
International Journal of Computer Applications (0975 - 8887)
Volume 186 - No.4, January 2024

Optimization of Treatment Plans using Deep
Reinforcement Learning with the Human-in-the-loop

M.A. El-dosuky
Computer Science Department, Faculty of Computers and Information, Mansoura University, Egypt

Computer Science Department, Arab East Colleges, Saudi Arabia

ABSTRACT
Human-Centered Artificial Intelligence (HCAI) is a philosophy
that focuses on designing AI systems that prioritize human well-
being and user experiences. Medical technologies driven by AI
are developing quickly to provide useful solutions for clinical
practice. Treatment plan optimization is a process that aims to
improve the effectiveness and efficiency of a treatment plan for
a specific medical condition. Combining Deep Reinforcement
Learning (DRL) with human-in-the-loop (HITL) can optimize
treatment plans by combining the expertise of human clinicians
with deep reinforcement learning algorithms. This paper pro-
vides two approaches for treatment plan optimization with Prox-
imal Policy Optimization (PPO) and Deep Q Learning (DQN).

General Terms
Computer Science, Artificial Intelligence

Keywords
Deep Reinforcement Learning, human-in-the-loop, Treatment
Plans Optimization

1. INTRODUCTION
Human-Centered Artificial Intelligence (HCAI) is a philosophy
that focuses on designing AI systems that prioritize human well-
being and user experiences [1]. It aims to integrate AI technolo-
gies with human values, ethics, and user experiences, ensuring
they align with human values and goals [2]. Key principles include
user-centric design [3], human-AI collaboration [4], trust and trans-
parency [5], and social impact [6]. Collaboration with AI systems
fosters cooperation and leverages the complementary strengths of
humans and machines.
Medical technologies driven by AI are developing quickly to pro-
vide useful solutions for clinical practice [7]. AI in medicine in-
volves virtual and physical applications, with Machine Learning
being the virtual component [8] and carebots being an example of
the physical component [9].
Treatment plan optimization is a process that aims to improve the
effectiveness and efficiency of a treatment plan for a specific medi-
cal condition. It involves a thorough patient assessment, evaluation
of treatment options, use of decision support tools, personalized
medicine, and follow-up and monitoring [10]. The goal is to op-

timize treatment outcomes, enhance quality of life, reduce disease
burden, and optimize healthcare system resource utilization [11].

Fig. 1. Two Treatment Plans

Powerful systems, algorithms, and agents with amazing accom-
plishments have been developed as a result of combining Deep
Learning and Reinforcement Learning, yielding Deep Reinforce-
ment Learning (DRL) [12].
Human-in-the-loop (HITL) is a crucial area in AI research, as ma-
chine learning cannot replace human domain knowledge [13]. It
aims to train accurate prediction models with minimal cost by inte-
grating human knowledge and experience. Existing works are cat-
egorized into data processing, interventional training, and system-
independent human-in-the-loop design.
DRL+HITL can optimize treatment plans by combining the exper-
tise of human clinicians with deep reinforcement learning algo-
rithms. HITL involves data collection and integration from various
sources, policy initialization, reinforcement learning, and feedback
from human experts. The agent learns from these inputs, generating
personalized treatment recommendations based on factors like pa-
tient demographics, medical history, genetic information, and treat-
ment outcomes. HITL allows for continuous improvement, updat-
ing policies based on new patient data and expert feedback. The op-
timized treatment plans can serve as decision support tools for clin-
icians, highlighting the most effective treatment options. By com-
bining deep reinforcement learning algorithms with human clini-
cians’ expertise, HITL can improve patient outcomes and health-
care delivery efficiency.

1



International Journal of Computer Applications (0975 - 8887)
Volume 186 - No.4, January 2024

This paper provides two approaches for treatment plan optimization
with Proximal Policy Optimization (PPO) and Deep Q Learning
(DQN).
The structure of this paper beyond the introduction section is as
follows. Section 2 provides the proposed methodology. Section 3
provides experiments and results. Section 4 concludes the paper,
giving some possible future research directions.

2. PROPOSED METHODOLOGY
This section provides equations that are the basis for formulating
DRL update process and the optimization objective in the context
of treatment plan optimization using HITL. Then the section pro-
poses an algorithm for optimizing treatment plans based on DRL
and HITL.

2.1 Reinforcement Learning Update Equation
The reinforcement learning agent’s policy can be updated using the
Q-learning algorithm. The update equation for Q-learning is:

Q(s, a)← Q(s, a) + α

(
r + γmax

a′
Q(s′, a′)−Q(s, a)

)
(1)

where: Q(s, a) is the Q-value for state s and action a. α is the learn-
ing rate, determining the impact of new information on the agent’s
policy update. r is the immediate reward received after taking ac-
tion a in state s. γ is the discount factor, balancing the importance
of immediate and future rewards. s′ is the next state after taking ac-
tion a in state s. a′ is the action chosen in the next state s′ according
to the agent’s policy.

2.2 Treatment Plan Optimization Objective Function
The objective function for optimizing treatment plans can be de-
fined as a combination of the expected rewards and costs associated
with the treatment strategy. It can be formulated as:

J(π) = Eπ

[
T∑

t=0

γtR(st, at)

]
− λC(π) (2)

where: J(π) represents the objective function for policy π. Eπ de-
notes the expectation over the states and actions visited under pol-
icy π. T is the time horizon. γ is the discount factor. R(st, at)
represents the reward obtained at time step t for state st and action
at. C(π) represents the cost associated with executing policy π.
λ is a parameter that balances the trade-off between rewards and
costs.

2.3 Proposed Algorithm
The first algorithm shows the construction of TreatmentPlanEnv
class, which is the environment dedicated for treatment plan opti-
mization. The algorithm utilizes gym Python package. The con-
structor of the class defines the action and observation spaces.
Then, it Initializes the state and other variables. The step function
takes action as input. It then updates the state based on the chosen
action. After that it calculates the reward based on the state and ac-
tion. Then it increments the current step. Finally, it checks if the
episode is done or not.
The second algorithm utilizes PPO from stable baselines3 Python
package. It instantiates the treatment plan environment. Then it
trains the DRL agent with multi-layer perceptron policy. Then it

Algorithm 1 Treatment Plan Environment
1: import gym
2: from gym import spaces
3:
4: class TreatmentPlanEnv inherits gym.Env:
5: Constructor:
6: super(TreatmentPlanEnv, self)
7:
8: self.action space← spaces.Discrete(3)
9: self.observation space ← spaces.Box(low=0, high=1,

shape=(4,), dtype=float32)
10:
11: self.state← np.zeros((4,))
12: self.current step← 0
13: self.max steps← 10
14:
15: Function reset(self):
16: self.state← np.zeros((4,))
17: self.current step← 0
18: return self.state
19:
20: Function step(self, action):
21: self.state[action]← 1
22: reward = self. calculate reward()
23: self.current step← self.current step + 1
24: done← self.current step >= self.max steps
25: return self.state, reward, done, {}
26:
27: Function calculate reward(self):
28: reward← np.sum(self.state)
29: return reward

runs the treatment plan with human intervention. In an infinite loop
until not done, the algorithm predicts the DRL agent action, get hu-
man expert input, takes a step in the environment, and output the
reward.

Algorithm 2 Treatment Plan Optimization with PPO
1: from stable baselines3 import PPO
2:
3: env← TreatmentPlanEnv()
4:
5: model← PPO(”MlpPolicy”, env, verbose=1)
6: model.learn(total timesteps=10000)
7:
8: state← env.reset()
9: done← False

10:
11: while not done:
12: action, ← model.predict(state)
13: print(”DRL Agent suggests action:”, action)
14:
15: human action← int(input(”Enter action (0-2):”))
16:
17: action← human action
18:
19: state, reward, done, ← env.step(action)
20:
21: print(”Reward:”, reward)
22: print(”========================”)

2



International Journal of Computer Applications (0975 - 8887)
Volume 186 - No.4, January 2024

The third algorithm defines the treatment environment, the deep re-
inforcement learning agent, and the human expert. It also defines
the learning parameters such as the episodes, maximum steps, ep-
silon, and learning rate. The algorithm iterates over episodes. It
iterates over steps within each episode, applying exploration and
exploitation steps. It updates the total reward and the epsilon. It
prints the episode results. Finally it uses the trained agent to gener-
ate treatment plan recommendations.

3. EXPERIMENTS AND RESULTS
The implementation was done in Python 3.9.13, on HP Envy x360
laptop, with AMD Ryzen 7 processor, running Windows 11 Home
64-bit.
The following tables (Table 1, Table 2, Table 3, Table 4, and Ta-
ble 5) trace the execution of the proposed methodology. The metrics
are divided into three categories, namely rollout, time, and train.
First, rollout has two metrics:

—ep. len. mean: mean episode length
—ep. rew. mean: mean episodic training reward

Second, time has four metrics:

—fps: frames per seconds, including gradient update time
—iterations: iterations number
—time elapsed: time elapsed from the start of training (in seconds)
—total time steps: total number of time steps

Third, train has ten metrics:

—approx kl: approximate average KL-divergence between new
and old policy

—clip fraction: average fraction above clip range threshold
—clip range: PPO clipping factor
—entropy loss: average entropy loss
—explained variance: variance explained fraction
—learning rate: learning rate value
—loss: total loss
—n updates: number of gradient updates
—policy gradient loss: policy gradient loss
—value loss: error between output of the value function and

Monte-Carlo estimation

Table 1.
Iteration
1

Metrics

rollout
ep len mean 10

ep rew mean 24

time

fps 932

iterations 1

time elapsed 2

total timesteps 2048

There are two scenarios. The first scenario assumes that the human
expert totally agrees with the action suggested by DRL agent as
follows.

Algorithm 3 Treatment Plan Optimization with DQN
1: env← gym.make(’TreatmentPlanEnv’)
2:
3: agent←DQNAgent(state size=env.observation space.shape[0],

action size=env.action space.n)
4:
5: expert← Expert()
6:
7: episodes← 1000
8: max steps← 100
9: epsilon← 1.0

10: epsilon decay← 0.99
11: epsilon min← 0.01
12: learning rate← 0.001
13: gamma← 0.99
14:
15: for episode in range(episodes) do
16: state← env.reset()
17: total reward← 0
18:
19: for step in range(max steps) do
20: if np.random.rand() ≤ epsilon then
21: action← env.action space.sample()
22: else
23: action← agent.act(state)
24: end if
25:
26: next state, reward, done, ← env.step(action)
27:
28: expert feedback ← expert.get feedback(state, action, re-

ward, next state, done)
29:
30: agent.update(state, action, reward, next state, done, ex-

pert feedback, learning rate, gamma)
31:
32: state← next state
33: total reward← total reward + reward
34:
35: if done then
36: break
37: end if
38: end for
39:
40: epsilon← epsilon * epsilon decay
41: epsilon← max(epsilon, epsilon min)
42:
43: print(”Episode:”, episode + 1, ”Reward:”, total reward)
44: end for
45:
46: state← env.reset()
47: done← False
48: while not done do
49: action← agent.act(state)
50: state, , done, ← env.step(action)
51: end while
52:
53: env.close()

3



International Journal of Computer Applications (0975 - 8887)
Volume 186 - No.4, January 2024

Table 2.
Iteration
2

Metrics

rollout
ep len mean 10

ep rew mean 24.6

time

fps 649

iterations 2

time elapsed 6

total timesteps 4096

train

approx kl 0.006527826

clip fraction 0.0605

clip range 0.2

entropy loss -1.1

explained variance 0.0155

learning rate 0.0003

loss 18.4

n updates 10

policy gradient loss -0.0104

value loss 92.5

Table 3.
Iteration
3

Metrics

rollout
ep len mean 10

ep rew mean 25.4

time

fps 603

iterations 3

time elapsed 10

total timesteps 6144

train

approx kl 0.0121835945

clip fraction 0.101

clip range 0.2

entropy loss -1.08

explained variance -0.267

learning rate 0.0003

loss 21.8

n updates 20

policy gradient loss -0.00743

value loss 51.5

Table 4.
Iteration
4

Metrics

rollout
ep len mean 10

ep rew mean 25.8

time

fps 583

iterations 4

time elapsed 14

total timesteps 8192

train

approx kl 0.0076065226

clip fraction 0.0736

clip range 0.2

entropy loss -1.06

explained variance -0.0185

learning rate 0.0003

loss 31.7

n updates 30

policy gradient loss -0.00457

value loss 52.5

Table 5.
Iteration
5

Metrics

rollout
ep len mean 10

ep rew mean 26.2

time

fps 570

iterations 5

time elapsed 17

total timesteps 10240

train

approx kl 0.011540119

clip fraction 0.129

clip range 0.2

entropy loss -1.04

explained variance -0.00387

learning rate 0.0003

loss 23.5

n updates 40

policy gradient loss -0.00776

value loss 54.8

DRL Agent suggests action: 0
Enter action (0-2):0
Reward: 1.0
============================
DRL Agent suggests action: 1
Enter action (0-2):1
Reward: 2.0
============================
DRL Agent suggests action: 1
Enter action (0-2):1
Reward: 2.0
============================
DRL Agent suggests action: 2
Enter action (0-2):2
Reward: 3.0
============================
DRL Agent suggests action: 2
Enter action (0-2):2
Reward: 3.0
============================
DRL Agent suggests action: 0
Enter action (0-2):0
Reward: 3.0
============================
DRL Agent suggests action: 2
Enter action (0-2):2
Reward: 3.0
============================
DRL Agent suggests action: 2
Enter action (0-2):2
Reward: 3.0
============================
DRL Agent suggests action: 0
Enter action (0-2):0
Reward: 3.0
============================
DRL Agent suggests action: 1
Enter action (0-2):1
Reward: 3.0
============================

4



International Journal of Computer Applications (0975 - 8887)
Volume 186 - No.4, January 2024

The second scenario goes to the other extreme assuming that the
human expert totally disagrees with the action suggested by DRL
agent as follows.

DRL Agent suggests action: 2
Enter action (0-2):0
Reward: 1.0
============================
DRL Agent suggests action: 1
Enter action (0-2):0
Reward: 1.0
============================
DRL Agent suggests action: 1
Enter action (0-2):0
Reward: 1.0
============================
DRL Agent suggests action: 1
Enter action (0-2):0
Reward: 1.0
============================
DRL Agent suggests action: 1
Enter action (0-2):0
Reward: 1.0
============================
DRL Agent suggests action: 0
Enter action (0-2):1
Reward: 2.0
============================
DRL Agent suggests action: 2
Enter action (0-2):1
Reward: 2.0
============================
DRL Agent suggests action: 2
Enter action (0-2):1
Reward: 2.0
============================
DRL Agent suggests action: 1
Enter action (0-2):0
Reward: 2.0
============================
DRL Agent suggests action: 1
Enter action (0-2):0
Reward: 2.0
============================

4. CONCLUSION AND FUTURE WORK
This paper provides two approaches for treatment plan optimization
with Proximal Policy Optimization (PPO) and Deep Q Learning
(DQN). The paper traces the execution of the proposed algorithms.
Many future directions are possible. One possible direction is gen-
erating personalized treatment recommendations for individual pa-
tients by considering factors like demographics, medical history,
genetic information, and treatment outcomes. Another possible di-
rection is to consider the optimized treatment plans as decision sup-
port tools, providing clinicians with recommendations on the most
effective treatment options based on learned policies.

5. REFERENCES

References
[1] Bingley, W., Curtis, C., Lockey, S., Bialkowski, A., Gillespie,

N., Haslam, S., Ko, R., Steffens, N., Wiles, J. & Worthy, P.

Where is the human in human-centered AI? Insights from de-
veloper priorities and user experiences. Computers In Human
Behavior. 141 pp. 107617 (2023)

[2] Gabriel, I. Artificial intelligence, values, and alignment.
Minds And Machines. 30, 411-437 (2020)

[3] Bu, L., Chen, C., Ng, K., Zheng, P., Dong, G. & Liu, H. A
user-centric design approach for smart product-service sys-
tems using virtual reality: A case study. Journal Of Cleaner
Production. 280 pp. 124413 (2021)

[4] Wang, D., Churchill, E., Maes, P., Fan, X., Shneiderman,
B., Shi, Y. & Wang, Q. From human-human collaboration
to Human-AI collaboration: Designing AI systems that can
work together with people. Extended Abstracts Of The 2020
CHI Conference On Human Factors In Computing Systems.
pp. 1-6 (2020)

[5] Schmidt, P., Biessmann, F. & Teubner, T. Transparency and
trust in artificial intelligence systems. Journal Of Decision
Systems. 29, 260-278 (2020)

[6] Tomašev, N., Cornebise, J., Hutter, F., Mohamed, S., Pic-
ciariello, A., Connelly, B., Belgrave, D., Ezer, D., Haert, F.,
Mugisha, F. & Others AI for social good: unlocking the op-
portunity for positive impact. Nature Communications. 11,
2468 (2020)

[7] Briganti, G. & Le Moine, O. Artificial intelligence in
medicine: today and tomorrow. Frontiers In Medicine. 7 pp.
27 (2020)

[8] Hamet, P. & Tremblay, J. Artificial intelligence in medicine.
Metabolism. 69 pp. S36-S40 (2017)

[9] Cornet, G. Robot companions and ethics: A pragmatic
approach of ethical design. Journal International De
Bioéthique. 24, 49-58 (2013)

[10] Trofimov, A., Craft, D. & Unkelbach, J. Treatment-planning
optimization. Proton Therapy Physics. Series In Medical
Physics And Biomedical Engineering. Boca Raton, FL: CRC
Press/Taylor & Francis. pp. 1 (2012)

[11] Wedenberg, M., Beltran, C., Mairani, A. & Alber, M. Ad-
vanced treatment planning. Medical Physics. 45, e1011-
e1023 (2018)

[12] François-Lavet, V., Henderson, P., Islam, R., Bellemare, M.,
Pineau, J. & Others An introduction to deep reinforcement
learning. Foundations And Trends In Machine Learning. 11,
219-354 (2018)

[13] Wu, X., Xiao, L., Sun, Y., Zhang, J., Ma, T. & He, L. A sur-
vey of human-in-the-loop for machine learning. Future Gen-
eration Computer Systems. 135 pp. 364-381 (2022)

5


	Introduction
	Proposed Methodology
	Reinforcement Learning Update Equation
	Treatment Plan Optimization Objective Function
	Proposed Algorithm

	Experiments and Results
	Conclusion and Future Work
	References

