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ABSTRACT 

Introducing an innovative methodology for modeling user 

behavior sequences in recommendation systems, this paper 

proposes the use of a bidirectional self-attention network and 

Cloze task, drawing inspiration from Bidirectional Encoder 

Representations from Transformers (BERT) to enhance the 

recommendations of products on e-commerce websites. 

Traditional recommendation system models that are 

unidirectional have limitations, mainly in the power of hidden 

representations and rigid ordering of historical user 

interactions. Overcoming these limitations, the suggested 

BERT4Rec model is bidirectional, offering the context from 

both directions. The paper suggests utilizing the Cloze task to 

prevent data leakages from bidirectional conditioning. This 

includes masking random components within the input 

sequences and predicting them based on their nearby context. 

Comprehensive experiments are conducted, resulting in 

consistently better outcomes than state-of-the-art comparable 

options across four datasets. This exploration sets the 

groundwork by introducing the Cloze objective and deep 

bidirectional sequential modeling to the recommendation 

system field. Furthermore, the study is a foundation for future 

studies investigating explicit user modeling and incorporating 

item features. 

General Terms 
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1. INTRODUCTION 

Accurate characterization of users' interests is crucial for 

effective recommendation systems. In real-world applications, 

users' interests are dynamic and influenced by their historical 

behaviors. For example, a user may purchase accessories for a 

gaming console shortly after buying the console, even though 

they would not normally buy console accessories. To model 

such sequential dynamics in user behaviors, various methods 

have been proposed to make sequential recommendations 

based on users' historical interactions (Sepp Hochreiter and 

Jürgen Schmidhuber, 1997). Recently, sequential neural 

networks such as Recurrent Neural Networks (RNNs) have 

been used for sequential recommendation and have shown 

promising results. These methods typically encode a user's 

historical interactions into a vector representation of their 

preferences using a left-to-right sequential model and make 

recommendations    based    on    this   hidden   representation.  

However, arguing that such left-to-right unidirectional models 
have limitations in learning optimal representations for user 
behavior sequences. One major limitation is that these models 
restrict the power of hidden representations for items in 
historical sequences, as each item can only encode information 
from previous items (Geoffrey Hinton et al., 2015). Another 
limitation is that unidirectional models assume a rigid order in 
the sequence of items, which is not always true for user 
behaviors in real-world applications. In fact, the choices of 
items in a user's historical interactions may not follow a strict 
order due to various external factors. Therefore, it is important 
to incorporate context from both directions in user behavior 
sequence modelling.  

To address these limitations, proposing using a bidirectional 
model to learn representations for user’s historical behavior 
sequences, inspired by the success of Bidirectional Encoder 
Representations from Transformers(BERT) in text 
understanding. The deep bidirectional self-attention model is 
applied to sequential recommendation. Bidirectional models 
have shown superior results in text sequence modeling tasks, 
indicating that incorporating context from both sides is 
beneficial for learning sequence representations (Balázs Hidasi 
and Alexandros Karatzoglou, 2018). 

However, training a bidirectional model for sequential 
recommendation is not straightforward, as conventional 
sequential recommendation models are usually trained left-to-
right by predicting the next item for each position in the input 
sequence. Jointly conditioning on both left and right context in 
a deep bidirectional model would cause information leakage, as 
it would allow each item to indirectly "see the target item", 
making predicting the future trivial and not learning anything 
useful. To overcome this problem, introducing the Cloze task 
as an alternative objective to replace the left-to-right prediction 
objective used in unidirectional models (Xiangnan et al., 2017). 
In the Cloze task, randomly mask some items in the input 
sequences and predict the masked items based on their 
surrounding context. This way, avoiding information leakage 
and allow the representation of each item in the input sequence 
to fuse both the left and right context in the bidirectional model. 
Another advantage of the Cloze objective is that it can generate 
more samples to train a more powerful model in multiple 
epochs. However, a downside of the Cloze task is that it is not 
consistent with the final task of sequential recommendation. To 
address this, during testing, appending a special token "[mask]" 
at the end of the input sequence to indicate the item that needs 
to be predicted, and then make recommendations based on its 
final hidden vector. 

Extensive experiments are conducted on four datasets to 
evaluate the proposed model, and the results showed that the 
model consistently outperforms various state-of-the-art 
baselines. Additionally, conducting a thorough ablation study 
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to analyze the contributions of the key components in the 
proposed model. 

2. RELATED WORK 

2.1 General Recommendation 
Traditional approaches to recommendation systems, such as 

Collaborative Filtering (CF), have been widely used to model 

users' preferences based on their interaction histories. One 

popular CF method is Matrix Factorization (MF), where users 

and items are projected into a shared vector space, and user-

item preferences are estimated through the inner product of 

their vectors (Ruining He et al., 2017). Another approach is 

item-based neighborhood methods, which estimate a user's 

preference on an item by measuring its similarity with items in 

their interaction history using a precomputed item-to-item 

similarity matrix. However, in recent years, deep learning has 

revolutionized recommendation systems. Deep learning-based 

methods have since pursued two main directions. One direction 

focuses on improving recommendation performance by 

incorporating distributed item representations learned from 

auxiliary information such as text, images, or acoustic features 

into CF models. This allows for a more comprehensive 

understanding of items and their relevance to users. The other 

direction aims to replace traditional matrix factorization 

approaches with deep learning-based models. For instance, 

Neural Collaborative Filtering (NCF) utilizes Multi-Layer 

Perceptrons (MLP) instead of the inner product to estimate user 

preferences, capturing more complex user-item interactions 

(Petrov and Macdonald, 2022). AutoRec and CDAE, on the 

other hand, predict users' ratings using an Auto-encoder 

framework, which allows for non-linear representations of 

user-item preferences. These deep learning-based approaches 

have shown promising results in improving recommendation 

performance by leveraging the power of neural networks to 

capture intricate patterns in user-item interactions. By 

incorporating auxiliary information and utilizing advanced 

modeling techniques, deep learning-based recommendation 

systems have the potential to enhance recommendation 

accuracy and provide more personalized and relevant 

recommendations to users. 

2.2 Sequential Recommendation 
Earlier works used Markov chains (MCs) to capture sequential 

patterns from user historical interactions in sequential 

recommendation. Markov Decision Processes (MDPs) were 

also used to address recommendation generation as a sequential 

optimization problem (Sun et al., 2019). Later, Factorizing 

Personalized Markov Chains (FPMC) combined the power of 

MCs and matrix factorization (MF) to model both sequential 

behaviors and general interests, while high-order MCs were 

also adopted to consider more previous items. More recently, 

recurrent neural networks (RNNs) and their variants, such as 

Gated Recurrent Unit (GRU) and Long Short-Term Memory 

(LSTM), have gained popularity for modeling user behavior 

sequences (Nagy et al., 2021). These methods encode a user's 

previous records into a vector that represents their preferences, 

which is then used for making predictions. Several recurrent 

architectures and loss functions have been proposed, including 

session-based GRU with ranking loss (GRU4Rec), Dynamic 

Recurrent basket Model (DREAM), user-based GRU, 

attention-based GRU (NARM), and improved GRU4Rec with 

new loss functions (BPR-max and TOP1-max) and an 

improved sampling strategy. 

In addition to recurrent neural networks, other deep learning 

models have been introduced for sequential recommendation. 

For example, Tang and Wang proposed a Convolutional 

Sequence Model (Caser) that uses both horizontal and vertical 

convolutional filters to learn sequential patterns. Memory 

Network is another approach that aims to improve sequential 

recommendation. STAMP, on the other hand, captures both 

users' general interests and current interests using a Multi-

Layer Perceptron (MLP) network with attention (Ciniselli et 

al., 2021). These deep learning-based approaches have shown 

promise in modeling sequential user behaviors and capturing 

intricate patterns in user-item interactions over time. By 

considering the order of users' behaviors, these models have the 

potential to provide more accurate and relevant 

recommendations in dynamic and evolving recommendation 

scenarios (Lu et al., 2020). These advancements in deep 

learning-based sequential recommendation methods open up 

new possibilities for developing more effective and 

personalized recommendation systems that can adapt to users' 

changing preferences and behaviors. 

2.3 Attention Mechanism 
The attention mechanism has gained recognition for its 

potential in modeling sequential data, such as machine 

translation and text classification due to their effectiveness and 

efficiency. Recently, there has been a growing interest in 

leveraging the attention mechanism to enhance 

recommendation performance and interpretability by 

integrating it into the GRU model to capture user’s sequential 

behavior. Transformer and BERT models are built entirely on 

multi-head self-attention and have achieved state-of-the-art 

results in text sequence modeling. In the field of sequential 

recommendation, Kang and McAuley introduced SASRec, a 

two-layer Transformer decoder, which captures users' 

sequential behaviors and achieves top-performing results on 

several public datasets (Mozafari et al., 2020). Although 

SASRec is closely related to the current work, it is a 

unidirectional model that uses a causal attention mask, whereas 

the current approach utilizes a bidirectional model and encodes 

users' behavior sequences with the help of the Cloze task. 

3. BERT4Rec 

3.1 Problem Statement 
In the domain of sequential recommendation, a set of users 

denoted as U = {u1, u2, ..., u|U|}, a set of items denoted as V = 

{v1, v2, ..., v|V|} are considered, and an interaction sequence 

for a user u ∈ U denoted as Su = [v(u)1, ..., v(u)t, ..., v(u)nu]. 

Here, v(u)t ∈ V represents the item that user u has interacted 

with at time step t, and nu represents the length of the 

interaction sequence for user u. The objective of sequential 

recommendation is to predict the item that user u will interact 

with at time step nu + 1, based on their past interaction history 

Su. This prediction task can be mathematically formulated as 

modeling the probability distribution over all possible items for 

user u at time step nu + 1, denoted as p(v(u)nu + 1 | Su). 

3.2 Model Architecture 
A new model called BERT4Rec is introduced for sequential 

recommendation, which incorporates Bidirectional Encoder 

Representations from Transformers (BERT) into the task. 

BERT4Rec is constructed using the popular self-attention layer 

known as the Transformer layer, as shown in Figure 1b (Qiao 

et al., 2022). It consists of L bidirectional Transformer layers, 

where at each layer, the representation of each position is 

iteratively revised by exchanging information across all 

positions from the previous layer in parallel with the 

Transformer layer. BERT4Rec utilizes the self-attention 

mechanism, which allows it to directly capture dependencies 

between any distances. Self-attention is easy to parallelize, 

unlike RNN-based methods (Lin et al., 2021). BERT4Rec 
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captures more powerful representations of users' behavior 

sequences, leading to improved recommendation performance. 

3.3 Transformer Layer 
Hidden representations, denoted as hli can be computed for 

each position i at each layer in a Transformer-based model. The 

input sequence has a length of t, and the Transformer layer is 

applied iteratively to compute hli (Risch and Krestel, 2020). 

These hidden representations are stacked together into a matrix 

Hl of size t×d, where d is the hidden dimension, as the attention 

function is computed on all positions simultaneously during 

training. 

The Transformer layer consists of two sub-layers: Multi-Head 

Self-Attention and Position-wise Feed-Forward Network. 

Multi-Head Self-Attention is a key component in sequence 

modeling tasks, as it allows for capturing dependencies 

between representations regardless of their distance in the 

sequence. Instead of using a single attention function, a multi-

head approach is adapted. In this approach, the input 

representations H1 are linearly projected into h subspaces using 

different, learnable linear projections. Then, h attention 

functions are applied in parallel to generate output 

representations, which are concatenated and projected again for 

further processing. This multi-head self-attention mechanism 

enables the model to capture complex dependencies and 

interactions among representations in the sequence, enhancing 

its ability to model sequential data effectively. 

𝑀𝐻(𝐻1) = [ℎ𝑒𝑎𝑑1;  ℎ𝑒𝑎𝑑2; … . ;  ℎ𝑒𝑎𝑑ℎ]𝑊𝑜 

𝐻𝑒𝑎𝑑𝑖 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝐻1𝑊𝑄𝑖, 𝐻1𝑊𝐾𝑖, 𝐻1𝑊𝑉𝑖) 

The Attention function used is the Scaled Dot-Product 

Attention, which computes a softmax over the dot product of 

the query (Q) and key (K) matrices, scaled by a temperature 

parameter pd/h, and then multiplied with the value (V) matrix. 

The SoftMax operation produces a probability distribution that 

indicates the importance of different positions in the input 

sequence. 

The Position-wise Feed-Forward Network is employed to 

introduce nonlinearity and interactions between dimensions in 

the outputs of the self-attention sub-layer (Shi and Lin, 2019). 

This network operates independently and uniformly at each 

position in the sequence. It comprises of two affine 

transformations, with a Gaussian Error Linear Unit (GELU) 

activation function applied in between. This allows the model 

to incorporate nonlinearity and capture complex interactions 

between different dimensions in the input sequence, enhancing 

the expressive power of the model. The Position-wise Feed-

Forward Network is applied to the outputs of the self-attention 

sub-layer, enabling the model to capture more nuanced and 

nonlinear patterns in the data, which is important for achieving 

higher performance in various sequence modeling tasks (Wang 

et al., 2019). 

𝑃𝐹𝐹𝑁(𝐻1) = 𝐹𝐹𝑁(ℎ11)𝑇; … . ; 𝐹𝐹𝑁(ℎ1𝑡)𝑇𝑇 

𝐹𝐹𝑁(𝑥) = 𝐺𝐸𝐿𝑈(𝑥𝑊(1) + 𝑏(1))𝑊(2) + 𝑏(2) 

The GELU activation function is a smoother alternative to the 

standard Rectified Linear Unit (ReLU) activation function, 

commonly used in OpenAI GPT and BERT. 

To capture item-item interactions effectively in the user 

behavior sequence, self-attention mechanisms are utilized. 

However, to learn more intricate item transition patterns, it is 

beneficial to stack multiple self-attention layers (Sun et al., 

2019). Nevertheless, as the network goes deeper, it becomes 

more challenging to train. To mitigate this, residual 

connections are employed around each of the two sub-layers 

with layer normalization. Additionally, dropout is applied to 

the output of each sub-layer before normalization. This means 

that the output of each sub-layer is normalized using the layer 

normalization function (LN) after adding the input (x) to the 

output of the dropout function applied to the sub-layer output 

(Nozza et al., 2020). Layer normalization is used to normalize 

the inputs across all the hidden units in the same layer, 

stabilizing and accelerating network training. By incorporating 

residual connections, layer normalization, and dropout, the 

model can effectively mitigate the challenges associated with 

deep network architectures, allowing for better training and 

improved performance in capturing complex patterns in the 

data. 

In summary, the hidden representations of each layer in 

BERT4Rec are refined as follows: 

𝐻1 = 𝑇𝑟𝑚(𝐻1 − 1), ∀∈ [1, … , 𝐿] 

𝑇𝑟𝑚(𝐻1 − 1) = 𝐿𝑁(𝐴1 − 1 +  𝐷𝑟𝑜𝑝𝑜𝑢𝑡(𝑃𝐹𝐹𝑁(𝐴1 − 1))) 

𝐴1 − 1 = 𝐿𝑁(𝐻1 − 1 +  𝐷𝑟𝑜𝑝𝑜𝑢𝑡(𝑀𝐻(𝐻1 − 1))) 

where Trm denotes the Transformer layer, LN denotes the layer 

normalization function, MH denotes the Multi-Head Self-

Attention, and PFFN denotes the Position-wise Feed-Forward 

Network. Dropout is used for regularization during training, 

and L denotes the total number of layers in the model. 

3.4 Embedding Layer 
As mentioned previously, the Transformer layer (Trm) lacks 

awareness of the input sequence order due to the absence of 

recurrence or convolutional modules. To incorporate sequential 

information, Positional Embeddings are injected into the input 

item embeddings at the bottom of the Transformer layer stacks. 

The input representation (h0i) for a given item vi is obtained by 

summing the corresponding item embedding (vi) and positional 

embedding (pi) as follows: h0i = vi + pi, where vi ∈ E 

represents the d-dimensional embedding for item vi, and pi ∈ P 

represents the d-dimensional positional embedding for the 

position index i (Tsai et al., 2019). In this study, learnable 

positional embeddings are used instead of fixed sinusoid 

embeddings from a previous work for improved performance. 

The positional embedding matrix P ∈ R N × d enables the 

model to identify the portion of the input it is processing. 

However, it also imposes a limitation on the maximum 

sentence length (N) that the model can handle. Thus, if the input 

sequence [v1, . . . , vt] exceeds N items, it needs to be truncated 

to the last N items [vu t−N +1, . . . , vt] where t > N. This 

truncation ensures that the model operates within the maximum 

sentence length N, allowing for effective utilization of 

positional embeddings to capture the sequential information in 

the input sequence. 

3.5 Output Layer 
As mentioned previously, the Transformer layer (Trm) lacks 

awareness of the input sequence The final output HL for all 

items in the input sequence is obtained after passing through L 

layers that exchange information hierarchically across all 

positions in the previous layer. If the item vt is masked at time 

step t, the masked items vt can be predicted based on hLt. This 

prediction is generated using a two-layer feed-forward network 
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with GELU activation in between, which produces an output 

distribution over target items using the softmax function: 

𝑃(𝑣) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (𝐺𝐸𝐿𝑈(ℎ𝐿𝑡 𝑊𝑃 + 𝐵𝑃)𝐸𝑇 + 𝑏𝑜) 

Here, WP is a learnable projection matrix, bP and bo are bias 

terms, and E ∈ R |V |×d is the embedding matrix for the item 

set V. To mitigate overfitting and reduce model size, a shared 

item embedding matrix is utilized in both the input and output 

layers. The output distribution P(v) represents the probabilities 

of the masked items vt being each possible target item in the 

item set V. The GELU activation function is used to introduce 

non-linearity in the network, allowing it to capture complex 

patterns in the data (Rogers et al., 2021). The projection matrix 

WP and bias terms bP and bO are learned during the training 

process, allowing the model to adapt and optimize its 

predictions based on the input data. The embedding matrix E is 

a matrix of size |V|×d, where |V| represents the size of the item 

set V and d represents the embedding dimension. The 

embedding matrix is used to represent the items in a continuous 

vector space, allowing the model to capture semantic 

relationships between items. By sharing the embedding matrix 

in the input and output layers, the model can benefit from the 

shared information, improving generalization and reducing the 

risk of overfitting. tabs, and so on.  

3.6 Model Learning 
To efficiently train the proposed model, a new objective called 

Cloze task (also known as "Masked Language Model") is 

applied to sequential recommendation. Cloze task is a test that 

involves a portion of language with some words removed, and 

the participant is asked to fill in the missing words (Lu et al., 

2020). In this case, for each training step, a random proportion 

ρ of all items in the input sequence is masked by replacing them 

with a special token "[mask]", and then the original ids of the 

masked items are predicted solely based on their left and right 

context. The final hidden vectors corresponding to "[mask]" are 

then fed into an output softmax over the item set, similar to 

conventional sequential recommendation. The loss for each 

masked input S′u is defined as the negative log-likelihood of 

the masked targets, which is calculated based on the probability 

of the true item for the masked item. 

An additional advantage of using Cloze task is that it can 

generate more samples to train the model (Mozafari et al., 

2020). In conventional sequential predictions, each sequence   

of length n produces n unique samples for training, however, 

with BERT4Rec, n*k samples can be obtained (if k items are 

randomly masked) in multiple epochs, allowing for training a 

more powerful bidirectional representation model. 

To address the mismatch between the training and the final 

sequential recommendation task introduced by Cloze task, the 

special token "[mask]" is appended to the end of the user's 

behavior sequence during testing, and the next item is predicted 

based on the final hidden representation of this token. 

Additionally, during training, samples that only mask the last 

item in the input sequences are produced, similar to fine-tuning 

for sequential recommendation, which can further improve the 

recommendation performances (Akhtyamova, 2020).  

For example: The hidden vectors corresponding to the special 

token "[mask]" are used to generate an output softmax over the 

item set, like conventional sequential recommendation. The 

loss for each masked input sequence S ′ u is computed as the 

negative log-likelihood of the true targets for the masked items, 

denoted as v ∗ m, in the sequence S m u, which contains 

randomly masked items. 

One advantage of using the Cloze task is that it can generate 

more training samples for the model (Ciniselli et al., 2021). 

Assuming a sequence of length n, conventional sequential 

predictions produce n unique samples for training, while 

BERT4Rec with Cloze task can generate n*k samples (where 

k is the number of randomly masked items) in multiple epochs. 

This enables training a more powerful bidirectional 

representation model that captures richer contextual 

information from both left and right contexts, leading to 

improved recommendation performance. 

This approach can be seen as a form of fine-tuning for 

sequential recommendation, and it has the potential to further 

enhance the recommendation performance by better aligning 

the training objective with the ultimate prediction goal of the 

model. 

Table 1. Datasets Statistics 

 

4. EXPERIMENTS 

4.1 Datasets 
Assessing the performance of the proposed model on four real-

world datasets that cover diverse domains and levels of 

sparsity. These datasets include: 

● Amazon Beauty: This dataset comprises product 

review data obtained from Amazon.com, which was 

originally crawled by McAuley et al. [34]. The data 

is divided into separate datasets based on top-level 

product categories, and in the evaluation, focus on 

the "Beauty" category. 

● Steam: This dataset is collected from Steam, a large 

online video game distribution platform, as curated 

by Kang and McAuley [22]. 

● MovieLens: This is a widely used benchmark dataset 

for evaluating recommendation algorithms. Utilize 

two established versions of MovieLens, namely 

MovieLens 1m (ML1m) and MovieLens 20m (ML-

20m). 

For dataset preprocessing, standard practices are followed 

employed in previous studies. Specifically, convert all numeric 

ratings or the presence of a review into implicit feedback, 

where a value of 1 indicates that the user has interacted with 

the item. Then group the interaction records by users and 

construct interaction sequences for each user by sorting the 

records based on timestamps. To ensure dataset quality, adopt 

the common practice of retaining only users with at least five 

feedbacks. Table 1 provides an overview of the statistics of the 

processed datasets. 

4.2 Task Settings and Evaluation Metrics 
To assess the effectiveness of the sequential recommendation 

models, utilizing the widely used leave-one-out evaluation 

approach, also known as the next item recommendation task, 

which has been employed in previous studies. For each user, 

withhold the last item in their behavior sequence as the test 

data, designate the item just before the last as the validation set, 

and use the remaining items for training. 
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To ensure a fair and consistent evaluation, adopting the 

common strategy used in where randomly sample 100 negative 

items for each user from the items they have not interacted 

with. To ensure the sampling is reliable and representative, then 

sample these negative items based on their popularity. 

Consequently, the task involves ranking these 100 negative 

items along with the ground truth item for each user. 

Then utilize a variety of evaluation metrics to assess the 

performance of the ranking lists generated by the models. 

These metrics include Hit Ratio (HR), Normalized Discounted 

Cumulative Gain (NDCG), and Mean Reciprocal Rank (MRR). 

HR@k, which is equivalent to Recall@k and proportional to 

Precision@k, is reported with k = 1, 5, and 10 in this study. 

Additionally, MRR is equivalent to Mean Average Precision 

(MAP). Higher values for these metrics indicate better 

performance. 

4.3 Baselines and Implementation Details 
To evaluate the effectiveness of the method, comparing it with 

several baseline methods commonly used in the field of 

sequential recommendation. These baselines include: 

● POP: This is a simple baseline that ranks items based 

on their popularity, determined by the number of 

interactions. 

● BPR-MF: This baseline optimizes matrix 

factorization using implicit feedback and a pairwise 

ranking loss. 

● NCF: This baseline models user-item interactions 

using a Multi-Layer Perceptron (MLP) instead of the 

inner product used in matrix factorization. 

● FPMC: This baseline combines matrix factorization 

with first-order Markov Chains (MCs) to capture 

users' general taste as well as their sequential 

behaviors. 

● GRU4Rec: This baseline uses a Gated Recurrent 

Unit (GRU) with a ranking-based loss to model user 

sequences for session-based recommendation. 

● GRU4Rec+: This is an improved version of 

GRU4Rec that incorporates a new class of loss 

functions and sampling strategy. 

● Caser: This baseline employs a Convolutional Neural 

Network (CNN) in both horizontal and vertical ways 

to model high-order MCs for sequential 

recommendation. 

● SASRec: This baseline uses a left-to-right 

Transformer language model to capture users' 

sequential behaviors and has shown state-of-the-art 

performance in sequential recommendation. 

For some of the baselines (NCF, GRU4Rec, GRU4Rec+, 

Caser, SASRec), the code is used provided by the 

corresponding authors. For BPR-MF and FPMC,  are 

implemented using TensorFlow. Considering common 

hyperparameter settings such as hidden dimension size, ℓ2 

regularizer, dropout rate, etc., and tuned them on the validation 

sets. It has been reporting the results of each baseline under its 

optimal hyperparameter settings. Implementing BERT4Rec 

with TensorFlow, initializing all parameters using a truncated 

normal distribution with a range of [-0.02, 0.02]. Although 

provided training the models using the Adam optimizer with a 

learning rate of 1e-4, β1 = 0.9, β2 = 0.999, ℓ2 weight decay of 

0.01, and linear decay of the learning rate. Clipping the gradient 

when its ℓ2 norm exceeded a threshold of 5 for fair comparison. 

It set the layer number L = 2 and head number h = 2, using the 

same maximum sequence length as in previous works (N = 200 

for ML-1m and ML-20m, N = 50 for Beauty and Steam 

datasets). The dimensionality of each head was empirically set 

as 32 (single head if d < 32). The mask proportion ρ is tuned 

and using the validation set, resulting in ρ = 0.6 for Beauty, ρ = 

0.4 for Steam, and ρ = 0.2 for ML-1m and ML-20m. All the 

models were trained from scratch on a single NVIDIA GeForce 

GTX 1080 Ti GPU with a batch size of 256.  

4.4 Overall Performance Comparison 
Table 2 presents a summary of the best results achieved by 

various models on four benchmark datasets. The last column 

shows the performance improvement of BERT4Rec compared 

to the best baseline. NDCG@1 results are omitted as they are 

equal to HR@1 in the experiments. 

The non-personalized POP method performs the worst on all 

datasets, as it does not consider users' personalized preferences 

based on their historical records. Among all the baseline 

methods, sequential methods such as FPMC and GRU4Rec+ 

consistently outperform non-sequential methods like BPR-MF 

and NCF on all datasets. This indicates that considering 

sequential information is beneficial for improving 

recommendation system performance. 

Among the sequential recommendation baselines, Caser 

performs better than FPMC on all datasets, especially on the 

dense dataset ML-1m, suggesting that modeling high-order 

MCs (Markov Chains) is beneficial for sequential 

recommendation. However, Caser tends to perform worse than 

GRU4Rec+ and SASRec, especially on sparse datasets, 

possibly due to the small order L used in high-order MCs, 

which do not scale well. Furthermore, SASRec performs 

significantly better than GRU4Rec and GRU4Rec+, indicating 

that the self-attention mechanism is a more powerful tool for 

sequential recommendation. 

Based on the results, it is evident that BERT4Rec performs the 

best among all methods on all four datasets, outperforming the 

strongest baselines. On average, BERT4Rec achieves 7.24% 

improvement in HR@10, 11.03% improvement in 

Table 2. Performance comparison of methods for next-item prediction. Bold indicates best, underlined indicates 

second best, with statistically significant improvements over baselines (p < 0.01) 

Datasets Metric POP 

BPR-

MF NCF FPMC 

GRU4R

EC 

GRU4Rec

+ Caser SASRec 

BERT4R

ec 

Improv

. 

BEAUTY 
HR@1 0.0077 0.0415 0.0407 0.0435 0.0402 0.0551 0.0475 0.0906 0.0953 5.19% 

HR@5 0.0392 0.1209 0.1305 0.1387 0.1315 0.1781 0.1625 0.1934 0.2207 14.12% 
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HR@10 0.0762 0.1992 0.2142 0.2401 0.2343 0.2654 0.2590 0.2653 0.3025 14.02% 

NDCG@

5 0.0230 0.0814 0.0855 0.0902 0.0812 0.1172 0.1050 0.1436 0.1599 11.35% 

NDCG@

10 0.0349 0.1064 0.1124 0.1211 0.1074 0.1453 0.1360 0.1633 0.1862 14.02% 

MRR 0.0437 0.1006 0.1043 0.1056 0.1023 0.1299 0.1205 0.1536 0.1701 10.74% 

STEAM 

HR@1 0.0159 0.0314 0.0246 0.0358 0.0574 0.0812 0.0495 0.0885 0.0957 8.14% 

HR@5 0.0805 0.1177 0.1203 0.1517 0.2171 0.2391 0.1766 0.2559 0.2710 5.90% 

HR@10 0.1389 0.1993 0.2169 0.2551 0.3313 0.3594 0.2870 0.3783 0.4013 6.08% 

NDCG@

5 0.0477 0.0744 0.0717 0.0945 0.1370 0.1613 0.1131 0.1727 0.1842 6.66% 

NDCG@

10 0.0665 0.1005 0.1026 0.1283 0.1802 0.2053 0.1484 0.2147 0.2261 5.31% 

MRR 0.0669 0.0942 0.0932 0.1139 0.1420 0.1757 0.1305 0.1874 0.1949 4.00% 

ML-1M 

HR@1 0.0141 0.0914 0.0397 0.1386 0.1583 0.2092 0.2194 0.2351 0.2863 21.78% 

HR@5 0.0715 0.2866 0.1932 0.4297 0.4673 0.5103 0.5353 0.5434 0.5876 8.13% 

HR@10 0.1358 0.4301 0.3477 0.5946 0.6207 0.6351 0.6692 0.6629 0.6970 4.15% 

NDCG@

5 0.0416 0.1903 0.1146 0.2885 0.3196 0.3705 0.3832 0.3980 0.4454 11.91% 

NDCG@

10 0.0621 0.2365 0.1640 0.3439 0.3627 0.4064 0.4268 0.4368 0.4818 10.32% 

MRR 0.0627 0.2009 0.1358 0.2891 0.3041 0.3462 0.3648 0.3790 0.4254 12.24% 

ML-20m 

HR@1 0.0221 0.0553 0.0231 0.1079 0.1459 0.2021 0.1232 0.2544 0.3440 35.22% 

HR@5 0.0805 0.2128 0.1358 0.3601 0.4657 0.5118 0.3804 0.5727 0.6323 10.41% 

HR@10 0.1378 0.3538 0.2922 0.5201 0.5844 0.6524 0.5427 0.7136 0.7473 4.72% 

NDCG@

5 0.0511 0.1332 0.0771 0.2239 0.3090 0.3630 0.2538 0.4208 0.4967 18.04% 

NDCG@

10 0.0695 0.1786 0.1271 0.2895 0.3637 0.4087 0.3062 0.4665 0.5340 14.47% 

MRR 0.0709 0.1503 0.1072 0.2273 0.2967 0.3476 0.2529 0.4026 0.4785 18.85% 

NDCG@10, and 11.46% improvement in MRR compared to 

the best baselines. 

Question: Are the improvements in performance attributed to 

the bidirectional self-attention model or the Cloze objective in 

BERT4Rec? 

To investigate the effects of the bidirectional self-attention 

model and the Cloze objective in BERT4Rec, we conducted 

experiments where the Cloze task only masked one item at a 

time, isolating the effects of these two factors. In comparison 

to SASRec, the BERT4Rec (with 1 mask) predicts the target 

item by conditioning on both left and right context. The results, 
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reported in Table 3 for Beauty and ML-1m with d = 256 due to 

space limitations, show that BERT4Rec with 1 mask 

outperforms SASRec on all evaluation metrics, highlighting the 

importance of bidirectional representations in sequential 

recommendation. Additionally, the last two rows of the table 

indicate that the Cloze objective also contributes to improved 

performance. 

Table 3. Analysis of bidirectional and Cloze models with 

dimensionality d = 256 

 

MODEL 

BEAUTY ML-1m 

HR@

10 

NDCG

@10 

MR

R 

HR@

10 

NDCG

@10 MRR 

SASRec 0.2653 0.1633 

0.15

3 0.6629 0.4368 0.379 

BERT4R

ec(1 

mask) 0.294 0.1769 

0.16

1 0.6869 0.4696 0.412 

BERT4R

ec 0.3025 0.1862 0.17 0.697 0.4818 

0.425

4 

 

 Question 2: What are the reasons and mechanisms behind 

the superior performance of bidirectional models compared 

to unidirectional models? 

To address this question, the aim is to uncover significant 

patterns by visualizing the average attention weights of the last 

10 items during the test on the Beauty dataset, as shown in 

Figure 1. Four representatives are provided attention heat-maps 

from different layers and heads, taking into consideration the 

limitation of space for reporting. 

Several observations have been made from the results of our 

analysis. Firstly, we noticed that attention varies across 

different heads, with head 1 in layer 1 tending to focus on items 

on the left side, while head 2 prefers items on the right side. 

Secondly, attention also varies across different layers, with 

layer 2 tending to focus more on recent items, as it is directly 

connected to the output layer and recent items play a crucial 

role in predicting the future. Additionally, it has been observed 

that some heads tend to attend on the [mask] token, possibly 

indicating a way for self-attention to propagate sequence-level 

state to the item level. Most importantly, unlike unidirectional 

models that can only attend to items on the left side, BERT4Rec 

can attend to items on both sides, which suggests that 

bidirectional modeling is essential and beneficial for user 

behavior sequence modeling. 

In further studies, the impact of hyperparameters is examined 

such as hidden dimensionality (d), mask proportion (ρ), and 

maximum sequence length (N) on the model's performance. It 

will analyze one hyperparameter at a time while keeping the 

remaining hyperparameters at their optimal settings. Due to 

space limitations, it will only report NDCG@10 and HR@10 

for these follow-up experiments. 

4.5 Impact of Hidden Dimensionality 
A study is conducted to investigate how the hidden 

dimensionality (d) affects the recommendation performance of 

neural sequential methods. Firstly, it has been noticed that the 

performance of each model tends to converge as the 

dimensionality increases. However, a larger hidden 

dimensionality does not necessarily result in better model 

performance, particularly on sparse datasets such as Beauty and 

Steam, this phenomenon may be attributed to overfitting. 

Furthermore, it has been observed that Caser exhibited unstable 

performance on four datasets, which could limit its usefulness. 

On the other hand, self-attention-based methods such as 

SASRec and BERT4Rec consistently achieved superior 

performance on all datasets. 

 

Figure1. Visual representations of average attention 

weights on Beauty dataset, with the last position denoted 

as "[mask]" (viewed best in color) 

4.6 Impact of Mask Proportion ρ 
The proportion of masked items (denoted as ρ) during model 

training is a crucial factor that directly impacts the loss 

function. It is important to strike a balance with ρ, as using an 

excessively small value may not provide enough information 

for the model to learn effectively, while using an overly large 

value could make training difficult due to the need to predict 

too many items based on limited context. To investigate this, 

conducting experiments to evaluate the effect of varying ρ on 

recommendation performance across different datasets. The 

results reveal a general pattern, where performance decreases 

as ρ increases beyond 0.6 in all datasets. Notably, the 

performances of ρ = 0.2 consistently outperform those of ρ = 

0.1 in all datasets, confirming the earlier claim. Additionally, it 

has been observed that the optimal ρ value is highly dependent 

on the sequence length of the dataset. For datasets with short 

sequences (e.g., Beauty and Steam), the best performances are 

achieved with ρ = 0.6 (Beauty) and ρ = 0.4 (Steam), whereas 

datasets with long sequences (e.g., ML-1m and ML-20m) tend 

to perform better with a smaller ρ value of 0.2. This is 

reasonable because in datasets with longer sequences, a larger 

ρ would result in a higher number of items that need to be 

predicted. For instance, with ρ = 0.6, 98=⌊163.5×0.6⌋ items on 

average per sequence are required to be predicted for ML-1m, 

whereas for Beauty, it would be only 5=⌊8.8×0.6⌋ items. The 

former would be more challenging for model training. 

Table 4. The performance results of different maximum 

lengths (N) on the model's performance 

  10 20 30 40 50 

BEAUTY 

#samples/s 5504 3256 2284 1776 1441 

HR@10 0.3006 0.3061 0.3057 0.3054 0.3047 

NDCG@10 0.1826 0.1875 0.1837 0.1833 1832 

             

  10 50 100 200 400 
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ML-1m 

#samples/s 14255 8890 5711 2918 1213 

HR@10 0.6788 0.6854 0.6947 0.6955 0.6898 

NDCG@10 0.4631 0.4743 0.4758 0.4759 0.4715 

 

Table 5. Ablation analysis of NDCG@10 on four datasets, 

with bold indicating improved performance and ↓ 

indicating a drop of more than 10% compared to the 

default version 

Architecture 
Dataset 

Beauty Steam ML-1m ML-20m 

 0.1832 0.2241 0.4759 0.4513 

w/Ope 0.1741 0.2060 0.2155↓ 0.2867↓ 

w/Opffn 0.1803 0.2137 0.4544 0.4296 

w/o LN 0.1642↓ 0.2058 0.4334 0.4186 

w/o RC 0.1619↓ 0.2193 0.4643 0.4483 

w/o 

Dropout 0.1658 0.2185 0.4553 0.4471 

1 layer 

(L=1) 0.1782 0.2122 0.4412 0.4238 

3 

layer(L=3) 0.1859 0.2262 0.4864 0.4661 

4 layers (L= 

4) 0.1834 0.2279 0.4898 0.4732 

1 head 

(h=1) 0.1853 0.2187 0.4568 0.4402 

4 head 

(h=4) 0.1830 0.2245 0.4770 0.4520 

8 heads 

(h=8) 0.1823 0.2248 0.4743 0.4550 

 

4.7 Impact of Maximum Sequence Length 

N 
It has also been examined the impact of the maximum sequence 

length (denoted as N) on the recommendation performance and 

efficiency of the model. Table 4 presents the results of 

recommendation performances and training speed with 

different N values on the Beauty and ML-1m datasets.  

It has been found that the optimal N value is also closely tied 

to the average sequence length of the dataset. For example, 

Beauty dataset performs best with a smaller N value of 20, 

while ML-1m dataset achieves optimal performance with N = 

200. This suggests that user behavior in short sequence datasets 

is influenced by more recent items, while in long sequence 

datasets, less recent items play a role. It should be noted that 

the model does not consistently benefit from a larger N, as a 

larger N can introduce more noise along with extra information. 

However, the given model remains stable as N increases, 

indicating that it can effectively attend to informative items 

from noisy historical records. 

One scalability concern of BERT4Rec is its computational 

complexity per layer, which is O(n^2d), where n is the 

sequence length and d is the hidden dimension. Fortunately, the 

results in Table 4 demonstrate that the self-attention layer can 

be effectively parallelized using GPUs, mitigating this concern. 

4.8 Ablation Study 
Finally, it has been conducted ablation experiments on several 

key components of BERT4Rec to gain a better understanding 

of their impacts. These components include positional 

embedding (PE), position-wise feed-forward network (PFFN), 

layer normalization (LN), residual connection (RC), dropout, 

the number of self-attention layers (L), and the number of heads 

in multi-head attention (h). Table 5 presents the results of the 

default version (L=2, h=2) and its eleven variants on all four 

datasets, with a dimensionality of d=64, while keeping other 

hyperparameters at their optimal settings. 

5. CONCLUSION AND FUTURE WORK 
Proposing BERT4Rec, a deep bidirectional sequential model 

for sequential recommendation, leveraging the success of deep 

bidirectional self-attention architecture in language 

understanding. The given model incorporates a Cloze task for 

masked item prediction using both left and right context during 

training. Through extensive experiments on four real-world 

datasets, demonstrating that BERT4Rec outperforms state-of-

the-art baselines in sequential recommendation tasks. Looking 

forward, there are exciting avenues for future research that can 

further enhance the efficacy of BERT4Rec. One promising 

direction involves exploration of integration of rich item 

features, such as category and price, to provide a more 

comprehensive understanding of items and their relationships. 

Additionally, there is a need to delve deeper into explicit user 

modelling, particularly in scenarios where users exhibit multi-

session behavior. Incorporating a user component into the 

model architecture could contribute to a more content-aware 

and personalized sequential recommendation system. 
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