
International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.3, January 2024

28

Enhancing Recommendations of Items by Making Some

Changes in Layers of BERT Model

Ashima Malik
Ph.D. Scholar

Computer Science and Engineering
PDM University,

Bahadurgarh, India

S. Srinivasan, PhD
HOD

Computer Science and Engineering
PDM University,

Bahadurgarh, India

Piyush Prakash, PhD
Assistant HOD, Associate

Professor
Computer Science and Applications

PDM University,
Bahadurgarh, India

ABSTRACT

Introducing an innovative methodology for modeling user

behavior sequences in recommendation systems, this paper

proposes the use of a bidirectional self-attention network and

Cloze task, drawing inspiration from Bidirectional Encoder

Representations from Transformers (BERT) to enhance the

recommendations of products on e-commerce websites.

Traditional recommendation system models that are

unidirectional have limitations, mainly in the power of hidden

representations and rigid ordering of historical user

interactions. Overcoming these limitations, the suggested

BERT4Rec model is bidirectional, offering the context from

both directions. The paper suggests utilizing the Cloze task to

prevent data leakages from bidirectional conditioning. This

includes masking random components within the input

sequences and predicting them based on their nearby context.

Comprehensive experiments are conducted, resulting in

consistently better outcomes than state-of-the-art comparable

options across four datasets. This exploration sets the

groundwork by introducing the Cloze objective and deep

bidirectional sequential modeling to the recommendation

system field. Furthermore, the study is a foundation for future

studies investigating explicit user modeling and incorporating

item features.

General Terms

Machine Learning, Product Recommendation.

Keywords

Product Recommendation; BERT, BERT4Rec; SAS.

1. INTRODUCTION

Accurate characterization of users' interests is crucial for

effective recommendation systems. In real-world applications,

users' interests are dynamic and influenced by their historical

behaviors. For example, a user may purchase accessories for a

gaming console shortly after buying the console, even though

they would not normally buy console accessories. To model

such sequential dynamics in user behaviors, various methods

have been proposed to make sequential recommendations

based on users' historical interactions (Sepp Hochreiter and

Jürgen Schmidhuber, 1997). Recently, sequential neural

networks such as Recurrent Neural Networks (RNNs) have

been used for sequential recommendation and have shown

promising results. These methods typically encode a user's

historical interactions into a vector representation of their

preferences using a left-to-right sequential model and make

recommendations based on this hidden representation.

However, arguing that such left-to-right unidirectional models
have limitations in learning optimal representations for user
behavior sequences. One major limitation is that these models
restrict the power of hidden representations for items in
historical sequences, as each item can only encode information
from previous items (Geoffrey Hinton et al., 2015). Another
limitation is that unidirectional models assume a rigid order in
the sequence of items, which is not always true for user
behaviors in real-world applications. In fact, the choices of
items in a user's historical interactions may not follow a strict
order due to various external factors. Therefore, it is important
to incorporate context from both directions in user behavior
sequence modelling.

To address these limitations, proposing using a bidirectional
model to learn representations for user’s historical behavior
sequences, inspired by the success of Bidirectional Encoder
Representations from Transformers(BERT) in text
understanding. The deep bidirectional self-attention model is
applied to sequential recommendation. Bidirectional models
have shown superior results in text sequence modeling tasks,
indicating that incorporating context from both sides is
beneficial for learning sequence representations (Balázs Hidasi
and Alexandros Karatzoglou, 2018).

However, training a bidirectional model for sequential
recommendation is not straightforward, as conventional
sequential recommendation models are usually trained left-to-
right by predicting the next item for each position in the input
sequence. Jointly conditioning on both left and right context in
a deep bidirectional model would cause information leakage, as
it would allow each item to indirectly "see the target item",
making predicting the future trivial and not learning anything
useful. To overcome this problem, introducing the Cloze task
as an alternative objective to replace the left-to-right prediction
objective used in unidirectional models (Xiangnan et al., 2017).
In the Cloze task, randomly mask some items in the input
sequences and predict the masked items based on their
surrounding context. This way, avoiding information leakage
and allow the representation of each item in the input sequence
to fuse both the left and right context in the bidirectional model.
Another advantage of the Cloze objective is that it can generate
more samples to train a more powerful model in multiple
epochs. However, a downside of the Cloze task is that it is not
consistent with the final task of sequential recommendation. To
address this, during testing, appending a special token "[mask]"
at the end of the input sequence to indicate the item that needs
to be predicted, and then make recommendations based on its
final hidden vector.

Extensive experiments are conducted on four datasets to
evaluate the proposed model, and the results showed that the
model consistently outperforms various state-of-the-art
baselines. Additionally, conducting a thorough ablation study

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.3, January 2024

29

to analyze the contributions of the key components in the
proposed model.

2. RELATED WORK

2.1 General Recommendation
Traditional approaches to recommendation systems, such as

Collaborative Filtering (CF), have been widely used to model

users' preferences based on their interaction histories. One

popular CF method is Matrix Factorization (MF), where users

and items are projected into a shared vector space, and user-

item preferences are estimated through the inner product of

their vectors (Ruining He et al., 2017). Another approach is

item-based neighborhood methods, which estimate a user's

preference on an item by measuring its similarity with items in

their interaction history using a precomputed item-to-item

similarity matrix. However, in recent years, deep learning has

revolutionized recommendation systems. Deep learning-based

methods have since pursued two main directions. One direction

focuses on improving recommendation performance by

incorporating distributed item representations learned from

auxiliary information such as text, images, or acoustic features

into CF models. This allows for a more comprehensive

understanding of items and their relevance to users. The other

direction aims to replace traditional matrix factorization

approaches with deep learning-based models. For instance,

Neural Collaborative Filtering (NCF) utilizes Multi-Layer

Perceptrons (MLP) instead of the inner product to estimate user

preferences, capturing more complex user-item interactions

(Petrov and Macdonald, 2022). AutoRec and CDAE, on the

other hand, predict users' ratings using an Auto-encoder

framework, which allows for non-linear representations of

user-item preferences. These deep learning-based approaches

have shown promising results in improving recommendation

performance by leveraging the power of neural networks to

capture intricate patterns in user-item interactions. By

incorporating auxiliary information and utilizing advanced

modeling techniques, deep learning-based recommendation

systems have the potential to enhance recommendation

accuracy and provide more personalized and relevant

recommendations to users.

2.2 Sequential Recommendation
Earlier works used Markov chains (MCs) to capture sequential

patterns from user historical interactions in sequential

recommendation. Markov Decision Processes (MDPs) were

also used to address recommendation generation as a sequential

optimization problem (Sun et al., 2019). Later, Factorizing

Personalized Markov Chains (FPMC) combined the power of

MCs and matrix factorization (MF) to model both sequential

behaviors and general interests, while high-order MCs were

also adopted to consider more previous items. More recently,

recurrent neural networks (RNNs) and their variants, such as

Gated Recurrent Unit (GRU) and Long Short-Term Memory

(LSTM), have gained popularity for modeling user behavior

sequences (Nagy et al., 2021). These methods encode a user's

previous records into a vector that represents their preferences,

which is then used for making predictions. Several recurrent

architectures and loss functions have been proposed, including

session-based GRU with ranking loss (GRU4Rec), Dynamic

Recurrent basket Model (DREAM), user-based GRU,

attention-based GRU (NARM), and improved GRU4Rec with

new loss functions (BPR-max and TOP1-max) and an

improved sampling strategy.

In addition to recurrent neural networks, other deep learning

models have been introduced for sequential recommendation.

For example, Tang and Wang proposed a Convolutional

Sequence Model (Caser) that uses both horizontal and vertical

convolutional filters to learn sequential patterns. Memory

Network is another approach that aims to improve sequential

recommendation. STAMP, on the other hand, captures both

users' general interests and current interests using a Multi-

Layer Perceptron (MLP) network with attention (Ciniselli et

al., 2021). These deep learning-based approaches have shown

promise in modeling sequential user behaviors and capturing

intricate patterns in user-item interactions over time. By

considering the order of users' behaviors, these models have the

potential to provide more accurate and relevant

recommendations in dynamic and evolving recommendation

scenarios (Lu et al., 2020). These advancements in deep

learning-based sequential recommendation methods open up

new possibilities for developing more effective and

personalized recommendation systems that can adapt to users'

changing preferences and behaviors.

2.3 Attention Mechanism
The attention mechanism has gained recognition for its

potential in modeling sequential data, such as machine

translation and text classification due to their effectiveness and

efficiency. Recently, there has been a growing interest in

leveraging the attention mechanism to enhance

recommendation performance and interpretability by

integrating it into the GRU model to capture user’s sequential

behavior. Transformer and BERT models are built entirely on

multi-head self-attention and have achieved state-of-the-art

results in text sequence modeling. In the field of sequential

recommendation, Kang and McAuley introduced SASRec, a

two-layer Transformer decoder, which captures users'

sequential behaviors and achieves top-performing results on

several public datasets (Mozafari et al., 2020). Although

SASRec is closely related to the current work, it is a

unidirectional model that uses a causal attention mask, whereas

the current approach utilizes a bidirectional model and encodes

users' behavior sequences with the help of the Cloze task.

3. BERT4Rec

3.1 Problem Statement
In the domain of sequential recommendation, a set of users

denoted as U = {u1, u2, ..., u|U|}, a set of items denoted as V =

{v1, v2, ..., v|V|} are considered, and an interaction sequence

for a user u ∈ U denoted as Su = [v(u)1, ..., v(u)t, ..., v(u)nu].

Here, v(u)t ∈ V represents the item that user u has interacted

with at time step t, and nu represents the length of the

interaction sequence for user u. The objective of sequential

recommendation is to predict the item that user u will interact

with at time step nu + 1, based on their past interaction history

Su. This prediction task can be mathematically formulated as

modeling the probability distribution over all possible items for

user u at time step nu + 1, denoted as p(v(u)nu + 1 | Su).

3.2 Model Architecture
A new model called BERT4Rec is introduced for sequential

recommendation, which incorporates Bidirectional Encoder

Representations from Transformers (BERT) into the task.

BERT4Rec is constructed using the popular self-attention layer

known as the Transformer layer, as shown in Figure 1b (Qiao

et al., 2022). It consists of L bidirectional Transformer layers,

where at each layer, the representation of each position is

iteratively revised by exchanging information across all

positions from the previous layer in parallel with the

Transformer layer. BERT4Rec utilizes the self-attention

mechanism, which allows it to directly capture dependencies

between any distances. Self-attention is easy to parallelize,

unlike RNN-based methods (Lin et al., 2021). BERT4Rec

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.3, January 2024

30

captures more powerful representations of users' behavior

sequences, leading to improved recommendation performance.

3.3 Transformer Layer
Hidden representations, denoted as hli can be computed for

each position i at each layer in a Transformer-based model. The

input sequence has a length of t, and the Transformer layer is

applied iteratively to compute hli (Risch and Krestel, 2020).

These hidden representations are stacked together into a matrix

Hl of size t×d, where d is the hidden dimension, as the attention

function is computed on all positions simultaneously during

training.

The Transformer layer consists of two sub-layers: Multi-Head

Self-Attention and Position-wise Feed-Forward Network.

Multi-Head Self-Attention is a key component in sequence

modeling tasks, as it allows for capturing dependencies

between representations regardless of their distance in the

sequence. Instead of using a single attention function, a multi-

head approach is adapted. In this approach, the input

representations H1 are linearly projected into h subspaces using

different, learnable linear projections. Then, h attention

functions are applied in parallel to generate output

representations, which are concatenated and projected again for

further processing. This multi-head self-attention mechanism

enables the model to capture complex dependencies and

interactions among representations in the sequence, enhancing

its ability to model sequential data effectively.

𝑀𝐻(𝐻1) = [ℎ𝑒𝑎𝑑1; ℎ𝑒𝑎𝑑2; … . ; ℎ𝑒𝑎𝑑ℎ]𝑊𝑜

𝐻𝑒𝑎𝑑𝑖 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝐻1𝑊𝑄𝑖, 𝐻1𝑊𝐾𝑖, 𝐻1𝑊𝑉𝑖)

The Attention function used is the Scaled Dot-Product

Attention, which computes a softmax over the dot product of

the query (Q) and key (K) matrices, scaled by a temperature

parameter pd/h, and then multiplied with the value (V) matrix.

The SoftMax operation produces a probability distribution that

indicates the importance of different positions in the input

sequence.

The Position-wise Feed-Forward Network is employed to

introduce nonlinearity and interactions between dimensions in

the outputs of the self-attention sub-layer (Shi and Lin, 2019).

This network operates independently and uniformly at each

position in the sequence. It comprises of two affine

transformations, with a Gaussian Error Linear Unit (GELU)

activation function applied in between. This allows the model

to incorporate nonlinearity and capture complex interactions

between different dimensions in the input sequence, enhancing

the expressive power of the model. The Position-wise Feed-

Forward Network is applied to the outputs of the self-attention

sub-layer, enabling the model to capture more nuanced and

nonlinear patterns in the data, which is important for achieving

higher performance in various sequence modeling tasks (Wang

et al., 2019).

𝑃𝐹𝐹𝑁(𝐻1) = 𝐹𝐹𝑁(ℎ11)𝑇; … . ; 𝐹𝐹𝑁(ℎ1𝑡)𝑇𝑇

𝐹𝐹𝑁(𝑥) = 𝐺𝐸𝐿𝑈(𝑥𝑊(1) + 𝑏(1))𝑊(2) + 𝑏(2)

The GELU activation function is a smoother alternative to the

standard Rectified Linear Unit (ReLU) activation function,

commonly used in OpenAI GPT and BERT.

To capture item-item interactions effectively in the user

behavior sequence, self-attention mechanisms are utilized.

However, to learn more intricate item transition patterns, it is

beneficial to stack multiple self-attention layers (Sun et al.,

2019). Nevertheless, as the network goes deeper, it becomes

more challenging to train. To mitigate this, residual

connections are employed around each of the two sub-layers

with layer normalization. Additionally, dropout is applied to

the output of each sub-layer before normalization. This means

that the output of each sub-layer is normalized using the layer

normalization function (LN) after adding the input (x) to the

output of the dropout function applied to the sub-layer output

(Nozza et al., 2020). Layer normalization is used to normalize

the inputs across all the hidden units in the same layer,

stabilizing and accelerating network training. By incorporating

residual connections, layer normalization, and dropout, the

model can effectively mitigate the challenges associated with

deep network architectures, allowing for better training and

improved performance in capturing complex patterns in the

data.

In summary, the hidden representations of each layer in

BERT4Rec are refined as follows:

𝐻1 = 𝑇𝑟𝑚(𝐻1 − 1), ∀∈ [1, … , 𝐿]

𝑇𝑟𝑚(𝐻1 − 1) = 𝐿𝑁(𝐴1 − 1 + 𝐷𝑟𝑜𝑝𝑜𝑢𝑡(𝑃𝐹𝐹𝑁(𝐴1 − 1)))

𝐴1 − 1 = 𝐿𝑁(𝐻1 − 1 + 𝐷𝑟𝑜𝑝𝑜𝑢𝑡(𝑀𝐻(𝐻1 − 1)))

where Trm denotes the Transformer layer, LN denotes the layer

normalization function, MH denotes the Multi-Head Self-

Attention, and PFFN denotes the Position-wise Feed-Forward

Network. Dropout is used for regularization during training,

and L denotes the total number of layers in the model.

3.4 Embedding Layer
As mentioned previously, the Transformer layer (Trm) lacks

awareness of the input sequence order due to the absence of

recurrence or convolutional modules. To incorporate sequential

information, Positional Embeddings are injected into the input

item embeddings at the bottom of the Transformer layer stacks.

The input representation (h0i) for a given item vi is obtained by

summing the corresponding item embedding (vi) and positional

embedding (pi) as follows: h0i = vi + pi, where vi ∈ E

represents the d-dimensional embedding for item vi, and pi ∈ P

represents the d-dimensional positional embedding for the

position index i (Tsai et al., 2019). In this study, learnable

positional embeddings are used instead of fixed sinusoid

embeddings from a previous work for improved performance.

The positional embedding matrix P ∈ R N × d enables the

model to identify the portion of the input it is processing.

However, it also imposes a limitation on the maximum

sentence length (N) that the model can handle. Thus, if the input

sequence [v1, . . . , vt] exceeds N items, it needs to be truncated

to the last N items [vu t−N +1, . . . , vt] where t > N. This

truncation ensures that the model operates within the maximum

sentence length N, allowing for effective utilization of

positional embeddings to capture the sequential information in

the input sequence.

3.5 Output Layer
As mentioned previously, the Transformer layer (Trm) lacks

awareness of the input sequence The final output HL for all

items in the input sequence is obtained after passing through L

layers that exchange information hierarchically across all

positions in the previous layer. If the item vt is masked at time

step t, the masked items vt can be predicted based on hLt. This

prediction is generated using a two-layer feed-forward network

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.3, January 2024

31

with GELU activation in between, which produces an output

distribution over target items using the softmax function:

𝑃(𝑣) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (𝐺𝐸𝐿𝑈(ℎ𝐿𝑡 𝑊𝑃 + 𝐵𝑃)𝐸𝑇 + 𝑏𝑜)

Here, WP is a learnable projection matrix, bP and bo are bias

terms, and E ∈ R |V |×d is the embedding matrix for the item

set V. To mitigate overfitting and reduce model size, a shared

item embedding matrix is utilized in both the input and output

layers. The output distribution P(v) represents the probabilities

of the masked items vt being each possible target item in the

item set V. The GELU activation function is used to introduce

non-linearity in the network, allowing it to capture complex

patterns in the data (Rogers et al., 2021). The projection matrix

WP and bias terms bP and bO are learned during the training

process, allowing the model to adapt and optimize its

predictions based on the input data. The embedding matrix E is

a matrix of size |V|×d, where |V| represents the size of the item

set V and d represents the embedding dimension. The

embedding matrix is used to represent the items in a continuous

vector space, allowing the model to capture semantic

relationships between items. By sharing the embedding matrix

in the input and output layers, the model can benefit from the

shared information, improving generalization and reducing the

risk of overfitting. tabs, and so on.

3.6 Model Learning
To efficiently train the proposed model, a new objective called

Cloze task (also known as "Masked Language Model") is

applied to sequential recommendation. Cloze task is a test that

involves a portion of language with some words removed, and

the participant is asked to fill in the missing words (Lu et al.,

2020). In this case, for each training step, a random proportion

ρ of all items in the input sequence is masked by replacing them

with a special token "[mask]", and then the original ids of the

masked items are predicted solely based on their left and right

context. The final hidden vectors corresponding to "[mask]" are

then fed into an output softmax over the item set, similar to

conventional sequential recommendation. The loss for each

masked input S′u is defined as the negative log-likelihood of

the masked targets, which is calculated based on the probability

of the true item for the masked item.

An additional advantage of using Cloze task is that it can

generate more samples to train the model (Mozafari et al.,

2020). In conventional sequential predictions, each sequence

of length n produces n unique samples for training, however,

with BERT4Rec, n*k samples can be obtained (if k items are

randomly masked) in multiple epochs, allowing for training a

more powerful bidirectional representation model.

To address the mismatch between the training and the final

sequential recommendation task introduced by Cloze task, the

special token "[mask]" is appended to the end of the user's

behavior sequence during testing, and the next item is predicted

based on the final hidden representation of this token.

Additionally, during training, samples that only mask the last

item in the input sequences are produced, similar to fine-tuning

for sequential recommendation, which can further improve the

recommendation performances (Akhtyamova, 2020).

For example: The hidden vectors corresponding to the special

token "[mask]" are used to generate an output softmax over the

item set, like conventional sequential recommendation. The

loss for each masked input sequence S ′ u is computed as the

negative log-likelihood of the true targets for the masked items,

denoted as v ∗ m, in the sequence S m u, which contains

randomly masked items.

One advantage of using the Cloze task is that it can generate

more training samples for the model (Ciniselli et al., 2021).

Assuming a sequence of length n, conventional sequential

predictions produce n unique samples for training, while

BERT4Rec with Cloze task can generate n*k samples (where

k is the number of randomly masked items) in multiple epochs.

This enables training a more powerful bidirectional

representation model that captures richer contextual

information from both left and right contexts, leading to

improved recommendation performance.

This approach can be seen as a form of fine-tuning for

sequential recommendation, and it has the potential to further

enhance the recommendation performance by better aligning

the training objective with the ultimate prediction goal of the

model.

Table 1. Datasets Statistics

4. EXPERIMENTS

4.1 Datasets
Assessing the performance of the proposed model on four real-

world datasets that cover diverse domains and levels of

sparsity. These datasets include:

● Amazon Beauty: This dataset comprises product

review data obtained from Amazon.com, which was

originally crawled by McAuley et al. [34]. The data

is divided into separate datasets based on top-level

product categories, and in the evaluation, focus on

the "Beauty" category.

● Steam: This dataset is collected from Steam, a large

online video game distribution platform, as curated

by Kang and McAuley [22].

● MovieLens: This is a widely used benchmark dataset

for evaluating recommendation algorithms. Utilize

two established versions of MovieLens, namely

MovieLens 1m (ML1m) and MovieLens 20m (ML-

20m).

For dataset preprocessing, standard practices are followed

employed in previous studies. Specifically, convert all numeric

ratings or the presence of a review into implicit feedback,

where a value of 1 indicates that the user has interacted with

the item. Then group the interaction records by users and

construct interaction sequences for each user by sorting the

records based on timestamps. To ensure dataset quality, adopt

the common practice of retaining only users with at least five

feedbacks. Table 1 provides an overview of the statistics of the

processed datasets.

4.2 Task Settings and Evaluation Metrics
To assess the effectiveness of the sequential recommendation

models, utilizing the widely used leave-one-out evaluation

approach, also known as the next item recommendation task,

which has been employed in previous studies. For each user,

withhold the last item in their behavior sequence as the test

data, designate the item just before the last as the validation set,

and use the remaining items for training.

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.3, January 2024

32

To ensure a fair and consistent evaluation, adopting the

common strategy used in where randomly sample 100 negative

items for each user from the items they have not interacted

with. To ensure the sampling is reliable and representative, then

sample these negative items based on their popularity.

Consequently, the task involves ranking these 100 negative

items along with the ground truth item for each user.

Then utilize a variety of evaluation metrics to assess the

performance of the ranking lists generated by the models.

These metrics include Hit Ratio (HR), Normalized Discounted

Cumulative Gain (NDCG), and Mean Reciprocal Rank (MRR).

HR@k, which is equivalent to Recall@k and proportional to

Precision@k, is reported with k = 1, 5, and 10 in this study.

Additionally, MRR is equivalent to Mean Average Precision

(MAP). Higher values for these metrics indicate better

performance.

4.3 Baselines and Implementation Details
To evaluate the effectiveness of the method, comparing it with

several baseline methods commonly used in the field of

sequential recommendation. These baselines include:

● POP: This is a simple baseline that ranks items based

on their popularity, determined by the number of

interactions.

● BPR-MF: This baseline optimizes matrix

factorization using implicit feedback and a pairwise

ranking loss.

● NCF: This baseline models user-item interactions

using a Multi-Layer Perceptron (MLP) instead of the

inner product used in matrix factorization.

● FPMC: This baseline combines matrix factorization

with first-order Markov Chains (MCs) to capture

users' general taste as well as their sequential

behaviors.

● GRU4Rec: This baseline uses a Gated Recurrent

Unit (GRU) with a ranking-based loss to model user

sequences for session-based recommendation.

● GRU4Rec+: This is an improved version of

GRU4Rec that incorporates a new class of loss

functions and sampling strategy.

● Caser: This baseline employs a Convolutional Neural

Network (CNN) in both horizontal and vertical ways

to model high-order MCs for sequential

recommendation.

● SASRec: This baseline uses a left-to-right

Transformer language model to capture users'

sequential behaviors and has shown state-of-the-art

performance in sequential recommendation.

For some of the baselines (NCF, GRU4Rec, GRU4Rec+,

Caser, SASRec), the code is used provided by the

corresponding authors. For BPR-MF and FPMC, are

implemented using TensorFlow. Considering common

hyperparameter settings such as hidden dimension size, ℓ2

regularizer, dropout rate, etc., and tuned them on the validation

sets. It has been reporting the results of each baseline under its

optimal hyperparameter settings. Implementing BERT4Rec

with TensorFlow, initializing all parameters using a truncated

normal distribution with a range of [-0.02, 0.02]. Although

provided training the models using the Adam optimizer with a

learning rate of 1e-4, β1 = 0.9, β2 = 0.999, ℓ2 weight decay of

0.01, and linear decay of the learning rate. Clipping the gradient

when its ℓ2 norm exceeded a threshold of 5 for fair comparison.

It set the layer number L = 2 and head number h = 2, using the

same maximum sequence length as in previous works (N = 200

for ML-1m and ML-20m, N = 50 for Beauty and Steam

datasets). The dimensionality of each head was empirically set

as 32 (single head if d < 32). The mask proportion ρ is tuned

and using the validation set, resulting in ρ = 0.6 for Beauty, ρ =

0.4 for Steam, and ρ = 0.2 for ML-1m and ML-20m. All the

models were trained from scratch on a single NVIDIA GeForce

GTX 1080 Ti GPU with a batch size of 256.

4.4 Overall Performance Comparison
Table 2 presents a summary of the best results achieved by

various models on four benchmark datasets. The last column

shows the performance improvement of BERT4Rec compared

to the best baseline. NDCG@1 results are omitted as they are

equal to HR@1 in the experiments.

The non-personalized POP method performs the worst on all

datasets, as it does not consider users' personalized preferences

based on their historical records. Among all the baseline

methods, sequential methods such as FPMC and GRU4Rec+

consistently outperform non-sequential methods like BPR-MF

and NCF on all datasets. This indicates that considering

sequential information is beneficial for improving

recommendation system performance.

Among the sequential recommendation baselines, Caser

performs better than FPMC on all datasets, especially on the

dense dataset ML-1m, suggesting that modeling high-order

MCs (Markov Chains) is beneficial for sequential

recommendation. However, Caser tends to perform worse than

GRU4Rec+ and SASRec, especially on sparse datasets,

possibly due to the small order L used in high-order MCs,

which do not scale well. Furthermore, SASRec performs

significantly better than GRU4Rec and GRU4Rec+, indicating

that the self-attention mechanism is a more powerful tool for

sequential recommendation.

Based on the results, it is evident that BERT4Rec performs the

best among all methods on all four datasets, outperforming the

strongest baselines. On average, BERT4Rec achieves 7.24%

improvement in HR@10, 11.03% improvement in

Table 2. Performance comparison of methods for next-item prediction. Bold indicates best, underlined indicates

second best, with statistically significant improvements over baselines (p < 0.01)

Datasets Metric POP

BPR-

MF NCF FPMC

GRU4R

EC

GRU4Rec

+ Caser SASRec

BERT4R

ec

Improv

.

BEAUTY
HR@1 0.0077 0.0415 0.0407 0.0435 0.0402 0.0551 0.0475 0.0906 0.0953 5.19%

HR@5 0.0392 0.1209 0.1305 0.1387 0.1315 0.1781 0.1625 0.1934 0.2207 14.12%

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.3, January 2024

33

HR@10 0.0762 0.1992 0.2142 0.2401 0.2343 0.2654 0.2590 0.2653 0.3025 14.02%

NDCG@

5 0.0230 0.0814 0.0855 0.0902 0.0812 0.1172 0.1050 0.1436 0.1599 11.35%

NDCG@

10 0.0349 0.1064 0.1124 0.1211 0.1074 0.1453 0.1360 0.1633 0.1862 14.02%

MRR 0.0437 0.1006 0.1043 0.1056 0.1023 0.1299 0.1205 0.1536 0.1701 10.74%

STEAM

HR@1 0.0159 0.0314 0.0246 0.0358 0.0574 0.0812 0.0495 0.0885 0.0957 8.14%

HR@5 0.0805 0.1177 0.1203 0.1517 0.2171 0.2391 0.1766 0.2559 0.2710 5.90%

HR@10 0.1389 0.1993 0.2169 0.2551 0.3313 0.3594 0.2870 0.3783 0.4013 6.08%

NDCG@

5 0.0477 0.0744 0.0717 0.0945 0.1370 0.1613 0.1131 0.1727 0.1842 6.66%

NDCG@

10 0.0665 0.1005 0.1026 0.1283 0.1802 0.2053 0.1484 0.2147 0.2261 5.31%

MRR 0.0669 0.0942 0.0932 0.1139 0.1420 0.1757 0.1305 0.1874 0.1949 4.00%

ML-1M

HR@1 0.0141 0.0914 0.0397 0.1386 0.1583 0.2092 0.2194 0.2351 0.2863 21.78%

HR@5 0.0715 0.2866 0.1932 0.4297 0.4673 0.5103 0.5353 0.5434 0.5876 8.13%

HR@10 0.1358 0.4301 0.3477 0.5946 0.6207 0.6351 0.6692 0.6629 0.6970 4.15%

NDCG@

5 0.0416 0.1903 0.1146 0.2885 0.3196 0.3705 0.3832 0.3980 0.4454 11.91%

NDCG@

10 0.0621 0.2365 0.1640 0.3439 0.3627 0.4064 0.4268 0.4368 0.4818 10.32%

MRR 0.0627 0.2009 0.1358 0.2891 0.3041 0.3462 0.3648 0.3790 0.4254 12.24%

ML-20m

HR@1 0.0221 0.0553 0.0231 0.1079 0.1459 0.2021 0.1232 0.2544 0.3440 35.22%

HR@5 0.0805 0.2128 0.1358 0.3601 0.4657 0.5118 0.3804 0.5727 0.6323 10.41%

HR@10 0.1378 0.3538 0.2922 0.5201 0.5844 0.6524 0.5427 0.7136 0.7473 4.72%

NDCG@

5 0.0511 0.1332 0.0771 0.2239 0.3090 0.3630 0.2538 0.4208 0.4967 18.04%

NDCG@

10 0.0695 0.1786 0.1271 0.2895 0.3637 0.4087 0.3062 0.4665 0.5340 14.47%

MRR 0.0709 0.1503 0.1072 0.2273 0.2967 0.3476 0.2529 0.4026 0.4785 18.85%

NDCG@10, and 11.46% improvement in MRR compared to

the best baselines.

Question: Are the improvements in performance attributed to

the bidirectional self-attention model or the Cloze objective in

BERT4Rec?

To investigate the effects of the bidirectional self-attention

model and the Cloze objective in BERT4Rec, we conducted

experiments where the Cloze task only masked one item at a

time, isolating the effects of these two factors. In comparison

to SASRec, the BERT4Rec (with 1 mask) predicts the target

item by conditioning on both left and right context. The results,

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.3, January 2024

34

reported in Table 3 for Beauty and ML-1m with d = 256 due to

space limitations, show that BERT4Rec with 1 mask

outperforms SASRec on all evaluation metrics, highlighting the

importance of bidirectional representations in sequential

recommendation. Additionally, the last two rows of the table

indicate that the Cloze objective also contributes to improved

performance.

Table 3. Analysis of bidirectional and Cloze models with

dimensionality d = 256

MODEL

BEAUTY ML-1m

HR@

10

NDCG

@10

MR

R

HR@

10

NDCG

@10 MRR

SASRec 0.2653 0.1633

0.15

3 0.6629 0.4368 0.379

BERT4R

ec(1

mask) 0.294 0.1769

0.16

1 0.6869 0.4696 0.412

BERT4R

ec 0.3025 0.1862 0.17 0.697 0.4818

0.425

4

 Question 2: What are the reasons and mechanisms behind

the superior performance of bidirectional models compared

to unidirectional models?

To address this question, the aim is to uncover significant

patterns by visualizing the average attention weights of the last

10 items during the test on the Beauty dataset, as shown in

Figure 1. Four representatives are provided attention heat-maps

from different layers and heads, taking into consideration the

limitation of space for reporting.

Several observations have been made from the results of our

analysis. Firstly, we noticed that attention varies across

different heads, with head 1 in layer 1 tending to focus on items

on the left side, while head 2 prefers items on the right side.

Secondly, attention also varies across different layers, with

layer 2 tending to focus more on recent items, as it is directly

connected to the output layer and recent items play a crucial

role in predicting the future. Additionally, it has been observed

that some heads tend to attend on the [mask] token, possibly

indicating a way for self-attention to propagate sequence-level

state to the item level. Most importantly, unlike unidirectional

models that can only attend to items on the left side, BERT4Rec

can attend to items on both sides, which suggests that

bidirectional modeling is essential and beneficial for user

behavior sequence modeling.

In further studies, the impact of hyperparameters is examined

such as hidden dimensionality (d), mask proportion (ρ), and

maximum sequence length (N) on the model's performance. It

will analyze one hyperparameter at a time while keeping the

remaining hyperparameters at their optimal settings. Due to

space limitations, it will only report NDCG@10 and HR@10

for these follow-up experiments.

4.5 Impact of Hidden Dimensionality
A study is conducted to investigate how the hidden

dimensionality (d) affects the recommendation performance of

neural sequential methods. Firstly, it has been noticed that the

performance of each model tends to converge as the

dimensionality increases. However, a larger hidden

dimensionality does not necessarily result in better model

performance, particularly on sparse datasets such as Beauty and

Steam, this phenomenon may be attributed to overfitting.

Furthermore, it has been observed that Caser exhibited unstable

performance on four datasets, which could limit its usefulness.

On the other hand, self-attention-based methods such as

SASRec and BERT4Rec consistently achieved superior

performance on all datasets.

Figure1. Visual representations of average attention

weights on Beauty dataset, with the last position denoted

as "[mask]" (viewed best in color)

4.6 Impact of Mask Proportion ρ
The proportion of masked items (denoted as ρ) during model

training is a crucial factor that directly impacts the loss

function. It is important to strike a balance with ρ, as using an

excessively small value may not provide enough information

for the model to learn effectively, while using an overly large

value could make training difficult due to the need to predict

too many items based on limited context. To investigate this,

conducting experiments to evaluate the effect of varying ρ on

recommendation performance across different datasets. The

results reveal a general pattern, where performance decreases

as ρ increases beyond 0.6 in all datasets. Notably, the

performances of ρ = 0.2 consistently outperform those of ρ =

0.1 in all datasets, confirming the earlier claim. Additionally, it

has been observed that the optimal ρ value is highly dependent

on the sequence length of the dataset. For datasets with short

sequences (e.g., Beauty and Steam), the best performances are

achieved with ρ = 0.6 (Beauty) and ρ = 0.4 (Steam), whereas

datasets with long sequences (e.g., ML-1m and ML-20m) tend

to perform better with a smaller ρ value of 0.2. This is

reasonable because in datasets with longer sequences, a larger

ρ would result in a higher number of items that need to be

predicted. For instance, with ρ = 0.6, 98=⌊163.5×0.6⌋ items on

average per sequence are required to be predicted for ML-1m,

whereas for Beauty, it would be only 5=⌊8.8×0.6⌋ items. The

former would be more challenging for model training.

Table 4. The performance results of different maximum

lengths (N) on the model's performance

 10 20 30 40 50

BEAUTY

#samples/s 5504 3256 2284 1776 1441

HR@10 0.3006 0.3061 0.3057 0.3054 0.3047

NDCG@10 0.1826 0.1875 0.1837 0.1833 1832

 10 50 100 200 400

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.3, January 2024

35

ML-1m

#samples/s 14255 8890 5711 2918 1213

HR@10 0.6788 0.6854 0.6947 0.6955 0.6898

NDCG@10 0.4631 0.4743 0.4758 0.4759 0.4715

Table 5. Ablation analysis of NDCG@10 on four datasets,

with bold indicating improved performance and ↓

indicating a drop of more than 10% compared to the

default version

Architecture
Dataset

Beauty Steam ML-1m ML-20m

 0.1832 0.2241 0.4759 0.4513

w/Ope 0.1741 0.2060 0.2155↓ 0.2867↓

w/Opffn 0.1803 0.2137 0.4544 0.4296

w/o LN 0.1642↓ 0.2058 0.4334 0.4186

w/o RC 0.1619↓ 0.2193 0.4643 0.4483

w/o

Dropout 0.1658 0.2185 0.4553 0.4471

1 layer

(L=1) 0.1782 0.2122 0.4412 0.4238

3

layer(L=3) 0.1859 0.2262 0.4864 0.4661

4 layers (L=

4) 0.1834 0.2279 0.4898 0.4732

1 head

(h=1) 0.1853 0.2187 0.4568 0.4402

4 head

(h=4) 0.1830 0.2245 0.4770 0.4520

8 heads

(h=8) 0.1823 0.2248 0.4743 0.4550

4.7 Impact of Maximum Sequence Length

N
It has also been examined the impact of the maximum sequence

length (denoted as N) on the recommendation performance and

efficiency of the model. Table 4 presents the results of

recommendation performances and training speed with

different N values on the Beauty and ML-1m datasets.

It has been found that the optimal N value is also closely tied

to the average sequence length of the dataset. For example,

Beauty dataset performs best with a smaller N value of 20,

while ML-1m dataset achieves optimal performance with N =

200. This suggests that user behavior in short sequence datasets

is influenced by more recent items, while in long sequence

datasets, less recent items play a role. It should be noted that

the model does not consistently benefit from a larger N, as a

larger N can introduce more noise along with extra information.

However, the given model remains stable as N increases,

indicating that it can effectively attend to informative items

from noisy historical records.

One scalability concern of BERT4Rec is its computational

complexity per layer, which is O(n^2d), where n is the

sequence length and d is the hidden dimension. Fortunately, the

results in Table 4 demonstrate that the self-attention layer can

be effectively parallelized using GPUs, mitigating this concern.

4.8 Ablation Study
Finally, it has been conducted ablation experiments on several

key components of BERT4Rec to gain a better understanding

of their impacts. These components include positional

embedding (PE), position-wise feed-forward network (PFFN),

layer normalization (LN), residual connection (RC), dropout,

the number of self-attention layers (L), and the number of heads

in multi-head attention (h). Table 5 presents the results of the

default version (L=2, h=2) and its eleven variants on all four

datasets, with a dimensionality of d=64, while keeping other

hyperparameters at their optimal settings.

5. CONCLUSION AND FUTURE WORK
Proposing BERT4Rec, a deep bidirectional sequential model

for sequential recommendation, leveraging the success of deep

bidirectional self-attention architecture in language

understanding. The given model incorporates a Cloze task for

masked item prediction using both left and right context during

training. Through extensive experiments on four real-world

datasets, demonstrating that BERT4Rec outperforms state-of-

the-art baselines in sequential recommendation tasks. Looking

forward, there are exciting avenues for future research that can

further enhance the efficacy of BERT4Rec. One promising

direction involves exploration of integration of rich item

features, such as category and price, to provide a more

comprehensive understanding of items and their relationships.

Additionally, there is a need to delve deeper into explicit user

modelling, particularly in scenarios where users exhibit multi-

session behavior. Incorporating a user component into the

model architecture could contribute to a more content-aware

and personalized sequential recommendation system.

6. REFERENCES
[1] Akhtyamova, L., 2020, April. Named entity recognition in

Spanish biomedical literature: Short review and BERT

model. In 2020 26th Conference of Open Innovations

Association (FRUCT) (pp. 1-7). IEEE.

https://arrow.tudublin.ie/cgi/viewcontent.cgi?article=101

6&context=ittscicon

[2] Balázs Hidasi and Alexandros Karatzoglou. 2018.

Recurrent Neural Networks with Top-k Gains for Session-

based Recommendations. In Proceedings of CIKM. ACM,

New York, NY, USA, 843–852.

[3] Ciniselli, M., Cooper, N., Pascarella, L., Poshyvanyk, D.,

Di Penta, M. and Bavota, G., 2021, May. An empirical

study on the usage of BERT models for code completion.

In 2021 IEEE/ACM 18th International Conference on

Mining Software Repositories (MSR) (pp. 108-119).

IEEE. https://arxiv.org/pdf/2103.07115

[4] F. Maxwell Harper and Joseph A. Konstan. 2015. The

MovieLens Datasets: History and Context. ACM Trans.

Interact. Intell. Syst. 5, 4, Article 19 (Dec. 2015), 19

pages.

[5] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2015.

Distilling the knowledge in a neural network. In Deep

Learning and Representation Learning Workshop.

[6] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian

Sun. 2016. Deep Residual Learning for Image

Recognition. In Proceedings of CVPR. 770–778.

[7] Lee, J.S. and Hsiang, J., 2019. Patentbert: Patent

classification with fine-tuning a pre-trained bert

model. arXiv preprint arXiv:1906.02124.

https://arxiv.org/pdf/1906.02124

https://arrow.tudublin.ie/cgi/viewcontent.cgi?article=1016&context=ittscicon
https://arrow.tudublin.ie/cgi/viewcontent.cgi?article=1016&context=ittscicon
https://arxiv.org/pdf/2103.07115
https://arxiv.org/pdf/1906.02124

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.3, January 2024

36

[8] Lin, J., Liu, Y., Zeng, Q., Jiang, M. and Cleland-Huang,

J., 2021, May. Traceability transformed: Generating more

accurate links with pre-trained bert models. In 2021

IEEE/ACM 43rd International Conference on Software

Engineering (ICSE) (pp. 324-335). IEEE.

https://arxiv.org/pdf/2102.04411

[9] Lu, W., Jiao, J. and Zhang, R., 2020, October. Twinbert:

Distilling knowledge to twin-structured compressed bert

models for large-scale retrieval. In Proceedings of the

29th ACM International Conference on Information &

Knowledge Management (pp. 2645-2652).

https://arxiv.org/pdf/2002.06275

[10] Mozafari, M., Farahbakhsh, R. and Crespi, N., 2020. Hate

speech detection and racial bias mitigation in social media

based on BERT model. PloS one, 15(8), p.e0237861.

https://doi.org/10.1371/journal.pone.0237861

[11] Nagy, A., Bial, B. and Ács, J., 2021. Automatic

punctuation restoration with BERT models. arXiv

preprint arXiv:2101.07343.

https://arxiv.org/pdf/2101.07343

[12] Nozza, D., Bianchi, F. and Hovy, D., 2020. What the

[mask]? making sense of language-specific BERT

models. arXiv preprint arXiv:2003.02912.

https://arxiv.org/pdf/2003.02912

[13] Petrov, A. and Macdonald, C., 2022, September. A

Systematic Review and Replicability Study of BERT4Rec

for Sequential Recommendation. In Proceedings of the

16th ACM Conference on Recommender Systems (pp.

436-447). https://arxiv.org/pdf/2207.07483

[14] Qiao, Y., Zhu, X. and Gong, H., 2022. BERT-Kcr:

prediction of lysine crotonylation sites by a transfer

learning method with pre-trained BERT

models. Bioinformatics, 38(3), pp.648-654.

http://structpred.life.tsinghua.edu.cn/pdf/10.1093_bioinfo

rmatics_btab712.pdf

[15] Risch, J. and Krestel, R., 2020, May. Bagging BERT

models for robust aggression identification.

In Proceedings of the Second Workshop on Trolling,

Aggression and Cyberbullying (pp. 55-61).

https://aclanthology.org/2020.trac-1.9.pdf

[16] Rogers, A., Kovaleva, O. and Rumshisky, A., 2021. A

primer in BERTology: What we know about how BERT

works. Transactions of the Association for Computational

Linguistics, 8, pp.842-866.

https://direct.mit.edu/tacl/article-

pdf/doi/10.1162/tacl_a_00349/1923281/tacl_a_00349.pd

f

[17] Ruining He and Julian McAuley. 2016. Fusing Similarity

Models with Markov Chains for Sparse Sequential

Recommendation. In Proceedings of ICDM. 191–200.

[18] Ruining He, Wang-Cheng Kang, and Julian McAuley.

2017. Translation-based Recommendation. In

Proceedings of RecSys. ACM, New York, NY, USA,

161–169.

[19] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long

Short-Term Memory. Neural Computation 9, 8 (Nov.

1997), 1735–1780.

[20] Shi, P. and Lin, J., 2019. Simple bert models for relation

extraction and semantic role labeling. arXiv preprint

arXiv:1904.05255. https://arxiv.org/pdf/1904.05255

[21] Sun, F., Liu, J., Wu, J., Pei, C., Lin, X., Ou, W. and Jiang,

P., 2019, November. BERT4Rec: Sequential

recommendation with bidirectional encoder

representations from transformer. In Proceedings of the

28th ACM international conference on information and

knowledge management (pp. 1441-1450).

https://arxiv.org/pdf/1904.06690.pdf%EF%BC%89

[22] Sun, S., Cheng, Y., Gan, Z. and Liu, J., 2019. Patient

knowledge distillation for bert model compression. arXiv

preprint arXiv:1908.09355.

https://arxiv.org/pdf/1908.09355

[23] Tsai, H., Riesa, J., Johnson, M., Arivazhagan, N., Li, X.

and Archer, A., 2019. Small and practical BERT models

for sequence labeling. arXiv preprint arXiv:1909.00100.

https://arxiv.org/pdf/1909.00100

[24] Wang, Z., Ng, P., Ma, X., Nallapati, R. and Xiang, B.,

2019. Multi-passage bert: A globally normalized bert

model for open-domain question answering. arXiv

preprint arXiv:1908.08167.

https://arxiv.org/pdf/1908.08167.pdf)

[25] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie,

Xia Hu, and Tat-Seng Chua. 2017. Neural Collaborative

Filtering. In Proceedings of WWW. 173–182.

IJCATM : www.ijcaonline.org

https://arxiv.org/pdf/2102.04411
https://arxiv.org/pdf/2002.06275
https://doi.org/10.1371/journal.pone.0237861
https://arxiv.org/pdf/2101.07343
https://arxiv.org/pdf/2003.02912
https://arxiv.org/pdf/2207.07483
http://structpred.life.tsinghua.edu.cn/pdf/10.1093_bioinformatics_btab712.pdf
http://structpred.life.tsinghua.edu.cn/pdf/10.1093_bioinformatics_btab712.pdf
https://aclanthology.org/2020.trac-1.9.pdf
https://direct.mit.edu/tacl/article-pdf/doi/10.1162/tacl_a_00349/1923281/tacl_a_00349.pdf
https://direct.mit.edu/tacl/article-pdf/doi/10.1162/tacl_a_00349/1923281/tacl_a_00349.pdf
https://direct.mit.edu/tacl/article-pdf/doi/10.1162/tacl_a_00349/1923281/tacl_a_00349.pdf
https://arxiv.org/pdf/1904.05255
https://arxiv.org/pdf/1904.06690.pdf%EF%BC%89
https://arxiv.org/pdf/1908.09355
https://arxiv.org/pdf/1909.00100
https://arxiv.org/pdf/1908.08167.pdf

