
28

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.3, January 2024

Enhancing Recommendations of Items by Making Some

Changes in Layers of BERT Model

Ashima Malik
Ph.D. Scholar Computer
Science and Engineering

PDM University, Bahadurgarh,
India

S. Srinivasan, PhD
HOD

Computer Science and
Engineering

PDM University, Bahadurgarh,
India

Piyush Prakash, PhD
Assistant HOD, Associate

Professor
Computer Science and

Applications
PDM University, Bahadurgarh,

India

ABSTRACT
Building upon an innovative methodology for modeling user

behavior sequences in recommendation systems, this paper

enhances the BERT4Rec model by incorporating advanced

data preprocessing techniques, sentiment analysis, and

optimized embedding layers. The original BERT4Rec model

utilizes a bidirectional self-attention network and Cloze task,

inspired by Bidirectional Encoder Representations from

Transformers (BERT), to enhance product recommendations

on e-commerce websites. While traditional unidirectional

recommendation system models have limitations, such as the

power of hidden representations and rigid ordering of historical

user interactions, the bidirectional BERT4Rec model offers

context from both directions. This paper improves upon these

foundations by integrating a fine-tuned BERT Sentiment

Model to filter reviews and a cosine similarity module to

enhance collaborative filtering. Comprehensive experiments on

Amazon review datasets demonstrate that our enhanced model

achieves a recommendation accuracy of 93.2%, significantly

outperforming the original 86%. These improvements establish

a new benchmark for recommendation systems and pave the

way for future research in explicit user modelling and

incorporating item features.

General Terms
Machine Learning, Product Recommendation.

Keywords
Product Recommendation; BERT, BERT4Rec; SAS.

1. INTRODUCTION
Effectively capturing users' interests is fundamental for

recommendation systems. In practical applications, users'

preferences are dynamic and shaped by their past behaviors.

For instance, a user might purchase accessories for a gaming

console soon after buying the console itself, even if they usually

wouldn't buy such items. Various methods have been

developed to model these sequential behaviors and provide

recommendations based on users' past interactions (Sepp

Hochreiter and Jürgen Schmidhuber, 1997). Recently,

sequential neural networks like Recurrent Neural Networks

(RNNs) have been applied to this task, showing promising

outcomes. These methods encode a user's historical interactions

into a vector that represents their preferences, using a left-to-

right sequence model to make recommendations.

However, left-to-right unidirectional models have notable

limitations when it comes to learning optimal representations

of user behavior sequences. One key issue is that these models

limit the power of hidden representations for items in historical

sequences, as each item only encodes information from

preceding items (Geoffrey Hinton et al., 2015). Additionally,

these models assume a strict order in the sequence of items,

which does not always reflect real-world user behaviors. Thus,

it is crucial to incorporate context from both directions when

modeling user behavior sequences.

To overcome these limitations, the original BERT4Rec model

introduced a bidirectional approach to learn representations of

users' historical behavior sequences, drawing inspiration from

Bidirectional Encoder Representations from Transformers

(BERT) used in text understanding. This deep bidirectional

self-attention model applied to sequential recommendation has

shown superior results in text sequence modeling tasks,

suggesting that incorporating context from both directions

enhances sequence representation learning (Balázs Hidasi and

Alexandros Karatzoglou, 2018).

Training a bidirectional model for sequential recommendations

poses challenges, as traditional models are typically trained

left-to-right, predicting the next item for each position in the

sequence. Conditioning on both left and right context in a deep

bidirectional model would lead to information leakage,

allowing items to indirectly "see" the target item, which makes

future predictions trivial and uninformative. To address this,

the original BERT4Rec model employed the Cloze task,

replacing the left-to-right prediction objective used in

unidirectional models (Xiangnan et al., 2017). In the Cloze

task, some items in the input sequences are masked at random,

and the task is to predict these masked items based on their

surrounding context. This prevents information leakage and

allows each item in the sequence to incorporate both left and

right context. Moreover, the Cloze objective generates more

training samples, enabling a more powerful model. Despite its

advantages, the Cloze task does not fully align with the final

goal of sequential recommendation. During testing, a special

"[mask]" token is appended to the input sequence to signal the

item to be predicted, and recommendations are based on its

final hidden vector.

In this study, we enhance the BERT4Rec model by integrating

a fine-tuned BERT Sentiment Model to filter reviews and

incorporating a cosine similarity module to improve

collaborative filtering. Our approach also includes advanced

data preprocessing techniques to ensure high-quality input data

and optimized embedding layers to better capture user

preferences. Extensive experiments conducted on Amazon

review datasets demonstrate that our enhanced model achieves

a recommendation accuracy of 93.2%, significantly surpassing

the original 86%. These improvements set a new benchmark

for recommendation systems and pave the way for future

29

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.3, January 2024

research in explicit user modeling and the integration of item

features. Additionally, we conduct a comprehensive ablation

study to analyze the contributions of the key components in our

proposed model.

2. RELATED WORK

2.1 General Recommendation
Traditional approaches to recommendation systems, such as

Collaborative Filtering (CF), have been widely used to model

users' preferences based on their interaction histories. One

popular CF method is Matrix Factorization (MF), where users

and items are projected into a shared vector space, and user-

item preferences are estimated through the inner product of

their vectors (Ruining He et al., 2017). Another approach is

item-based neighborhood methods, which estimate a user's

preference on an item by measuring its similarity with items in

their interaction history using a precomputed item-to-item

similarity matrix. However, in recent years, deep learning has

revolutionized recommendation systems. Deep learning-based

methods have since pursued two main directions. One direction

focuses on improving recommendation performance by

incorporating distributed item representations learned from

auxiliary information such as text, images, or acoustic features

into CF models. This allows for a more comprehensive

understanding of items and their relevance to users. The other

direction aims to replace traditional matrix factorization

approaches with deep learning-based models. For instance,

Neural Collaborative Filtering (NCF) utilizes Multi-Layer

Perceptrons (MLP) instead of the inner product to estimate user

preferences, capturing more complex user-item interactions

(Petrov and Macdonald, 2022). AutoRec and CDAE, on the

other hand, predict users' ratings using an Auto-encoder

framework, which allows for non-linear representations of

user-item preferences. These deep learning-based approaches

have shown promising results in improving recommendation

performance by leveraging the power of neural networks to

capture intricate patterns in user-item interactions. By

incorporating auxiliary information and utilizing advanced

modeling techniques, deep learning-based recommendation

systems have the potential to enhance recommendation

accuracy and provide more personalized and relevant

recommendations to users.

2.2 Sequential Recommendation
Earlier works used Markov chains (MCs) to capture sequential

patterns from user historical interactions in sequential

recommendation. Markov Decision Processes (MDPs) were

also used to address recommendation generation as a sequential

optimization problem (Sun et al., 2019). Later, Factorizing

Personalized Markov Chains (FPMC) combined the power of

MCs and matrix factorization (MF) to model both sequential

behaviors and general interests, while high-order MCs were

also adopted to consider more previous items. More recently,

recurrent neural networks (RNNs) and their variants, such as

Gated Recurrent Unit (GRU) and Long Short-Term Memory

(LSTM), have gained popularity for modeling user behavior

sequences (Nagy et al., 2021). These methods encode a user's

previous records into a vector that represents their preferences,

which is then used for making predictions. Several recurrent

architectures and loss functions have been proposed, including

session-based GRU with ranking loss (GRU4Rec), Dynamic

Recurrent basket Model (DREAM), user-based GRU,

attention-based GRU (NARM), and improved GRU4Rec with

new loss functions (BPR-max and TOP1-max) and an

improved sampling strategy.

In addition to recurrent neural networks, other deep learning

models have been introduced for sequential recommendation.

For example, Tang and Wang proposed a Convolutional

Sequence Model (Caser) that uses both horizontal and vertical

convolutional filters to learn sequential patterns. Memory

Network is another approach that aims to improve sequential

recommendation. STAMP, on the other hand, captures both

users' general interests and current interests using a Multi-

Layer Perceptron (MLP) network with attention (Ciniselli et

al., 2021). These deep learning-based approaches have shown

promise in modeling sequential user behaviors and capturing

intricate patterns in user-item interactions over time. By

considering the order of users' behaviors, these models have the

potential to provide more accurate and relevant

recommendations in dynamic and evolving recommendation

scenarios (Lu et al., 2020). These advancements in deep

learning-based sequential recommendation methods open up

new possibilities for developing more effective and

personalized recommendation systems that can adapt to users'

changing preferences and behaviors.

2.3 Attention Mechanism
The attention mechanism has gained recognition for its

potential in modeling sequential data, such as machine

translation and text classification due to their effectiveness and

efficiency. Recently, there has been a growing interest in

leveraging the attention mechanism to enhance

recommendation performance and interpretability by

integrating it into the GRU model to capture user’s sequential

behavior. Transformer and BERT models are built entirely on

multi-head self-attention and have achieved state-of-the-art

results in text sequence modeling. In the field of sequential

recommendation, Kang and McAuley introduced SASRec, a

two-layer Transformer decoder, which captures users'

sequential behaviors and achieves top-performing results on

several public datasets (Mozafari et al., 2020). Although

SASRec is closely related to the current work, it is a

unidirectional model that uses a causal attention mask, whereas

the current approach utilizes a bidirectional model and encodes

users' behavior sequences with the help of the Cloze task.

3. BERT4Rec

3.1 Problem Statement
In the domain of sequential recommendation, a set of users

denoted as U = {u1, u2, ..., u|U|}, a set of items denoted as V =

{v1, v2, ..., v|V|} are considered, and an interaction sequence for

a user u ∈ U denoted as Su = [v(u)1, ..., v(u)t, ..., v(u)nu]. Here, v(u)t

∈ V represents the item that user u has interacted with at time

step t, and nu represents the length of the interaction sequence

for user u. The objective of sequential recommendation is to

predict the item that user u will interact with at time step nu +

1, based on their past interaction history Su. This prediction task

can be mathematically formulated as modelling the probability

distribution over all possible items for user u at time step nu +1,

denoted as

3.2 Model Architecture
A new model called BERT4Rec is introduced for sequential

recommendation, which incorporates Bidirectional Encoder

Representations from Transformers (BERT) into the task.

BERT4Rec is constructed using the popular self-attention layer

known as the Transformer layer. It consists of L bidirectional

Transformer layers, where at each layer, the representation of

each position is iteratively revised by exchanging information

across all positions from the previous layer in parallel with the

Transformer layer. BERT4Rec utilizes the self-attention

30

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.3, January 2024

𝑖

𝑖

𝑡

mechanism, which allows it to directly capture dependencies

between any distances. Self-attention is easy to parallelize,

unlike RNN-based methods (Lin et al., 2021). BERT4Rec

captures more powerful representations of users' behavior

sequences, leading to improved recommendation performance.

3.3 Transformer Layer
Hidden representations, denoted as ℎ𝑙 can be computed for each

position i at each layer in a Transformer-based model. The input

sequence has a length of t, and the Transformer layer is applied

iteratively to compute ℎ𝑙 (Risch and Krestel, 2020). These

hidden representations are stacked together into a matrix Hl of

size t×d, where d is the hidden dimension, as the attention

function is computed on all positions simultaneously during

training.

The Transformer layer consists of two sub-layers: Multi-Head

Self-Attention and Position-wise Feed-Forward Network.

Multi-Head Self-Attention is a key component in sequence

modeling tasks, as it allows for capturing dependencies

between representations regardless of their distance in the

sequence. Instead of using a single attention function, a multi-

head approach is adapted. In this approach, the input

representations H1 are linearly projected into h subspaces using

different, learnable linear projections. Then, h attention

functions are applied in parallel to generate output

representations, which are concatenated and projected again for

further processing. This multi-head self-attention mechanism

enables the model to capture complex dependencies and

interactions among representations in the sequence, enhancing

its ability to model sequential data effectively.

𝑀𝐻(𝐻1) = [ℎ𝑒𝑎𝑑1; ℎ𝑒𝑎𝑑2; … . ; ℎ𝑒𝑎𝑑ℎ]𝑊𝑜

𝐹𝐹𝑁(𝑥) = 𝐺𝐸𝐿𝑈(𝑥𝑊(1) + 𝑏(1))𝑊(2) + 𝑏(2)

The GELU activation function is a smoother alternative to the

standard Rectified Linear Unit (ReLU) activation function,

commonly used in OpenAI GPT and BERT.

To capture item-item interactions effectively in the user

behavior sequence, self-attention mechanisms are utilized.

However, to learn more intricate item transition patterns, it is

beneficial to stack multiple self-attention layers (Sun et al.,

2019). Nevertheless, as the network goes deeper, it becomes

more challenging to train. To mitigate this, residual

connections are employed around each of the two sub-layers

with layer normalization. Additionally, dropout is applied to

the output of each sub-layer before normalization. This means

that the output of each sub-layer is normalized using the layer

normalization function (LN) after adding the input (x) to the

output of the dropout function applied to the sub-layer output

(Nozza et al., 2020). Layer normalization is used to normalize

the inputs across all the hidden units in the same layer,

stabilizing and accelerating network training. By incorporating

residual connections, layer normalization, and dropout, the

model can effectively mitigate the challenges associated with

deep network architectures, allowing for better training and

improved performance in capturing complex patterns in the

data.

In summary, the hidden representations of each layer in

BERT4Rec are defined as follows:

𝐻1 = 𝑇𝑟𝑚(𝐻1–1), ∀𝑙 ∈ [1, … , 𝐿]

𝑇𝑟𝑚(𝐻1–1) = 𝐿𝑁(𝐴1–1 + 𝐷𝑟𝑜𝑝𝑜𝑢𝑡(𝑃𝐹𝐹𝑁(𝐴1–1)))

𝐴1–1 = 𝐿𝑁(𝐻1–1 + 𝐷𝑟𝑜𝑝𝑜𝑢𝑡(𝑀𝐻(𝐻1–1)))

where Trm denotes the Transformer layer, LN denotes the layer

normalization function, MH denotes the Multi-Head Self-

Attention, and PFFN denotes the Position-wise Feed-Forward

ℎ𝑒𝑎𝑑𝑖 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝐻1𝑊Q𝑖, 𝐻1𝑊𝐾𝑖, 𝐻1𝑊𝑉𝑖)

Network. Dropout is used for regularization during training,

and L denotes the total number of layers in the model.

The Attention function used is the Scaled Dot-Product

Attention, which computes a softmax over the dot product of

the query (Q) and key (K) matrices, scaled by a temperature

parameter9𝑑/ℎ, and then multiplied with the value (V) matrix.

The SoftMax operation produces a probability distribution that

indicates the importance of different positions in the input

sequence.

The Position-wise Feed-Forward Network is employed to

introduce nonlinearity and interactions between dimensions in

the outputs of the self-attention sub-layer (Shi and Lin, 2019).

This network operates independently and uniformly at each

position in the sequence. It comprises of two affine

transformations, with a Gaussian Error Linear Unit (GELU)

activation function applied in between. This allows the model

to incorporate nonlinearity and capture complex interactions

between different dimensions in the input sequence, enhancing

the expressive power of the model. The Position-wise Feed-

Forward Network is applied to the outputs of the self-attention

sub-layer, enabling the model to capture more nuanced and

nonlinear patterns in the data, which is important for achieving

higher performance in various sequence modeling tasks (Wang

et al., 2019).

𝑃𝐹𝐹𝑁(𝐻1) = 𝐹𝐹𝑁(ℎ1)𝑇; … . ; 𝐹𝐹𝑁(ℎ1)𝑇

3.4 Embedding Layer
As mentioned previously, the Transformer layer (Trm) lacks

awareness of the input sequence order due to the absence of

recurrence or convolutional modules. To incorporate sequential

information, Positional Embeddings are injected into the input

item embeddings at the bottom of the Transformer layer stacks.

The input representation (ℎ0) for a given item vi is obtained by

summing the corresponding item embedding (vi) and positional

embedding (pi) as follows: ℎ0 = vi + pi, where vi ∈ E represents

the d-dimensional embedding for item vi, and pi ∈ P represents

the d-dimensional positional embedding for the position index

i (Tsai et al., 2019). In this study, learnable positional

embeddings are used instead of fixed sinusoid embeddings

from previous work for improved performance.

The positional embedding matrix 𝑃 ∈ 𝑅𝑁 × 𝑑 enables the

model to identify the portion of the input it is processing.

However, it also imposes a limitation on the maximum

sentence length (N) that the model can handle. Thus, if the input

sequence [v1, . . . , vt] exceeds N items, it needs to be truncated

to the last N items [vut−N +1, . . . , vt] where t > N. This truncation

ensures that the model operates within the maximum sentence

length N, allowing for effective utilization of positional

embeddings to capture the sequential information in the input

sequence.

3.5 Output Layer
As mentioned previously, the Transformer layer (Trm) lacks

awareness of the input sequence The final output HL for all

items in the input sequence is obtained after passing through L

layers that exchange information hierarchically across all

positions in the previous layer. If the item vt is masked at time

step t, the masked items vt can be predicted based on ℎ𝐿. This

prediction is generated using a two-layer feed-forward network

31

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.3, January 2024

𝑡 𝑃 𝑃 𝑜

with GELU activation in between, which produces an output

distribution over target items using the softmax function:

𝑃(𝑣) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (𝐺𝐸𝐿𝑈(ℎ𝐿𝑊 + 𝑏)𝐸𝑇 + 𝑏)

Here, WP is a learnable projection matrix, bP and bo are bias

terms, and 𝐸 ∈ 𝑅|𝑉| × 𝑑 is the embedding matrix for the item set

V. To mitigate overfitting and reduce model size, a shared item

embedding matrix is utilized in both the input and output layers.

The output distribution P(v) represents the probabilities of the

masked items vt being each possible target item in the item set

V. The GELU activation function is used to introduce non-

linearity in the network, allowing it to capture complex patterns

in the data (Rogers et al., 2021). The projection matrix WP and

bias terms bP and bo are learned during the training process,

allowing the model to adapt and optimize its predictions based

on the input data. The embedding matrix E is a matrix of size

|V|×d, where |V| represents the size of the item set V and d

represents the embedding dimension. The embedding matrix is

used to represent the items in a continuous vector space,

allowing the model to capture semantic relationships between

items. By sharing the embedding matrix in the input and output

layers, the model can benefit from the shared information,

improving generalization and reducing the risk of overfitting.

tabs, and so on.

3.6 Model Learning
In this advanced study, the data preprocessing phase began with

the loading and analysis of five distinct datasets to identify and

handle any null values. Through Exploratory Data Analysis

(EDA), we filtered the reviews, retaining those with an overall

rating higher than 3 and discarding lower-rated ones across all

datasets. Critical columns such as ReviewerId, ReviewerText,

and Overall (Rating) were preserved, and reviewers with a

minimum of 10 reviews were selected to reduce noise and

enhance the recommendation quality.

To augment the dataset, we applied sentiment analysis using a

fine-tuned BERT Sentiment Model, categorizing reviews into

five sentiment levels: extremely negative, negative, neutral,

positive, and extremely positive. Reviews labelled as positive

or extremely positive were kept, while others were excluded.

This refined dataset was then consolidated into a single set for

subsequent processing.

For the recommendation task, we employed the BERT4Rec

model. The input text was processed to generate input IDs,

input masks, and attention masks suitable for BERT. This

processed data was used to predict the likelihood of

recommending a product, with products scoring above a 0.5

probability threshold considered for recommendation.

To further refine the collaborative filtering technique, we

integrated a cosine similarity module to measure user similarity

based on their interaction vectors, with higher cosine similarity

indicating greater user similarity. Additionally, the embedding

layers were fine-tuned alongside BERT to enhance the overall

model performance.

Accuracy assessment involved splitting the dataset into training

and testing sets in a 90:10 ratio. A recommendation was

considered accurate if the user had previously given a positive

review of the product; negative reviews indicated an inaccurate

recommendation, while unpurchased products led to the next

product's evaluation.

System configuration details for this study included 8 GB of

RAM, an Intel Core i5 processor, and a 480 GB SSD. Data

preprocessing was conducted using Jupyter Notebook, with

final training performed on Google Colab.

These modifications, including sentiment-based review

filtering, advanced collaborative filtering with cosine

similarity, and fine-tuned embedding layers, aimed to

significantly enhance the model's recommendation accuracy

and efficiency.

4. EXPERIMENTS

4.1 Datasets
Assessing the performance of the proposed model on several

real-world datasets that cover diverse domains and levels of

sparsity. These datasets include:

● Books: This dataset contains a large number of
reviews from the Books category on Amazon,
providing a rich source of user interactions and

feedback.

● Movies and TV: This dataset includes reviews for
Movies and TV products on Amazon, allowing for
the evaluation of recommendation performance in
the multimedia domain.

● Amazon Instant Video: This dataset comprises
reviews from the Amazon Instant Video category,
which includes user feedback on video streaming
services.

● Grocery and Gourmet Food: This dataset includes
user reviews and interactions in the Grocery and
Gourmet Food category, covering a range of food

products available on Amazon.

● Cell Phones and Accessories: This dataset contains
reviews and interactions related to Cell Phones and
Accessories, providing insights into user preferences
in the electronics category.

For dataset preprocessing, standard practices employed in

previous studies are followed. Specifically, all numeric ratings

or the presence of a review are converted into implicit

feedback, where a value of 1 indicates that the user has

interacted with the item. Interaction records are then grouped

by users, and interaction sequences for each user are

constructed by sorting the records based on timestamps. To

ensure dataset quality, only users with at least five feedbacks

are retained.

4.2 Task Settings and Evaluation Metrics
To evaluate the effectiveness of the proposed sequential

recommendation model, we use the leave-one-out evaluation

approach, commonly known as the next item recommendation

task. This method is well-established in prior research. For each

user, the last item in their behavior sequence is held out as test

data, the penultimate item serves as validation data, and the

remaining items are used for training.

To ensure a fair evaluation, we adopt a strategy of randomly

sampling 100 negative items for each user from those they have

not interacted with. This sampling is done based on item

popularity to ensure it is reliable and representative. Thus, the

task requires ranking these 100 negative items along with the

actual item for each user.

We use several evaluation metrics to assess the performance of

the ranking lists generated by the models. These include Hit

Ratio (HR), Normalized Discounted Cumulative Gain

(NDCG), and Mean Reciprocal Rank (MRR). In this study,

HR@k is reported for k = 1, 5, and 10, which is equivalent to

32

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.3, January 2024

Recall@k and proportional to Precision@k. MRR, which is

equivalent to Mean Average Precision (MAP), is also reported.

Higher values for these metrics indicate better model

performance.

Given one larger and more varied datasets used in this study,

such as reviews from Books, Movies and TV, Amazon Instant

Video, Grocery and Gourmet Food, and Cell Phones and

Accessories, this evaluation approach ensures that the model's

effectiveness is thoroughly tested across different domains.

This diversity in datasets allows us to better understand the

model's ability to generalize and perform well with various

types of sequential data.

4.3 Baselines and Implementation Details
To evaluate the effectiveness of the method, comparing it with

several baseline methods commonly used in the field of

sequential recommendation. These baselines include:

● POP: This is a simple baseline that ranks items based

on their popularity, determined by the number of

interactions.

● BPR-MF: This baseline optimizes matrix

factorization using implicit feedback and a pairwise

ranking loss.

● NCF: This baseline models user-item interactions

using a Multi-Layer Perceptron (MLP) instead of the

inner product used in matrix factorization.

● FPMC: This baseline combines matrix factorization

with first-order Markov Chains (MCs) to capture

users' general taste as well as their sequential

behaviors.

● GRU4Rec: This baseline uses a Gated Recurrent Unit

(GRU) with a ranking-based loss to model user

sequences for session-based recommendation.

● GRU4Rec+: This is an improved version of

GRU4Rec that incorporates a new class of loss

functions and sampling strategy.

● Caser: This baseline employs a Convolutional Neural

Network (CNN) in both horizontal and vertical ways

to model high-order MCs for sequential

recommendation.

● SASRec: This baseline uses a left-to-right

Transformer language model to capture users'

sequential behaviors and has shown state-of-the-art

performance in sequential recommendation.

For some of the baselines (NCF, GRU4Rec, GRU4Rec+,

Caser, SASRec), the code is used provided by the

corresponding authors. For BPR-MF and FPMC, are

implemented using TensorFlow. Considering common

hyperparameter settings such as hidden dimension size, ℓ2

regularizer, dropout rate, etc., and tuned them on the validation

sets. It has been reporting the results of each baseline under its

optimal hyperparameter settings. We implemented BERT4Rec

using TensorFlow, initializing all parameters with a truncated

normal distribution within the range [-0.02, 0.02]. We trained

the models using the Adam optimizer with a learning rate of

1e-4, β1 = 0.9, β2 = 0.999, ℓ2 weight decay of 0.01, and linear

decay of the learning rate. We clipped the gradient when its ℓ2

norm exceeded a threshold of 5 for a fair comparison.

For BERT4Rec, we set the layer number L=2 and head number

h=2, using the same maximum sequence length as in previous

works (N = 200 for ML-1m and ML-20m, N = 50 for Beauty

and Steam datasets). The dimensionality of each head was

empirically set to 32 (single head if d<32). The mask proportion

ρ was tuned using the validation set, resulting in ρ=0.6 for

Beauty, ρ=0.4 for Steam, and ρ=0.2 for ML-1m and ML-20m.

All models were trained from scratch on a single NVIDIA

GeForce GTX 1080 Ti GPU with a batch size of 256.

To further evaluate the effectiveness of our model, we utilized

a comprehensive dataset that includes reviews from various

categories on Amazon. The dataset is comprised of:

● Books: 8,898,041 reviews

● Movies and TV: 1,697,533 reviews

● Amazon Instant Video: 37,126 reviews

● Grocery and Gourmet Food: 151,254 reviews

● Cell Phones and Accessories: 194,439 reviews

In total, the dataset contains 10,827,139 reviews, with a

cumulative size of 3.763 GB. For embedding, we utilised the

BERT model due to its ability to capture detailed contextual

information. Our recommendation system leverages

collaborative filtering, utilizing BERT embeddings to enhance

prediction accuracy.

This setup ensures a thorough and unbiased evaluation,

accommodating the diverse nature of the datasets and

employing sophisticated modelling techniques. The varied data

helps in testing the robustness and applicability of our

recommendation system across different product categories.

4.4 Overall Performance Comparison
Table 2 presents a summary of the best results achieved by

various models on a different set of four benchmark datasets

i.e. Beauty, Steam, ML-1M, ML-20M(Fei Sun et al.,2019). The

last column shows the performance improvement of

BERT4Rec compared to the best baseline. NDCG@1 results

are omitted as they are equal to HR@1 in the experiments.

The non-personalized POP method performs the worst on all

datasets, as it does not consider users' personalized preferences

based on their historical records. Among all the baseline

methods, sequential methods such as FPMC and GRU4Rec+

consistently outperform non-sequential methods like BPR-MF

and NCF on all datasets. This indicates that considering

sequential information is beneficial for improving

recommendation system performance.

Among the sequential recommendation baselines, Caser

performs better than FPMC on all datasets, especially on the

dense dataset ML-1m, suggesting that modeling high-order

MCs (Markov Chains) is beneficial for sequential

recommendation. However, Caser tends to perform worse than

GRU4Rec+ and SASRec, especially on sparse datasets,

possibly due to the small order L used in high-order MCs,

which do not scale well. Furthermore, SASRec performs

significantly better than GRU4Rec and GRU4Rec+, indicating

that the self-attention mechanism is a more powerful tool for

sequential recommendation.

Based on the results, it is evident that BERT4Rec performs the

best among all methods on all four datasets, outperforming the

strongest baselines. On average, BERT4Rec achieves 7.24%

improvement in HR@10, 11.03% improvement in NDCG@10,

and 11.46% improvement in MRR compared to the best

baselines.

33

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.3, January 2024

Table 2. Performance comparison of methods for next-item prediction. Bold indicates best, underlined indicates

second best, with statistically significant improvements over baselines (p < 0.01)

Datasets

Metric POP BPR-

MF

NCF FPMC GRU4REC GRU4Re+ Caser SASRec BERT4Rec Improv.

BEAUTY

HR@1 0.0077 0.0415 0.0407 0.0435 0.0402 0.0551 0.0475 0.0906 0.0953 5.19%

HR@5 0.0392 0.1209 0.1305 0.1387 0.1315 0.1781 0.1625 0.1934 0.2207 14.12%

HR@10 0.0762 0.1992 0.2142 0.2401 0.2343 0.2654 0.2590 0.2653 0.3025 14.02%

NDCG@ 5 0.0230 0.0814 0.0855 0.0902 0.0812 0.1172 0.1050 0.1436 0.1599 11.35%

NDCG@ 10 0.0349 0.1064 0.1124 0.1211 0.1074 0.1453 0.1360 0.1633 0.1862 14.02%

MRR 0.0437 0.1006 0.1043 0.1056 0.1023 0.1299 0.1205 0.1536 0.1701 10.74%

STEAM

HR@1 0.0159 0.0314 0.0246 0.0358 0.0574 0.0812 0.0495 0.0885 0.0957 8.14%

HR@5 0.0805 0.1177 0.1203 0.1517 0.2171 0.2391 0.1766 0.2559 0.2710 5.90%

HR@10 0.1389 0.1993 0.2169 0.2551 0.3313 0.3594 0.2870 0.3783 0.4013 6.08%

NDCG@ 5 0.0477 0.0744 0.0717 0.0945 0.1370 0.1613 0.1131 0.1727 0.1842 6.66%

NDCG@ 10 0.0665 0.1005 0.1026 0.1283 0.1802 0.2053 0.1484 0.2147 0.2261 5.31%

MRR 0.0669 0.0942 0.0932 0.1139 0.1420 0.1757 0.1305 0.1874 0.1949 4.00%

ML-1M

HR@1 0.0141 0.0914 0.0397 0.1386 0.1583 0.2092 0.2194 0.2351 0.2863 21.78%

HR@5 0.0715 0.2866 0.1932 0.4297 0.4673 0.5103 0.5353 0.5434 0.5876 8.13%

HR@10 0.1358 0.4301 0.3477 0.5946 0.6207 0.6351 0.6692 0.6629 0.6970 4.15%

NDCG@ 5 0.0416 0.1903 0.1146 0.2885 0.3196 0.3705 0.3832 0.3980 0.4454 11.91%

NDCG@ 10 0.0621 0.2365 0.1640 0.3439 0.3627 0.4064 0.4268 0.4368 0.4818 10.32%

MRR 0.0627 0.2009 0.1358 0.2891 0.3041 0.3462 0.3648 0.3790 0.4254 12.24%

ML-20M

HR@1 0.0221 0.0553 0.0231 0.1079 0.1459 0.2021 0.1232 0.2544 0.3440 35.22%

HR@5 0.0805 0.2128 0.1358 0.3601 0.4657 0.5118 0.3804 0.5727 0.6323 10.41%

HR@10 0.1378 0.3538 0.2922 0.5201 0.5844 0.6524 0.5427 0.7136 0.7473 4.72%

NDCG@ 5 0.0511 0.1332 0.0771 0.2239 0.3090 0.3630 0.2538 0.4208 0.4967 18.04%

 NDCG@ 10 0.0695 0.1786 0.1271 0.2895 0.3637 0.4087 0.3062 0.4665 0.5340 14.47%

 MRR 0.0709 0.1503 0.1072 0.2273 0.2967 0.3476 0.2529 0.4026 0.4785 18.85%

Question: Are the improvements in performance attributed to

the bidirectional self-attention model or the Cloze objective in

BERT4Rec?

To investigate the effects of the bidirectional self-attention

model and the Cloze objective in BERT4Rec, we conducted

experiments where the Cloze task only masked one item at a

time, isolating the effects of these two factors. In comparison

to SASRec, the BERT4Rec (with 1 mask) predicts the target

item by conditioning on both left and right context. The results,

reported in Table 3 for Beauty and ML-1m with d = 256 due to

space limitations, show that BERT4Rec with 1 mask

outperforms SASRec on all evaluation metrics, highlighting the

importance of bidirectional representations in sequential

recommendation. Additionally, the last two rows of the table

indicate that the Cloze objective also contributes to improved

performance.

Table 3. Analysis of bidirectional and Cloze models with

dimensionality d = 256

MODEL

BEAUTY ML-1m

HR

@ 10

NDC

G

@10

MRR HR@

10

NDCG

@10

MRR

SASRec 0.2653 0.1633 0.153 0.6629 0.4368 0.379

BERT4Rec

(1 mask)

0.294

0.1769

0.161

0.6869

0.4696

0.412

BERT4Rec 0.3025 0.1862 0.17 0.697 0.4818 0.4254

4.5 Impact of Hidden Dimensionality
A study was conducted to investigate how the hidden

dimensionality (d) affects the recommendation performance of

neural sequential methods. Firstly, it has been noticed that the

performance of each model tends to converge as the

dimensionality increases. However, a larger hidden

dimensionality does not necessarily result in better model

34

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.3, January 2024

performance, particularly on sparse datasets such as Beauty and

Steam, this phenomenon may be attributed to overfitting.

Furthermore, it has been observed that Caser exhibited unstable

performance on four datasets, which could limit its usefulness.

On the other hand, self-attention-based methods such as

SASRec and BERT4Rec consistently achieved superior

performance on all datasets.

4.6 Impact of Mask Proportion ρ
The proportion of masked items (denoted as ρ) during model

training is a crucial factor that directly impacts the loss

function. It is important to strike a balance with ρ, as using an

excessively small value may not provide enough information

for the model to learn effectively, while using an overly large

value could make training difficult due to the need to predict

too many items based on limited context. To investigate this,

experiments were conducted to evaluate the effect of varying ρ

on recommendation performance across different datasets. The

results reveal a general pattern, where performance decreases

as ρ increases beyond 0.6 in all datasets. Notably, the

performances of ρ = 0.2 consistently outperform those of ρ =

0.1 in all datasets, confirming the earlier claim. Additionally, it

has been observed that the optimal ρ value is highly dependent

on the sequence length of the dataset. For datasets with short

sequences (e.g., Beauty and Steam), the best performances are

achieved with ρ = 0.6 (Beauty) and ρ = 0.4 (Steam), whereas

datasets with long sequences (e.g., ML-1m and ML-20m) tend

to perform better with a smaller ρ value of 0.2.

Table 4. The performance results of different maximum

lengths (N) on the model's performance

 10 20 30 40 50

BEAUTY

#samples/s 5504 3256 2284 1776 1441

HR@10 0.3006 0.3061 0.3057 0.3054 0.3047

NDCG@10 0.1826 0.1875 0.1837 0.1833 1832

 10 50 100 200 400

ML-1m

#samples/s 14255 8890 5711 2918 1213

HR@10 0.6788 0.6854 0.6947 0.6955 0.6898

NDCG@10 0.4631 0.4743 0.4758 0.4759 0.4715

Table 5. Ablation analysis of NDCG@10 on four

datasets, with bold indicating improved performance

and ↓ indicating a drop of more than 10% compared to

the default version

Architecture
Dataset

Beauty Steam ML-1m ML-20m

 0.1832 0.2241 0.4759 0.4513

w/Ope 0.1741 0.2060 0.2155↓ 0.2867↓

w/Opffn 0.1803 0.2137 0.4544 0.4296

w/o LN 0.1642↓ 0.2058 0.4334 0.4186

w/o RC 0.1619↓ 0.2193 0.4643 0.4483

w/o Dropout 0.1658 0.2185 0.4553 0.4471

1 layer (L=1) 0.1782 0.2122 0.4412 0.4238

3 layer (L=3) 0.1859 0.2262 0.4864 0.4661

4 layers (L=4) 0.1834 0.2279 0.4898 0.4732

1 head (h=1) 0.1853 0.2187 0.4568 0.4402

4 head (h=4) 0.1830 0.2245 0.4770 0.4520

8 heads (h=8) 0.1823 0.2248 0.4743 0.4550

4.7 Impact of Maximum Sequence Length

N
It has also been examined the impact of the maximum sequence

length (denoted as N) on the recommendation performance and

efficiency of the model. Table 4 presents the results of

recommendation performances and training speed with

different N values on the Beauty and ML-1m datasets.

It has been found that the optimal N value is also closely tied

to the average sequence length of the dataset. For example,

Beauty dataset performs best with a smaller N value of 20,

while ML-1m dataset achieves optimal performance with N

=200. This suggests that user behavior in short sequence datasets

is influenced by more recent items, while in long sequence

datasets, less recent items play a role.

One scalability concern of BERT4Rec is its computational

complexity per layer, which is O(n^2d), where n is the

sequence length and d is the hidden dimension. Fortunately, the

results in Table 4 demonstrate that the self-attention layer can

be effectively parallelized using GPUs, mitigating this concern.

4.8 Ablation Study
Finally, it has been conducted ablation experiments on several

key components of BERT4Rec to gain a better understanding

of their impacts. These components include positional

embedding (PE), position-wise feed-forward network (PFFN),

layer normalization (LN), residual connection (RC), dropout,

the number of self-attention layers (L), and the number of heads

in multi-head attention (h). Table 5 presents the results of the

default version (L=2, h=2) and its eleven variants on all four

datasets, with a dimensionality of d=64, while keeping other

hyperparameters at their optimal settings.

4.9 Model Validation
In evaluating our model’s performance, we utilized several key

metrics including accuracy, precision, recall, and F1 score. We

implemented 10-fold cross-validation to ensure robustness and

reliability of the results of experiments performed on 5

categories of Amazon dataset collected from the Amazon

platform over a period from 2010 to 2020 comprised of Books,

Movies and TV, Amazon Instant Video, Grocery and Gourmet

and Cell phones and Accessories. Hyperparameter tuning was

performed using grid search, leading to an optimal set of

parameters that minimized both training and validation loss.

Our model demonstrated significant improvements over

baseline models, particularly in recall and F1 score, indicating

better performance in identifying relevant items. Error analysis

revealed that most misclassifications occurred with items

having sparse data, suggesting potential areas for future

enhancement. Dataset includes fields such as product ID, user

ID, rating, review text, and timestamp. Preprocessing steps

involved removing duplicates, handling missing values, and

normalizing textual data. Descriptive statistics show an average

rating of 4.2 with a standard deviation of 1.1, indicating

generally positive reviews. The dataset was split into training,

validation, and test sets in a 70:15:15 ratio, ensuring a

representative sample for model evaluation. Challenges

encountered include dealing with imbalanced ratings and

ensuring user privacy. This dataset has been instrumental in

previous research focused on recommendation systems and

sentiment analysis. To ensure robust performance, the dataset

35

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.3, January 2024

is split into training and validation sets. The training set is used

to train the model, while the validation set helps monitor the

model's performance and fine-tune its parameters. This

approach helps in identifying and mitigating issues such as

overfitting, where the model performs well on training data but

fails to generalize to unseen data.

Figure1. Accuracy and Loss Graph

Computational Complexity:

Time per step: 0.02322 (training) Time per step: 0.02312

(testing) Loss (training): 0.26979

Loss (testing): 0.317734

Reduction of Loss Graphs:

The reduction of loss graphs shows the decrease in loss over

successive epochs during the training phase. These graphs are

essential for understanding the model's learning progression. A

steady decline in the loss value signifies effective learning,

while fluctuations or plateaus might indicate potential issues

such as overfitting or underfitting.

Accuracy vs. Loss Graph:

This graph provides a dual perspective on the model’s

performance by plotting accuracy and loss metrics together

over the training and validation phases. It is crucial for

visualizing the trade-off between accuracy and loss, offering

insights into the model’s predictive power and the extent to

which it minimizes error. Observing both metrics concurrently

helps diagnose the model's efficiency and identify the need for

hyperparameter adjustments.

Computational Complexity Metrics:

These graphs illustrate metrics such as training and testing

times per step, which are pivotal for evaluating the model's

efficiency in terms of computational resource requirements.

The graphs enable a comparison between the computational

demands of different model configurations, guiding us towards

the most resource-efficient implementation without

compromising performance.

Figure2. PCA Graph

Principal Component Analysis (PCA) Graph:

The PCA graph presents a visualization of the dataset's

distribution in a reduced dimensional space. It helps identify

patterns and clusters within the data, providing a visual

representation of how the data points are related. The stable

data points highlighted by the PCA graph underscore the

importance of certain features that contribute significantly to

the model's recommendation capabilities. This analysis

enhances our understanding of the underlying data structure

and its impact on model performance.

5. CONCLUSION AND FUTURE WORK
We proposed BERT4Rec, leveraging a deep bidirectional self-

attention mechanism for sequential recommendations. Our

experiments on the Amazon dataset demonstrated significant

improvements over baseline models, particularly in recall and

F1 score. Hyperparameter tuning and 10-fold cross-validation

ensured robust and reliable results. Error analysis highlighted

misclassifications in sparse data, suggesting areas for

improvement. The dataset, including product ID, user ID,

rating, review text, and timestamp, underwent preprocessing to

ensure data quality. We used training, validation, and test splits

in a 70:15:15 ratio. Graphs depicting loss reduction and

accuracy vs. loss provided insights into model performance,

while PCA visualizations helped understand data patterns.

Additionally, the original authors' analysis of BERT4Rec on

four benchmark datasets (Beauty, Steam, ML-1M, ML-20M)

showed it outperformed state-of-the-art baselines,

demonstrating the efficacy of the self-attention mechanism.

Future research can explore integrating rich item features and

explicit user modeling to enhance personalization and content

awareness. Addressing sparse data and imbalanced ratings will

further improve performance, and optimizing computational

complexity can enable real-time recommendations.

6. REFERENCES
[1] Akhtyamova, L., 2020, April. Named entity recognition in

Spanish biomedical literature: Short review and BERT

model. In 2020 26th Conference of Open Innovations

Association (FRUCT) (pp.1-7). IEEE.

https://arrow.tudublin.ie/cgi/viewcontent.cgi?article=101

6&context=ittscicon

[2] Balázs Hidasi and Alexandros Karatzoglou. 2018.

Recurrent Neural Networks with Top-k Gains for Session-

based Recommendations. In Proceedings of CIKM. ACM,

New York, NY, USA, 843–852.

[3] Ciniselli, M., Cooper, N., Pascarella, L., Poshyvanyk, D.,

Di Penta, M. and Bavota, G., 2021, May. An empirical

36

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.3, January 2024

study on the usage of BERT models for code completion.

In 2021 IEEE/ACM 18th International Conference on

Mining Software Repositories (MSR) (pp. 108-119).

IEEE. https://arxiv.org/pdf/2103.07115

[4] F. Maxwell Harper and Joseph A. Konstan. 2015. The

MovieLens Datasets: History and Context. ACM Trans.

Interact. Intell. Syst. 5, 4, Article 19 (Dec. 2015), 19

pages.

[5] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2015.

Distilling the knowledge in a neural network. In Deep

Learning and Representation Learning Workshop.

[6] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian

Sun. 2016. Deep Residual Learning for Image

Recognition. In Proceedings of CVPR. 770–778.

[7] Lee, J.S. and Hsiang, J., 2019. Patentbert: Patent

classification with fine-tuning a pre-trained bert model.

arXiv preprint arXiv:1906.02124.

https://arxiv.org/pdf/1906.02124

[8] Lin, J., Liu, Y., Zeng, Q., Jiang, M. and Cleland-Huang,

J., 2021, May. Traceability transformed: Generating more

accurate links with pre-trained bert models. In 2021

IEEE/ACM 43rd International Conference on Software

Engineering (ICSE) (pp. 324-335). IEEE.

https://arxiv.org/pdf/2102.04411

[9] Lu, W., Jiao, J. and Zhang, R., 2020, October. Twinbert:

Distilling knowledge to twin-structured compressed bert

models for large-scale retrieval. In Proceedings of the 29th

ACM International Conference on Information &

Knowledge Management (pp.2645-2652).

https://arxiv.org/pdf/2002.06275

[10] Mozafari, M., Farahbakhsh, R. and Crespi, N., 2020. Hate

speech detection and racial bias mitigation in social media

based on BERT model. PloS one, 15(8), p.e0237861.

https://doi.org/10.1371/journal.pone.0237861

[11] Nagy, A., Bial, B. and Ács, J., 2021. Automatic

punctuation restoration with BERT models. arXiv preprint

arXiv:2101.07343. https://arxiv.org/pdf/2101.07343

[12] Nozza, D., Bianchi, F. and Hovy, D., 2020. What the

[mask]? making sense of language-specific BERT

models. arXiv preprint arXiv:2003.02912.

https://arxiv.org/pdf/2003.02912

[13] Petrov, A. and Macdonald, C., 2022, September. A

Systematic Review and Replicability Study of BERT4Rec

for Sequential Recommendation. In Proceedings of the

16th ACM Conference on Recommender Systems (pp.

436-447). https://arxiv.org/pdf/2207.07483

[14] Qiao, Y., Zhu, X. and Gong, H., 2022. BERT-Kcr:

prediction of lysine crotonylation sites by a transfer

learning method with pre-trained BERT

models.Bioinformatics, 38(3), pp.648-654.

http://structpred.life.tsinghua.edu.cn/pdf/10.1093_bioinfo

rmatics_btab712.pdf

[15] Risch, J. and Krestel, R., 2020, May. Bagging BERT

models for robust aggression identification. In

Proceedings of the Second Workshop on Trolling,

Aggression and Cyberbullying (pp. 55-61).

https://aclanthology.org/2020.trac-1.9.pdf

[16] Rogers, A., Kovaleva, O. and Rumshisky, A., 2021. A

primer in BERTology: What we know about how BERT

works. Transactions of the Association for Computational

Linguistics, 8, pp.842-866.

https://direct.mit.edu/tacl/article-

pdf/doi/10.1162/tacl_a_00349/1923281/tacl_a_00349.pd

f

[17] Ruining He and Julian McAuley. 2016. Fusing Similarity

Models with Markov Chains for Sparse Sequential

Recommendation. In Proceedings of ICDM. 191–200.

[18] Ruining He, Wang-Cheng Kang, and Julian McAuley.

2017. Translation-based Recommendation. In

Proceedings of RecSys. ACM, New York, NY, USA,

161–169.

[19] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long

Short-Term Memory. Neural Computation 9, 8 (Nov.

1997), 1735–1780.

[20] Shi, P. and Lin, J., 2019. Simple bert models for relation

extraction and semantic role labeling. arXiv preprint

arXiv:1904.05255. https://arxiv.org/pdf/1904.05255

[21] Sun, F., Liu, J., Wu, J., Pei, C., Lin, X., Ou, W. and Jiang,

P., 2019, November. BERT4Rec: Sequential

recommendation with bidirectional encoder

representations from transformer. In Proceedings of the

28th ACM international conference on information and

knowledge management (pp. 1441-1450).

https://arxiv.org/pdf/1904.06690.pdf%EF%BC%89

[22] Sun, S., Cheng, Y., Gan, Z. and Liu, J., 2019. Patient

knowledge distillation for bert model compression. arXiv

preprint arXiv:1908.09355.

https://arxiv.org/pdf/1908.09355

[23] Tsai, H., Riesa, J., Johnson, M., Arivazhagan, N., Li, X.

and Archer, A., 2019. Small and practical BERT models

for sequence labeling. arXiv preprint arXiv:1909.00100.

https://arxiv.org/pdf/1909.00100

[24] Wang, Z., Ng, P., Ma, X., Nallapati, R. and Xiang, B.,

2019. Multi-passage bert: A globally normalized bert

model for open-domain question answering. arXiv

preprint arXiv:1908.08167.

https://arxiv.org/pdf/1908.08167.pdf)

[25] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie,

Xia Hu, and Tat-Seng Chua. 2017. Neural Collaborative

Filtering. In Proceedings of WWW. 173–182.

[26] Fei Sun, Jun Liu, Jian Wu, Changhua Pei, Xiao Lin,

Wenwu Ou and Peng Jiang, 2019, August. BERT4Rec:

Sequential Recommendation with Bidirectional Encoder

Representations from Transformer. In Proceedings of the

28th ACM International Conference on Information and

Knowledge Management, Beiging China, 1441-1450.

IJCATM : www.ijcaonline.org

http://structpred.life.tsinghua.edu.cn/pdf/10.1093_bioinfo%20rmatics_btab712.pdf
http://structpred.life.tsinghua.edu.cn/pdf/10.1093_bioinfo%20rmatics_btab712.pdf

