a publically accessible dataset that was 

purposefully created for the purpose of detecting face masks. 

In addition, it is worth noting that the RetinaFaceMask model 

demonstrates recall improvements of 11.0% and 5.9% in 

comparison to the baseline model as reported in reference [22]. 

The main aim of this study is to investigate the application of 

Non-Negative Sparse Coding (NNSC) as a technique for 

extracting features in the field of face recognition. The research 

also encompasses a comparative examination of NNSC in 

relation to other part-based methodologies, specifically Non-

negative Matrix Factorization (NMF) and Local-Non-negative 

Matrix Factorization (LNMF). 

The NNSC approach has undergone evaluation on many 

databases, such as the Aleix-Robert (AR), Face Recognition 

Technology (FERET), Yale B, and Cambridge ORL databases 

[23]. Furthermore, this research examines the efficacy of 

artificial neural networks (ANN) in the domain of image 

processing and pattern identification, specifically focusing on 

facial recognition within this discipline. Artificial Neural 

Networks (ANN) have demonstrated significant efficiency in 

comparison to alternative methodologies [24]. Additionally, 

this study investigates the utilization of restricted storage 

capacity in face authentication by the implementation of 

compressed facial pictures, while simultaneously ensuring the 

preservation of elevated recognition rates. Furthermore, the 

study included an examination of several Regions of Interest 

(ROI) masks and their corresponding rates of facial recognition 

[25]. 

The primary objective of this study is to examine the inherent 

difficulties and intricacies associated with facial recognition 

systems, which arise from the wide range of traits seen in 

human faces. These features comprise a range of parameters 

including color, expression, location, posture, and orientation. 

In order to discern various facial expressions, a composite of 

modeling approaches is employed, which considers the 

motions of the eyes, mouth, nose, and other face attributes (26). 

Furthermore, the study presents a novel co-mining 

methodology that has the ability to train datasets including 

diverse degrees of noise. Loss values are applied as markers to 

identify noisy labels, while clean face photos with high 

confidence are used to address issues that arise from sample-

selection bias. The efficacy of this methodology is exemplified 

by conducting comparisons with cutting-edge alternatives, 

employing three extensively utilized datasets, and evaluating 

performance across several benchmarks [27]. Moreover, the 

present work centers on a benchmark assignment that entails 

the recognition of a vast number of celebrities by analyzing 

face images. Subsequently, the study aims to establish the 

connection between these persons and their respective entity 

keys. Disambiguation techniques are utilized to improve the 

accuracy of recognition, therefore providing notable 

contributions to many practical applications, notably within the 

realm of knowledge base systems. In order to get the most 

favorable outcomes, the researchers engage in the endeavor of 

formulating and delivering precise sets of measurements, an 

assessment technique, and a dataset for training purposes [28]. 

The authors of the present study [24] propose a novel model 

known as DeepMaskNet, which demonstrates efficacy in the 

detection of face masks and subsequent recognition of masked 

faces. The authors utilize a method of experimentation, 

employing stochastic gradient descent (SGD) as the training 

technique for the DeepMaskNet model. Furthermore, a 

scholarly investigation carried out by [19] provides a 

comparative evaluation of the VGG16 and MobileNetV2 

models in the specific domain of identifying faces that are 

obscured by masks. The findings of the study suggest that 

MobileNetV2 exhibits better performance than VGG16, 

demonstrating higher performance within the particular area 

under investigation. Nevertheless, it is crucial to acknowledge 

that a significant portion of the current body of research in this 

particular domain heavily depends on enhanced datasets that 

are drawn from pre-existing datasets originally designed for the 

purpose of face recognition. The objective of this research is to 

develop a robust facial recognition system specifically 

designed for faces wearing masks, focusing on the utilization 

of the HSTU Masked Face Dataset (HMFD) [20]. 

 

The authors then describe a deep learning strategy that makes 

effective use of available resources to accomplish the task of 

accurate facial recognition even when subjects are concealed 

behind masks. The primary aim of this study is to improve the 

reliability and effectiveness of facial recognition algorithms 

that are designed to identify individuals wearing masks. This 

will be achieved by utilizing a dataset consisting of actual 

images of individuals wearing masks. The proposed 

lightweight deep learning approach greatly enhances the 

precision of facial recognition, particularly when faced with the 

difficulty of identifying persons wearing masks. The findings 

of this research provide a significant contribution to the 

development of effective and efficient techniques for facial 

identification in real-world situations characterized by the 

prevalent use of masks. 

3. METHODOLOGY 

3.1 Convolutional Neural Network 
This research paper introduces a system for the identification 

of obscured facial features, encompassing several stages such 

as the creation of a model, the process of training, conducting 

tests, and evaluating performance. The objective of the 

proposed methodology is to tackle the difficulties related to 

facial recognition in the presence of masks. Fig. 1 provides an 

overview of the process, visually representing the sequential 

progression of the many stages involved. Section III of the 

paper discusses the HSTU Masked Face Dataset (HMFD) and 

provides a detailed description of the dataset. The authors 



International Journal of Computer Applications (0975 – 8887)  

Volume 186 – No.2, January 2024 

44 

explain how the dataset was obtained and highlight the main 

preprocessing procedures that were performed to ensure its 

suitability for training machine learning models.  

CNNs have been developed with the purpose of capturing and 

extracting crucial information from input data, namely within 

the domain of pictures. This functionality allows humans to 

execute a range of computer vision activities, encompassing 

but not limited to tasks such as picture classification, object 

identification, and image segmentation. CNNs are able to do 

this task by efficiently discerning spatial hierarchies and 

patterns within the given data. This is made possible by the 

incorporation of specialized layers such as convolutional 

layers, pooling layers, and fully connected layers. This 

methodology guarantees a comprehensive and accurate 

examination.  

In contrast, transfer learning entails using the capabilities of 

pre-existing deep neural network architectures such as VGG16, 

VGG19, MobileNet, and MobileNetV2. The models are 

equipped with acquired weights and feature representations 

obtained through rigorous training on big datasets. The 

utilization of transfer learning allows for the acceleration and 

enhancement of new machine learning tasks through the 

application of pre-trained models. One of the primary benefits 

of transfer learning is its capacity to utilize the acquired 

features from pre-trained models, enabling effective training 

despite having a limited amount of data. The utilization of this 

technique facilitates the efficient transfer of knowledge from 

jobs that possess abundant data to those that possess limited 

datasets, resulting in significant savings in terms of time and 

resources. This methodology is especially advantageous in 

situations where there is a scarcity of data, since it aids in 

addressing the difficulty of training deep neural networks from 

the beginning. 

The expanded VGG19 model is a modification of the original 

VGG19 architecture. The model incorporates supplementary 

components, namely a Dense layer of 4096 nodes, a Dropout 

layer with a dropout rate of 50%, and a Batch Normalization 

layer. The inclusion of additional layers in the neural network 

serves the purpose of mitigating overfitting, enhancing model 

stability, and standardizing and normalizing the network. The 

extended VGG19 architecture demonstrates high efficacy when 

applied to the dataset pertaining to masked face recognition. 

The authors employ grid search methodology to select the 

hyperparameters for optimizing the expanded VGG19 model. 

The hyperparameters under consideration encompass 

activation functions, optimizer selection, dropout rate 

determination, and the specification of the number of nodes in 

the dense layer. The empirical findings and research indicate 

that the Adam optimizer exhibits strong performance in the 

context of classification problems. Additionally, it is widely 

accepted in the field to employ a dropout rate of 50% as a 

typical strategy for mitigating overfitting.  

The 2D operation of a CNN can be represented as follows: 

                  𝑦 = 𝑓(𝑊 × 𝑥 + 𝑏)                      (1) 

The variable 'x' is commonly used to denote the input data, 

typically in the form of a two-dimensional image. The letter 'W' 

is used to represent the learnable parameters in a neural 

network, specifically referring to the convolutional filters or 

kernels. The variable 'b' denotes the biases that correlate to each 

filter. The symbol 'f' is used to represent the activation function, 

which serves the purpose of introducing non-linearity into the 

output. Ultimately, the variable 'y' denotes the resultant output 

feature map subsequent to the convolutional procedure. The 

aforementioned parts collectively comprise the essential 

constituents in CNNs for the purpose of image processing jobs. 

Multiple convolutional layers are the backbone of the CNN 

design, which also commonly includes activation functions, 

pooling layers, and fully linked layers. The aforementioned 

layers, in conjunction with the parameters (W and b), are 

acquired through the training procedure in order to extract 

pertinent features and generate predictions based on the 

provided input data. 

In this equation:  

x represents the input data, which is typically a 2D image.  

W denotes the learnable parameters known as the 

convolutional filters or kernels.  

b represents the biases associated with each filter.  

f refers to the activation function, which introduces non-

linearity to the output.  

y represents the output feature map after the convolutional 

operation.  

The CNN architecture typically consists of multiple Multiple 

convolutional layers are the backbone of the CNN design, 

which also commonly includes activation functions, pooling 

layers, and fully linked layers. The layers, in conjunction with 

the parameters (W and b), are acquired through the training 

procedure to extract pertinent features and generate predictions 

on the provided input data. Max pooling is a frequently 

employed procedure within CNNs for the purpose of 

downsampling feature maps. The mathematical expression 

representing the max pooling procedure is given by: 

                         𝑦 = 𝑚𝑎𝑥𝑝𝑜𝑜𝑙(𝑥, 𝑘, 𝑠)                            (2) 

The variable 'x' denotes the input map of features. The variable 

'k' represents the size of the pooling window, also known as the 

kernel, which is applied to the incoming data by a sliding 

mechanism. The variable 's' denotes the stride, which governs 

the magnitude of the step taken by the pooling window during 

movement. The precise mathematical expression for max 

pooling entails the process of finding the highest value within 

the pooling window. 

        𝑦[𝑖, 𝑗, 𝑐] = max(𝑥[𝑖 × 𝑠 ∶  𝑖 × 𝑠 + 𝑘, 𝑗 × 𝑠
∶  𝑗 × 𝑠 + 𝑘, 𝑐 ])                          (3) 

The formula denotes the output value at location (i, j) of the c-

th feature map in the output tensor, represented by 'y[i, j, c]'. 

The input feature map x is subjected to a pooling window of 

size k × k. This pooling window is applied to the appropriate 

region of x, starting at position (i × s, j × s) and moving with a 

stride of s. The spatial dimensions of the feature maps are 

lowered through the repeated application of the max pooling 

operation, using suitable kernel size and stride. This allows the 

network to prioritize more significant features, leading to 

enhanced computational efficiency. 

Batch normalization is a widely employed technique in deep 

neural networks that serves the purpose of normalizing the 

activations of intermediary layers. This intervention 

contributes to enhancing the network's stability and 

accelerating the training process. The mathematical expression 

for batch normalization can be formulated as follows: 

                              𝑦 = γ ×
  (x −  μ)

σ +  β
                            (5) 

In this equation:  

'x' represents the input tensor or activations of a specific 

layer,  
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'γ ' denotes the learned scale parameter, 

‘μ' represents the mean of the batch, 

‘σ' represents the standard deviation of the batch, 

‘β' denotes the learned shift parameter and . 

'y represents the output after applying batch 

normalization. 

The utilization of batch normalization has been found to 

enhance the performance of neural networks through the 

mitigation of internal covariate shifts, facilitating the use of 

greater learning rates, and imparting a regularization effect. 

The inclusion of normalization techniques in the training 

process aids in the stabilization and acceleration of the 

network's training by guaranteeing that the inputs of the 

network are maintained within a normalized and consistent 

range across the various layers. 

One variant of batch normalization, known as "depthwise batch 

normalization," does normalize independently on each channel 

of a depthwise convolutional layer. Normalizing the activations 

inside each channel aids in the normalization of the learning 

process and facilitates the convergence of the neural network. 

The mathematical expression for depthwise batch 

normalization is as follows:  

                 𝑦[𝑐] = γ[c] ×
  (x[c]  −  μ[c]) 

σ[c]  +  β[c]
                      (6) 

In this equation:  

x[c] represents the input activations for the c-th channel.,  

γ[c] denotes the learned scale parameter specific to the c-

th channel, . 

μ[c] represents the mean of the activations in the c-th 

channel, . 

σ[c] represents the standard deviation of the activations in 

the c-th channel, . 

β[c] denotes the learned shift parameter specific to the c-

th channel and . 

y[c] represents the output activations of the c-th channel 

after applying depthwise batch normalization. 

By applying batch normalization, the network can benefit from 

improved learning dynamics and convergence within each 

channel independently. It helps to normalize the activations 

within each channel, ensuring that the network can learn 

effectively from the specific features present in each channel. 

CNNs make use of a particular convolutional layer called the 

Depthwise Convolutional Layer. It applies a unique 

convolutional filter to each input channel, thus each channel 

may be processed separately. That's why the feature maps this 

layer outputs have the same amount of channels as the input. 

The equation for the depthwise convolution operation can be 

represented as follows: 

         Y[: , : , k]  = ∑(W[: , : , k]  ×  X[: , : , k])                  (7) 

In this equation:  

Y[:,:,k] represents the k-th output feature map, . 

W[:,:,k] denotes the k-th convolutional filter/kernel 

specific to the k-th channel, . 

X[:,:,k] represents the k-th input channel. 

 For each output feature map, the depthwise convolution 

operation convolves the corresponding filter W[:,:,k] with the 

input channel X[:,:,k] using element-wise multiplication and 

summation. The resulting output feature map Y[:,:,k] captures 

the spatial correlations and patterns within that particular 

channel. 

3.2 Proposed Light Weight CNN Model 
The suggested Lightweight CNN model is an augmentation of 

the original CNN architecture, wherein Batch Normalization is 

incorporated in each layer prior to the input being passed to the 

fully connected layer. Fig. 1 depicts the comprehensive 

architecture of the lightweight variant of the conventional CNN 

model, which demonstrates notable efficacy when applied to 

our specific dataset. 

Table 1. Layered exhaustive summary of  the proposed 

Lightweight CNN model with 264 classes of utilized dataset. 

Layer (type) Output Shapes Params # 

Conv2D (None, 146, 146, 64) 4864 

MaxPooling2D (None, 73, 73, 64) 0 

Conv2D (None, 69, 69, 128) 204928 

MaxPooling2D (None, 34, 34, 128) 0 

Conv2D (None, 32, 32, 256) 295168 

MaxPooling2D (None, 16, 16, 256) 0 

Depthwise Conv 2D (None, 14, 14, 256) 2560 

MaxPooling2D (None, 7, 7, 256) 0 

Flatten (None, 12544) 0 

Dense (None, 4096) 51384320 

Dropout (None, 4096) 0 

Dense (None, 264) 1081608 

Total params: 52,976,264, Trainable params: 52,974,856, 
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Fig. 1. Flow diagram of the proposed masked face recognition model 

The present study presents a newly developed CNN structure 

specifically designed to enhance the accuracy of facial 

recognition in situations where individuals are wearing masks. 

The present design effectively capitalizes on the benefits of 

depthwise separable convolutions and incorporates many 

layers to attain an ideal equilibrium between computing 

efficiency and accuracy. The CNN model demonstrates 

exceptional performance in scenarios when face characteristics 

are partially obscured by masks, rendering it very pertinent 

within the context of the prevailing COVID-19 epidemic. This 

novel methodology guarantees the efficient and precise 

identification of faces by the model, even in cases when some 

facial characteristics are obscured. 

The CNN model is constructed with the Keras package in 

Python, with an emphasis on maintaining a minimalistic 

design. The process starts with the establishment of an initial 

sequential model. Next, a sequence of convolutional layers is 

introduced. The initial layer of this sequence employs 64 filters 

and a kernel size of (5,5), accompanied by a Rectified Linear 

Unit (ReLU) activation function. After the first layers, a max-

pooling layer is incorporated, followed by the inclusion of a 

batch normalization layer. This measure is used in order to 

augment the model's ability to acquire knowledge and apply it 

to new situations. 

Subsequently, a secondary convolutional layer is incorporated, 

with 128 filters and a kernel size of (5,5), while employing the 

ReLU activation function once more. Subsequently, an 

additional max pooling layer and batch normalization layer are 

incorporated to enhance the performance of the model. The 

architectural design proceeds by incorporating a subsequent 

convolutional layer, characterized by the utilization of 256 

filters and a kernel size of (3,3), along with the application of 

the Rectified Linear Unit (ReLU) activation function. In 

addition, the architecture incorporates a max pooling layer and 

a batch normalization layer.    

A depthwise convolutional layer with a (3,3) kernel size and 

ReLU activation is included to induce non-linearity and lower 

the model's complexity. Following that, an additional layer of 

max pooling and batch normalization is incorporated. 

Subsequently, the resulting output is compressed into a single-

dimensional feature vector using flattening the multi-

dimensional feature maps. To enable the representation of 

more intricate features, a fully linked layer of 4096 

nodes employing the Rectified Linear Unit (ReLU) activation 

function is incorporated. Detailed parameters of the model is 

presented in Table 1. Furthermore, the model incorporates a 

dropout layer with a dropout rate of 0.5 to mitigate the issue of 

overfitting and enhance the model's ability to generalize. In 

conclusion, a fully connected layer consisting of 264 nodes and 

employing softmax activation is appended as the last layer 

to categorize the masked faces into their respective classes. 

As a loss function, Sparse Categorical Cross entropy is ideal for 

multi-class classification applications like face recognition, and 

it is used in the model's compilation. The Adam optimizer is 

utilized to effectively update the parameters of the model 

throughout the training process, while the accuracy metric is 

selected as the criterion to assess the performance of the model. 

In summary, the lightweight CNN model approach introduces 

a novel CNN architecture that is specifically designed to 

identify faces that are covered by masks. Some of the model's 

success can be attributed to the use of depthwise separable 

convolutions, along with other carefully chosen layers.  

4. RESULT AND DISCUSSIONS 

4.1 Dataset Description 
The objective of this study is to overcome the shortcomings of 

current masked face datasets by introducing a new dataset 

known as the HSTU Masked Face Dataset (HMFD) [29]. This 

dataset is designed to enhance the precision of face 

identification while individuals are wearing masks. Image 

augmentation techniques have been used to build a number of 

datasets, such as the conversion of Labeled Faces in the Wild 

(LFW) [30] and the CASIA face anti-spoofing [31], however 

these datasets do not accurately portray the appearance of 

masked faces [32]. Within these augmented datasets, it is 

common for the cheeks to remain uncovered, so deviating from 

real-world circumstances when masks typically cover the 

mouth, nose, and cheeks. In order to address these constraints, 

the novel dataset HMFD was developed, which incorporates 

photos of individuals who are appropriately wearing masks, 

ensuring that the mouth, nose, and cheeks are totally covered. 

The dataset includes a wide variety of perspectives, ages, and 

genders. The Dataset has multiple samples, each including a 

collection of 20 photos. These images encompass a variety of 

facial representations, including faces with masks of different 

colors (blue and black), faces without masks, and faces with 

masks that are not worn properly. The dataset known as HMFD 

comprises a total of 5,280 pictures, which have been collected 

from a sample of 264 individuals. 
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The dataset has been prepared for training in machine learning, 

encompassing essential preprocessing activities such as 

foldering, labeling, renaming, segmentation, and scaling. The 

raw images undergo a segmentation process in order to isolate 

and extract the specific region of interest (ROI). Following this, 

every image is shrunk to dimensions of 150×150 pixels in order 

to decrease the overall data size and improve the effectiveness 

of the training process. 

The High-quality Masked Face Dataset (HMFD) serves as a 

reliable dataset that faithfully captures the visual characteristics 

of masked faces, facilitating the advancement and assessment 

of resilient masked face recognition algorithms. This study 

makes a valuable contribution to the advancement of masked 

face recognition in the field, specifically addressing the 

difficulties encountered in real-world situations where 

individuals wear masks. By doing so, it aids in the enhancement 

of security and identity systems across several domains. 

4.2 Experiment Setup 
The present work introduces a methodology for the 

identification of obscured facial features, encompassing a 

series of sequential stages such as the formulation of a model, 

the process of training, the execution of testing, and the 

assessment of performance. The objective of the suggested 

methodology is to effectively tackle the difficulties linked to 

the identification of individuals when they are wearing facial 

masks. The technique overview is presented in Fig. 1, which 

visually represents the sequential progression of the many 

stages involved. The procedure of dataset preprocessing is 

outlined in Section III. The collection and preprocessing of the 

HSTU Masked Face Dataset (HMFD) are carried out to ensure 

its suitability for training machine learning models. Extensive 

tests were done to assess the performance of the proposed 

approach. The dataset utilized for training and evaluating the 

models was the HMFD dataset, which had 5280 photos 

featuring 264 persons wearing masks. With an 80:20 split, a 

subset of the data for training and another for testing is used. 

4.3 Performance Measure Metrics 
In order to assess the efficacy of the models in detecting 

obscured facial features, a range of evaluation criteria are 

employed, encompassing accuracy, precision, recall, and F1-

score. 

 

Fig. 2. Brief summary of a confusion Matrix 

In the context of binary classification, the term "True Positives" 

(TP) refers to the right identification of positive samples, 

whereas "True Negatives" (TN) denotes the proper 

classification of negative data. On the other hand, "False 

Positives" (FLP) refer to the incorrect identification of negative 

samples as positive, while "False Negatives" (FLN) represent 

the inaccurate labeling of positive samples as negative. The 

aforementioned criteria are of utmost importance for assessing 

the effectiveness of categorization algorithms. A concise 

overview of a confusion matrix and the diverse performance 

metrics presented in Fig. 2. 

4.3.1.  Overall Accuracy  
The measurement of overall accuracy is a crucial performance 

indicator that quantifies the ratio of correctly categorized data 

examples to the overall number of data occurrences. The 

assessment offered is a thorough review of the effectiveness of 

the classification model in effectively identifying hidden face 

characteristics.  

The accuracy of a classification model may be determined by 

computing the ratio of properly classified samples to the total 

number of samples. Following this, the equation that represents 

accuracy may be expressed as: 

             Accuracy =
  (TRP +  TrN) 

(TRP +  TRN +  FLP +  FLN)
           (8) 

In regard to a binary classification task, accuracy is a metric 

that quantifies the ratio of accurately categorized samples to the 

overall number of samples. This metric is particularly relevant 

when dealing with two distinct classes, such as masked and 

unmasked faces. 

4.3.2. Precision 
Precision is a quantitative measure that assesses the ability of a 

model to provide accurate positive predictions. The measure 

refers to the proportion of correctly predicted positive cases 

divided by the total number of instances anticipated as positive. 

A high accuracy score suggests that the model has a 

comparatively lower incidence of false positives. The 

mathematical representation denoting accuracy can be formally 

defined as: 

                           Precision =
TRP

(TRP +  FLP) 
                           (9) 

The precision indicates the closely value to the overall accuracy 

of a model. 

4.3.3. Recall 
The metric of recall, also known as sensitivity or true positive 

rate, assesses the model's capacity to accurately predict positive 

occurrences. The statistic measures the proportion of correctly 

predicted positive cases in relation to the overall number of 

positive instances. A high recall score indicates that the model 

exhibits a reduced frequency of false negatives. The 

mathematical representation of recall, also known as sensitivity 

or true positive rate, may be formally described as follows: 

                 Recall =
TRP

(TRP +  FLN) 
                         (10) 

4.3.4. F1 Score 
The F1-score is a balanced indication since it gives equal 

weight to both the accuracy and the recall of the information 

being evaluated. When there is a disparity in the number of 

positive and negative classifications present in the dataset, 
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which often occurs in real-world scenarios, the applicability of 

this method becomes readily apparent. The following is a 

definition of the mathematical expression that may be used to 

describe the F1 score: 

           F1 Score = 2 ×  
(Precision ×  Recall)  

(Precision +  Recall)
            (11) 

Furthermore, the evaluation of validation features, such as 

validation loss and a validation accuracy curve, is also taken 

into account. The validation accuracy curve depicts the 

fluctuations in the model's performance throughout the training 

phase in a visual format. Consequently, it offers valuable 

insights about the course of learning. On the other hand, the 

validation loss serves as an indicator of the model's ability to 

generalize to unfamiliar and unseen data. lesser values of the 

validation loss suggest a greater degree of generalization, 

whereas larger values imply a lesser level of generalization. 

The objective of this study is to assess the efficacy of various 

models in accurately identifying veiled faces, as well as to 

ascertain the practicality of the proposed approach in 

addressing the difficulties posed by facial masks. The 

achievement of this objective will be facilitated by analyzing 

the aforementioned metrics. 

4.4 Result Analysis 

The results of the initial phase of our tests are presented in 

Table 2. The models underwent training using the designated 

training set and were subsequently assessed based on their 

performance on the designated testing set. The performance 

was assessed by employing criteria like as accuracy, precision, 

recall, and F1-score. The empirical findings of our proposed 

lightweight CNN model exhibit its comparative advantage over 

alternative models concerning the recognition of masked faces. 

The model demonstrates notable performance measures, 

encompassing a testing accuracy of 96%, precision of 97%, 

recall of 96%, and F1 score of 96%. These measures serve as 

indicators of the model's capacity to effectively classify faces 

that have been obscured. In our study, we observed that the pre-

trained CNN, SVM, VGG16, VGG19, Mobilenet, and 

MobilenetV2 models yielded a testing accuracy of 87% when 

compared. The diminished level of accuracy seen can be 

ascribed to the model's inadequate training on our particular 

dataset. In order to mitigate this constraint and enhance the 

efficiency, we implemented alterations in our suggested 

lightweight CNN. The proposed alterations entail the 

incorporation of a supplementary dense layer featuring a 

dropout rate of 50%, a batch normalization layer, and the 

integration of depthwise convolution in conjunction with the 

pre-trained CNN model. 

Table 2. Masked Face Recognition Performance 

Evaluation (Frontal Image as Testing Samples) 

Model Name Accuracy Precision Recall F1 Score 

VGG16 87.00 88.00 87.00 85.00 

VGG19 74.00 86.00 86.00 84.00 

Extended VGG19 96.00 97.00 96.00 96.00 

Mobilenet 60.00 61.00 60.00 56.00 

MobilenetV2 60.00 59.00 60.00 56.00 

Lightweight CNN 98.00 98.00 97.00 98.00 

 

Fig. 3. Masked Face Recognition Performance Evaluation 

with Bar Chart (Frontal Image as Testing Samples)  

Table 3. Masked Face Recognition Performance 

Evaluation (Lateral Image as Testing Samples) 

Model Name Accuracy 
Precisio

n 
Recall F1 Score 

VGG16 65.00 77.00 65.00 65.00 

VGG19 64.00 7.00 64.00 65.00 

Extended VGG19 77.00 80.00 77.00 76.00 

Mobilenet 33.00 41.00 33.00 31.00 

MobilenetV2 34.00 44.00 34.00 33.00 

Lightweight CNN 79.00 83.00 80.00 79.00 

Due to these improvements, the lightweight CNN demonstrated 

a notable increase in accuracy, reaching 96%. This surpassed the 

performance of the conventional CNN model. Furthermore, the 

precision, recall, and F1 score exhibited remarkable values of 

97%, 96%, and 96% correspondingly, so showcasing the model's 

proficiency in effectively categorizing obscured faces. The 

performance of each model is represented graphically in Fig. 3 

by the validation accuracy of each model. In comparison to both 

pre-trained models and conventional CNN architectures, our 

experimental results show that our proposed lightweight CNN 

model is significantly more effective. Fig. 2 depicts the 

validation loss of the models, confirming the usefulness of our 

proposed lightweight CNN in the context of masked face 

recognition. In a similar vein, Fig. 4 depicts the validation loss 

of the models. 
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Fig. 4. Masked Face Recognition Performance Evaluation 

with Bar Chart (Lateral Image as Testing Samples) 

The findings of the study indicate that the Lightweight CNN 

model we suggested had superior performance compared to 

other standard deep learning methods. The model demonstrated 

a testing accuracy of 96%, suggesting its efficacy in facial 

recognition tasks involving individuals wearing masks. The 

criteria of precision, recall, and F1-score also demonstrated 

favorable outcomes, so providing additional confirmation of 

the effectiveness of our methodology. 

In the second part of our investigation, we used side views as 

test photos to see how well each model performed. The data 

obtained in this phase exhibit variations when compared to the 

frontal photographs. Table 3 presents a comprehensive 

summary of the performance measures attained by each model. 

When lateral images were used for testing, the standard CNN 

model demonstrated an accuracy of 60%, precision of 63%, 

recall of 60%, and an F1 score of 59%. The VGG19 model 

exhibited marginally superior performance, attaining an 

accuracy of 61%, precision of 66%, recall of 61%, and an F1 

score of 60%. Nevertheless, our proposed lightweight CNN 

model shown superior performance compared to CNN, support 

vector machine (SVM), VGG16, VGG19, Mobilenet, and 

MobilenetV2. When the lightweight CNN was tested with 

lateral images, it achieved an accuracy of 77%, precision of 

80%, recall of 77%, and F1 score of 76% by including an 

additional dense layer with a 50% dropout layer, batch 

normalization, and depthwise convolution. It is imperative to 

acknowledge that the aforementioned findings exhibit 

relatively diminished performance in comparison to the 

outcomes derived from frontal images. This discrepancy 

suggests the heightened challenge associated with the 

identification of masked faces when observed from lateral 

perspectives. 

The validation accuracy curves presented in Fig. 3 provide 

additional insight into the performance of the three models 

when tested on both frontal and lateral images. The lightweight 

CNN model consistently demonstrates superior performance 

compared to the other models across all scenarios. The visual 

representation of lateral pictures may exhibit a relatively 

diminished strength in terms of accuracy when compared to 

frontal images, although this observation does not necessarily 

indicate a substantial decline in overall performance. The lower 

accuracy threshold of the lightweight CNN model for lateral 

pictures is the minimal attainable level of accuracy in crucial 

scenarios. Furthermore, Fig. 4 illustrates the validation loss, 

indicating a strong alignment between the dataset and the 

models. The loss exhibits a declining trend as the number of 

epochs increases. The lightweight CNN model demonstrates 

higher performance in comparison to alternative approaches. 

Although the performance of the suggested model 

demonstrates satisfactory results in the context of masked face 

recognition, it is crucial to acknowledge the influence of head 

position on the outcomes. The accuracy of the testing reduces 

when utilizing lateral images, which depict the most extreme 

head position or the highest angle of deviation from the frontal 

position. This phenomenon occurs due to the variability in 

facial information as a function of the face's angle. The 

lightweight CNN model has a 96% accuracy rate when applied 

to frontal images while achieving a 77% accuracy rate when 

applied to lateral images. Despite the comparatively modest 

percentage of 77%, this value signifies that our model 

consistently achieves a minimum accuracy of 77% even when 

faced with the most demanding or crucial head angles. 

The enhanced efficacy of the lightweight CNN model can be 

ascribed to the incorporation of supplementary components, 

including the additional dense layer, batch normalization layer, 

and dropout layer. The inclusion of a dense layer in the model 

facilitates its ability to adapt to the dataset at hand, while 

simultaneously capitalizing on the knowledge encoded in the 

pre-trained weights. Batch normalization is a technique that 

standardizes the inputs of each layer in order to expedite and 

enhance the training process. The inclusion of a dropout layer 

with a dropout rate of 50% serves to mitigate the issue of 

overfitting and facilitates the generalization capabilities of the 

model. 

In general, the lightweight CNN model described in this work 

exhibits superior performance in comparison to the other 

models employed. Although there is a decrease in accuracy 

when using lateral images, the model continually demonstrates 

strong performance, maintaining a minimum accuracy of 77% 

for important head angles. The incorporation of additional 

components such as a dense layer with increased complexity, a 

batch normalization layer for improved training stability, a 

depthwise convolution layer for enhanced feature extraction, 

and a dropout layer for regularization collectively enhance the 

performance and adaptability of the model in the context of 

masked face recognition tasks. 

5. CONCLUSION AND FUTURE WORK 
The primary emphasis of the essay centers around the 

development of a deep learning model specifically tailored for 

the purpose of facial recognition in the presence of facial 

masks. The deep learning model that has been developed is a 

variant of the CNN that is designed to be lightweight. Empirical 

findings from experiments conducted indicate that this model 

exhibits greater performance when compared to other 

traditional deep learning methodologies. A notable finding 

derived from the inquiry is that the proposed model 

demonstrates a heightened level of accuracy (reaching up to 

97%) in the recognition of frontal masked faces, as opposed to 

lateral masked faces. This implies that the efficacy of the model 

may differ based on the angle or direction of the obscured facial 

features. The researchers want to pursue the development of a 

real-time masked face recognition system in their forthcoming 

endeavors, aiming to get precise outcomes through the use of a 

reduced training dataset. Furthermore, the researchers want to 

investigate facial expressions by enhancing the dataset with a 
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broader range of diverse and plentiful data, encompassing both 

increased amount and variation. In general, the paper 

emphasizes the potential of the suggested deep learning model 

for recognizing masked faces and provides suggestions for 

future enhancements and developments in this area of research. 
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