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ABSTRACT 

The incorporation of renewable energy sources and the 

efficient utilization of energy are crucial factors in facilitating 

sustainable energy transitions and addressing the issue of 

climate change. The Internet of Things (IoT) is a modern 

technology that has numerous applications in the energy sector. 

These applications include energy supply, transmission and 

distribution, as well as demand management. The utilization of 

IoT can enhance energy efficiency, augment the proportion of 

renewable energy, and mitigate the environmental 

consequences of energy consumption. This study examines the 

current body of literature about the use of Internet of Things 

(IoT) technology in energy systems, with a specific focus on its 

application in smart grids. In addition, we explore the enabling 

technologies of the Internet of Things (IoT), such as cloud 

computing and other platforms for data analysis.   

Keywords 
IoT, Energy, Wireless Technologies, Data analytics, Smart 
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1. INTRODUCTION 
The advent of the Internet of Things (IoT) marks a significant 

turning point in the ongoing evolution of industrial revolutions, 

particularly within the energy sector. The IoT, a vast network 

of interconnected devices capable of collecting and exchanging 

data, is transforming the way energy systems operate. This 

transformation is characterized by the integration of smart 

technologies that enable real-time monitoring, control, and 

optimization of energy production, distribution, and 

consumption 

In recent years, the energy sector has increasingly adopted IoT 

technologies to address the growing demand for efficient, 

reliable, and sustainable energy solutions. IoT-enabled devices, 

such as smart meters, sensors, and connected infrastructure, 

provide granular visibility into energy flows, allowing for 

precise management and forecasting. These devices collect vast 

amounts of data on energy usage patterns, environmental 

conditions, and equipment performance, which are then 

processed and analyzed to enhance decision-making processes. 

One of the key benefits of IoT in the energy sector is its ability 

to improve energy efficiency. By continuously monitoring 

energy consumption and identifying inefficiencies, IoT 

systems can suggest and implement corrective measures, 

reducing wastage and lowering costs. For instance, smart grids 

utilize IoT technologies to balance supply and demand 

dynamically, ensuring optimal distribution of electricity and 

minimizing losses. 

Furthermore, IoT contributes to the development of renewable 

energy sources by enabling better integration and management 

of distributed energy resources (DERs) such as solar panels and 

wind turbines. IoT devices can monitor the performance and 

health of these assets in real-time, predict maintenance needs, 

and optimize their operation to maximize output. This 

capability is crucial in transitioning to a more sustainable 

energy landscape, where renewable sources play a significant 

role [1-12]. 

The implementation of IoT in the energy sector also enhances 

reliability and resilience. Predictive maintenance, powered by 

data analytics and IoT sensors, allows for early detection of 

potential equipment failures, reducing downtime and 

preventing costly outages. Additionally, IoT facilitates the 

creation of more resilient energy systems by enabling real-time 

response to disruptions, such as natural disasters or cyber-

attacks, through automated controls and quick rerouting of 

power [12-25]. 

Moreover, IoT is pivotal in empowering consumers to play a 

more active role in energy management. Smart home 

technologies, connected appliances, and mobile applications 

provide users with detailed insights into their energy 

consumption, enabling them to make informed decisions and 

adopt energy-saving behaviors [26-29]. This consumer 

empowerment leads to a more decentralized and participatory 

energy market, where demand-side management becomes 

more effective. 

2. Internet of Things (IoT) 
The Internet of Things (IoT) is a developing technology that 

utilises the Internet to establish communication among physical 

items or "things" [30]. Physical devices encompass a wide 

range of objects, such as household appliances and machinery 

used in industrial settings. By utilising suitable sensors and 

communication networks, these devices can collect useful data 

and facilitate the provision of a wide range of services for 

individuals. Controlling the energy usage of buildings in a 

smart manner allows for a reduction in energy expenses [31]. 

The Internet of Things (IoT) has a diverse array of applications, 

including but not limited to manufacturing, logistics, and the 

construction industry [32]. The Internet of Things (IoT) is 

extensively utilized in several fields such as environmental 

monitoring, healthcare systems and services, energy 
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management in buildings, and drone-based services 

[33,34,35,36]. 

The initial phase in developing IoT systems involves selecting 

the proper components, such as sensor devices, communication 

protocols, data storage, and calculation methods, that are 

suitable for the desired application. For instance, an Internet of 

Things (IoT) platform designed to regulate the heating, cooling, 

and air conditioning (HVAC) system in a building necessitates 

the use of appropriate environmental sensors and 

communication technology [37]. Figure 1 depicts the distinct 

constituents of an Internet of Things (IoT) platform [38]. IoT 

devices, which are integral parts of IoT platforms, can take the 

shape of sensors, actuators, IoT gateways, or any device that 

participates in the process of collecting, transmitting, and 

processing data. An IoT gateway device facilitates the transfer 

of data into the IoT system and enables two-way 

communication between the device and the gateway, as well as 

between the gateway and the cloud. 

The communication protocols, which form the third component 

of the IoT platform, facilitate the exchange of data between 

devices and the controllers or decision-making centers. IoT 

platforms provide the option to choose from various 

communication technologies, each with its own distinct 

capabilities, based on the specific requirements of the 

application. Some examples of these technologies are Wi-Fi, 

Bluetooth, ZigBee [39], as well as cellular technologies as 

LTE-4G and 5G networks [40]. The data storage is a crucial 

component of the IoT platform that facilitates the organization 

and control of data acquired from the sensors. 

 

Fig. 1: Components of an IoT platform 

The data collected from the gadgets is inherently substantial. 

This requires the development of a well-organized data storage 

system that can be located either on cloud servers or at the edge 

of an IoT network. An integral part of IoT platforms, the fifth 

component consists of stored data that is utilized for analytical 

reasons. Data analytics can be conducted offline after data 

storage or in the form of real-time analytics. Data analytics is 

conducted to inform decision-making regarding the functioning 

of the application. Data analytics can be conducted either 

offline or in real-time, depending on the requirements. In 

offline analytics, data is initially gathered and subsequently 

displayed on-site using visualization tools. Real-time analytics 

utilize cloud or edge servers to offer visualization, such as data 

analytics [41]. 

3. ENABLING TECHNOLOGIES 
The Internet of Things (IoT) is a paradigm where objects and 

elements within a system are equipped with sensors, actuators, 

and processors, enabling them to communicate and provide 

meaningful services. In IoT systems, sensors collect data, 

which is routed through gateways to control centers or the 

cloud for storage, processing, analytics, and decision-making. 

Once a decision is made, a corresponding command is sent 

back to the actuator in response to the sensed data. Given the 

variety of sensor and actuator devices, communication 

technologies, and data computing approaches, this section 

discusses the existing technologies enabling IoT. Additionally, 

examples from literature on their application in the energy 

sector are provided. 

3.1 Sensor Devices 
Sensors are crucial drivers of IoT, collecting and transmitting 

data in real-time, thus enhancing the effectiveness and 

functionality of IoT systems [42]. Different sensors are 

developed for various applications, such as agriculture, 

environmental monitoring, healthcare, and public safety [44]. 

In the energy sector, sensors are employed in energy 

production, transmission, and distribution to create cost and 

energy savings. They enable smart energy management 

systems, real-time energy optimization, and new approaches 

for energy load management. Research trends focus on 

developing sensor applications to improve load shaping, 

consumer awareness, and renewable energy production [45]. 

Temperature Sensors: These sensors detect heating and cooling 

fluctuations, which are vital in converting mechanical energy 

into electrical energy in power generation. They also optimize 

system performance by managing ventilation and cooling 

systems in residential areas [46, 42]. 

Humidity Sensors: Used to measure air moisture and humidity, 

these sensors are critical in wind energy production, especially 

for offshore turbines. They monitor moisture levels to ensure 

optimal turbine operation and reduce energy costs [47]. 

Light Sensors: These sensors measure luminance or brightness 

and are used to control lighting levels automatically. They help 

reduce energy consumption in buildings by adjusting indoor 

and outdoor lighting based on ambient light levels [48, 49, 19]. 

Passive Infrared (PIR) Sensors: Also known as motion sensors, 

PIR sensors detect infrared radiation from surrounding objects. 

They reduce energy consumption in buildings by controlling 

lighting and air conditioning systems based on occupancy [50, 

48]. 

Proximity Sensors: These sensors detect nearby objects without 

physical contact and are used in wind energy production. 

Applications include blade pitch control, yaw position 

monitoring, and rotor speed monitoring, enhancing the 

longevity and reliability of wind turbines [51, 52]. 

3.2 Actuators 
Actuators convert energy into motion, taking electrical input 

from automation systems and acting on devices and machines 

within IoT systems [53]. They produce various motion patterns 

such as linear, oscillatory, or rotational motions. Actuators are 

categorized based on their energy sources: 
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Pneumatic Actuators: These use compressed air to generate 

motion and are ideal for processes requiring quick and precise 

responses without needing large motive force. 

Hydraulic Actuators: Utilizing liquid for motion, these 

actuators are suitable for industrial processes that require high 

speed and large forces. 

Thermal Actuators: These actuators convert thermal energy 

into kinetic energy. Typically, they consist of a temperature-

sensing material that changes volume with temperature, used in 

industrial processes where temperature-based motion is 

needed. 

Electric Actuators: These actuators convert electrical energy 

into kinetic energy, either in a linear or rotary motion, and are 

commonly used in energy-efficient control systems in power 

plants [54, 55]. 

In the energy sector, pneumatic actuators control valves in 

power plants, while electric actuators enhance energy 

efficiency and control various operations [55]. Specific 

actuators, like LINAK electric actuators, minimize energy 

waste in wind turbines and solar panels. Literature also 

highlights IoT applications using actuators, such as wireless 

sensor and actuator networks to reduce overall energy 

consumption through optimized device and machine operations 

[56]. 

3.3 Comparison of Various Wireless 

Technologies 
 

This table provides a detailed comparison of different wireless 

technologies based on various parameters: 

LoRA: Suitable for long-range, low-power applications like 

smart buildings. Features include robustness against 

interference and low data rate. 

NB-IoT: Ideal for smart grid communication with low power 

usage and deep indoor penetration. 

LTE-M: Used for smart meters, offering high data rates, 

mobility support, and security. 

Sigfox: Applied in smart buildings for low data rate 

applications with ultra-narrowband communication and long 

battery life. 

Weightless: Flexibly used for smart meters, providing high 

reliability and frequency flexibility. 

Bluetooth: Common in smart home appliances, characterized 

by short range, high data rate, and ease of integration. 

Zigbee: Employed in renewable energy systems for smart 

metering, known for mesh networking, low power, and 

scalability. 

Satellite: Used in solar and wind power plants for global 

coverage, though it has high latency and installation costs. 

Technology Range Data Rate Battery Life 

(Power 

Usage) 

Security Installation 

Cost 

Example 

Applications 

Key Features 

LoRA ≤50 km 0.3–38.4 

kbps 

Very low (8–

10 years) 

High Low Smart 

buildings 

(smart 

lighting) 

Long range, 

low power, 

robust against 

interference 

NB-IoT ≤50 km ≤100 kbps High (1–2 

years) 

High Low Smart grid 

communication 

Low power, 

wide area, 

deep indoor 

penetration 

LTE-M ≤200 km 0.2–1 Mbps Low (7–8 

years) 

High Moderate Smart meter High data 

rate, mobility 

support, 

secure 

Sigfox ≤50 km 100 bps Low (7–8 

years) 

High Moderate Smart 

buildings 

(electric plugs) 

Ultra-

narrowband, 

long battery 

life, low data 

rate 

Weightless ≤5 km 100 kbps Very long High Low Smart meter Flexibility in 

frequency, 

high 

reliability 

Bluetooth ≤50 m 1 Mbps Low (few 

months) 

Low Low Smart home 

appliances 

Short range, 

high data 

rate, easy 

integration 

Zigbee ≤100 m 250 kbps Very low (5–

10 years) 

High Low Smart metering 

in renewable 

energy systems 

Mesh 

networking, 

low power, 

scalable 

Satellite Very long 

(>1500 km) 

100 kbps Low High Costly Solar and wind 

power plants 

Global 

coverage, 

high latency, 

reliable 
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4. IOT IN THE ENERGY SECTOR 
Today, the energy sector remains heavily reliant on fossil fuels, 

which account for nearly 80% of the world's final energy 

consumption. The excessive extraction and combustion of 

these fuels lead to severe environmental, health, and economic 

consequences, including air pollution and climate change. To 

mitigate these adverse effects, improving energy efficiency—

using less energy to deliver the same service—and increasing 

the deployment of renewable energy sources are crucial 

strategies 

4.1 Role of IoT in Energy Generation 
In the power sector, the automation of industrial processes and 

supervisory control and data acquisition (SCADA) systems has 

been prominent since the 1990s. These early IoT applications 

contributed significantly to monitoring and controlling 

equipment and processes, reducing risks of production losses 

and blackouts. Today, IoT is vital in addressing the challenges 

faced by aging power plants, such as reliability, efficiency, 

environmental impacts, and maintenance issues. Many power 

sector assets are over 40 years old, expensive, and not easily 

replaceable. IoT helps mitigate these challenges by using 

sensors to monitor equipment for failures or efficiency drops, 

triggering maintenance alerts. This enhances system reliability 

and efficiency while lowering maintenance costs. 

For example, an IoT-enabled power plant can save 

approximately USD 230 million over its lifetime, and existing 

plants of similar size can save up to USD 50 million when 

retrofitted with IoT systems. This is due to the improved 

monitoring and predictive maintenance capabilities offered by 

IoT technology. 

The integration of variable renewable energy (VRE) sources 

like wind and solar introduces the "intermittency challenge," 

where matching energy generation with demand becomes 

difficult. IoT provides solutions for balancing energy supply 

and demand, facilitating higher shares of clean energy 

integration and reducing greenhouse gas (GHG) emissions. 

Machine learning algorithms can optimize the balance of 

various supply and demand technologies, enhancing the 

efficiency of energy use. 

For instance, artificial intelligence can manage the power 

output from thermal power plants alongside in-house 

renewable sources, such as aggregating outputs from numerous 

small-scale solar PV panels. 

Recent data indicates significant growth in the adoption of 

smart meters and other IoT technologies in the energy sector. 

Europe, for example, saw a 47% penetration of smart electricity 

meters by the end of 2023, with countries like France, Spain, 

and Italy leading nationwide rollouts. Germany has set 

ambitious targets to complete its smart meter rollout by 2032, 

despite currently lagging behind with only 4% deployment. 

In the Middle East and Africa, Saudi Arabia and the UAE are 

leading the way, with Saudi Arabia deploying approximately 

11 million smart meters and the UAE expected to complete its 

rollout by 2029. Latin America, however, has been slower in 

adoption due to regulatory delays, though countries like 

Uruguay aim to complete their rollouts by 2026. 

Technological advances in IoT, including improvements in 

chips, connectivity, security, and artificial intelligence, are 

driving down costs and enabling more efficient devices. These 

innovations are opening up new applications and markets, 

transforming industries by embedding connectivity into 

traditional products and processes. 

In summary, the IoT landscape in energy generation is rapidly 

evolving, with significant advancements in smart metering and 

predictive maintenance technologies. These innovations are 

crucial for enhancing the efficiency, reliability, and 

sustainability of power systems worldwide 

4.2 IoT in Smart Grids 
Smart Grid" signifies a modern era of electricity management 

that leverages information technology to enhance the 

generation, delivery, and consumption of electricity. Smart 

grids have been proposed as a viable solution to mitigate 

electrical energy waste by addressing the challenges faced by 

traditional power grids, such as efficiency, stability, security, 

power quality, and the continuously growing demand for 

electrical energy [46, 47]. A typical smart grid topology, as 

illustrated in Fig. 3, includes sectors for power flow and power 

systems. These sectors are interconnected through the 

processes of power production, transmission, distribution, and 

presumption, enabling them to independently consume or 

generate electrical power. 

 
Fig. 2: Representing SG architecture for power flow and power systems [48] 

In conventional grid systems, the absence of real-time 

monitoring requires end users to report abnormal events and 

service interruptions. In contrast, Smart Grids (SG) utilize IoT 

technology with unique IP addresses to monitor all grid 

components in real time. IoT technology plays a crucial role in 

identifying SG data, network structure, procedures, data 

storage security, and measurements [49]. It can be integrated 

into all SG components, including power production, 

transmission, distribution, and consumption [50, 51].  

IoT technology has been employed to supervise and maintain 

energy production and consumption, manage energy storage, 

handle distributed power plants, and monitor renewable energy 

sources (RESs) [52, 53]. Additionally, IoT can monitor 

transmission lines and substations [52, 53]. For end-user 

applications, IoT is used in smart homes, to manage the 
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charging and discharging of electric vehicle (EV) batteries, and 

for load control and energy management. 

 

Fig. 3:  Typical smart grid architecture. 

A typical IoT-assisted smart grid topology is shown in Fig. 3 

that comprises power production, transmission, distribution 

and presumption as well. Additionally, it has three networks for 

proper energy management and control. These are: Home Area 

Network (HAN), Neighborhood Area Network (NAN) and 

Wide Area Network (WAN).  

4.3 Smart Buildings 
Energy consumption in urban areas can be categorized into 

residential buildings (domestic use), commercial services 

(shops, offices, schools), and transportation. In the residential 

sector, domestic energy consumption includes lighting, 

appliances, domestic hot water, cooking, refrigeration, heating, 

ventilation, and air conditioning (HVAC). HVAC systems 

typically account for around half of a building's energy 

consumption. Thus, managing HVAC systems effectively is 

crucial for reducing electricity consumption. 

With technological advancements, IoT devices are increasingly 

significant in controlling energy losses in HVAC systems. For 

instance, wireless thermostats can be strategically placed based 

on occupancy patterns to detect unoccupied spaces. When an 

unoccupied zone is identified, actions can be taken to reduce 

energy consumption, such as decreasing HVAC operations in 

those areas. This targeted approach can lead to substantial 

reductions in energy usage and minimize losses. 

5. FUTURE TRENDS 
Applying current IoT systems for providing energy efficient 

solutions in the energy sector has many advantages highlighted 

in previous sections. However, for deploying IoT in the energy 

domain, new solutions and trends are needed to improve the 

performance of IoT and overcome the associated challenges. In 

this section, we present the Blockchain technology and Green-

IoT as two approaches that can help to tackle some of the 

challenges. 

5.1 Blockchain and IoT 
Current IoT systems mostly rely on centralized cloud systems 

[54, 55]. In most IoT applications, thousands of IoT devices 

and machines need to be connected, which is hard to 

synchronize. Moreover, due to the centralized and server-client 

nature of IoT when server is vulnerable, all the connected 

objects are easy to be hacked and compromised, which result 

in security concerns for the system and privacy issues for users 

[56]. Fortunately, Blockchain can be a solution for this 

challenge [57]. 

Blockchain provides a decentralized and democratized 

platform with no need for third party’s intervention. The 

consensus platform of blockchain requires every IoT node 

proves that it pursues the same goal as others. Verified 

transactions is also stored in the form of a block, which is linked 

to the previous one in a way information can never be erased. 

Moreover, the history of every single transaction at every node 

can be recorded and is accessible by everyone. Therefore, any 

member in blockchain becomes aware of any changes in each 

block immediately [58,59,60]. Moreover, due to the distributed 

ledger of blockchain, even thousands of IoT devices can be 

synchronized easily. The consensus algorithms of blockchain 

based on peer-to-peer networks can provide a secure distributed 

database [56]. Therefore, decentralized and private-by-design 

IoT that can guarantee the privacy can be promised by 

blockchain [61]. 

More importantly, blockchain can store and share software 

updates between objects. There are innocuousness checking 

nodes that approve the accuracy of update information as a new 

node and guarantee its protection from any threats, once an 

update added to the blockchain as a valid block, it is impossible 

to erase or change it. Therefore, IoT-based platforms can be 

provided with updates availability and innocuousness through 

blockchain [62]. 

In the energy sector, the application of blockchain will 

accelerate the IoT effectiveness by providing a decentralized 

platform for distributed power generation and storage systems 

enhancing energy security and efficiency. Real and high-

qualified data can be exchanged freely between devices and 

people can directly have access to energy information without 

the involvement of any third party. Neighbors can simply trade 

energy with one another. Therefore, without involvement of 

authorities, not only trust will be enhanced among people, but 

also many costs of this connection to the centralized grids can 

be saved. Another advantage is that by monitoring the usage 

statistics of an area, Blockchain enables the energy distribution 

to remotely control energy flow to that particular area. 

Furthermore, blockchain-based IoT systems helps in the 

diagnosis and maintenance of equipment within smart grid 

[57]. 

Currently, the direct application of blockchain technology in an 

IoT-based system is impossible due to lack of enough 

computational resources, insufficient bandwidth and the need 

to preserve power. However, cloud and fog computing 

platforms can ease the way for blockchain services in IoT [63]. 

5.2 Green IoT 
The energy consumption of IoT devices is an important 

challenge, especially in large-scale deployment of these 

technologies in near future. To run billions of devices that will 

be connected to the Internet significant amount of energy is 

required. The big number of IoT devices will also produce a 

great deal of electronic waste [64]. To tackle these challenges, 

a low-carbon and efficient communication networks are 

needed. Fortunately, these necessities has led to the appearance 

of the green IoT (G-IoT) [65, 66]. The key component of G-

IoT is its energy-efficient characteristics throughout the life 

cycle, i.e., design, production, deployment, and ultimately 

disposal. 

G-IoT cycle can be applied in different IoT technologies. For 

example, in radio frequency identification (RFID) tags. To 

decrease the amount of material in each RFID tag, which is 
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difficult to be recycled, the size of RFID tags are reduced [67-

76]. Green M2M communications is another example, which 

enables adjusting power transmission the minimum level, 

facilitates more efficient communication protocols using 

algorithmic and distributed computing techniques [77-80]. In 

wireless sensor networks also the sensors nodes can be in the 

sleep mode and just work when necessary. In addition, radio 

optimization techniques, such as, modulation optimization or 

cooperative communication can be applied to reduce the power 

consumption of the nodes. Moreover, energy-efficient routing 

techniques, such as, cluster architectures or multi-path routing 

can provide efficient solutions [130,131]. In conclusion, the 

above-mentioned approaches and examples can reduce the 

energy needs of IoT systems. 

6. CONCLUSIONS 
Energy systems are on the threshold of a new transition era. 

Large-scale deployment of VRE in distributed energy systems 

and the need for efficient use of energy calls for system-wide, 

integrated approaches to minimize the socio-economic-

environmental impacts of energy systems. In this respect, 

modern technologies such as IoT can help the energy sector 

transform from a central, hierarchical supply chain to a 

decentralized, smart, and optimized system. In this paper, we 

review the role of IoT in the energy sector in general, and in the 

context of smart grids particularly. 

We classify different use cases of IoT in each section of the 

energy supply chain, from generation through energy grids to 

end use sectors. The advantages of IoT-based energy 

management systems in increasing energy efficiency and 

integrating renewable energy are discussed and the findings are 

summarized. We discuss different components of an IoT 

system, including enabling communication and sensor 

technologies with respect to their application in the energy 

sector, for example, sensors of temperature, humidity, light, 

speed, passive infrared, and proximity. We discuss cloud 

computing and data analytic platforms, which are data analysis 

and visualization tools that can be employed for different smart 

applications in the energy sector, from buildings to smart cities. 
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