
International Journal of Computer Applications (0975 – 8887)  

Volume 186 – No.6, January 2024 

 

20 

MotionScript: Sign Language to Voice Converter 

Nidhi Kadam 
Thadomal Shahani Engineering 

College, Mumbai University, India 

 

Chaitanya Kakade 
Thadomal Shahani Engineering 

College, Mumbai University, India 

 

Vishal Kaira 
Thadomal Shahani Engineering 

College, Mumbai University, India 

 

 

ABSTRACT 

Sign language serves as a vital mode of communication for the 

deaf and mute community, yet it presents a significant barrier 

in their interaction with the larger society, which often lacks 

proficiency in sign language. This paper presents MotionScript, 

an innovative sign language to voice conversion system that 

leverages computer vision, deep learning, Convolutional 

Neural Networks (CNN), Natural Language Processing (NLP) 

and Large Language Model (LLM) to facilitate interaction 

between individuals from the deaf and mute community and the 

rest of the world. This paper outlines a thorough comparison of 

four distinct neural network models, utilizing metrics to 

identify the most accurate model for transforming American 

Sign Language (ASL) into coherent and meaningful sentences 

voiced in natural language. This conversion process 

incorporates essential components such as autocorrection and 

the integration of a large language model. 
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1. INTRODUCTION 
Sign language, a visual language of gestures and facial 

expressions, plays an important role in the communication 

process of deaf and mute individuals. However, for those who 

are not proficient in sign language, it often creates a barrier in 

their interactions with the society. This communication gap has 

persisted for generations, limiting the active participation of the 

deaf and mute community in various aspects of life, from 

education and employment to healthcare and social 

engagement. 

As an attempt to resolve this issue, our research introduces 

MotionScript, a sign language to voice conversion system that 

harnesses the power of cutting-edge technologies. This system 

utilizes computer vision, machine learning, NLP, and language 

modelling techniques to bridge the communication gap 

between sign language and spoken language, enabling real-

time and accurate conversion of sign language gestures into 

voice. MotionScript holds the promise of revolutionizing the 

way deaf and mute individuals communicate with the world. 

The development of MotionScript involved the integration of 

several technologies. Computer vision, CNN, is employed to 

detect and track hand movements. These are fundamental 

components of sign language and, when interpreted accurately, 

can convey messages. Meanwhile, Recurrent Neural Networks 

(RNN) and Long Short-Term Memory (LSTM) networks were 

implemented to handle the sequential nature of sign language, 

ensuring that signs are understood within their linguistic 

context. NLP techniques and LLM, especially T5-Flan Large 

were incorporated to convert the detected signs into coherent 

and contextually relevant voice. 

2. LITERATURE REVIEW 
This section dives into the extensive field of previous research 

within the field of sign language recognition and its translation 

to voice. Notably, CNN has emerged as a well-known 

technique for ASL recognition. Lin et al. [1] made use of 

advanced image segmentation techniques to isolate the hand 

within a particular input image, followed by skin modeling and 

image centering around the primary axis. Yadav et al. [2] 

focused on translating ASL in real-time. They used camera 

captured images, preprocessed them, and utilized techniques 

like hand gesture scans to amplify the gestures. These 

preprocessed images were introduced in CNN model for label 

prediction. The predicted label gave an accuracy of 95.8%. 

Garcia et al. [3] demonstrated the use of real-time sign language 

translator using pre-trained GoogLeNet architecture, showing 

accurate classification of letters 'a' to 'e' even for first time 

users. Kumar et al. [4] employed time series oriented neural 

networks for sign language conversion. Efforts to develop 

lightweight ASL classification models have also been 

underway, as seen in [5] and [6]. These activities aimed to 

streamline the deep neural network architecture to reduce 

computational costs. They utilized EfficientNet models and 

generated lightweight deep learning models. They have also 

tried various other techniques like LSTM-RNN and Hidden 

Markov Models (HMM). 

Truong et al. [8] have utilized different techniques like 

AdaBoost and Haarcascade classifiers and trained their models 

on ASL dataset. Another concept that has been used is HMM 

by Yang et al. [9]. Dynamic gestures are addressed in this 

approach. Tracking of skin color blobs corresponding to the 

hands into a body-facial space, centered on the user’s face to 

extract gestures from successive video frames was performed. 

LSTM-RNN techniques adopted by [10, 11] helped in 

recognizing 26 alphabets from corresponding hand signs. They 

have extracted features like finger positions, sphere radius and 

angles between fingers for classification of models. 

Researchers have tried to build models for different languages 

such as Arabic, Indian, and other language that exist to 

recognize them and correctly classify them. In [12] they have 

used ResNet152 model for classifying hand gestures and used 

pre-trained deep neural networks to recognize Arabic sign 

language. An approach to produce synthetic animation was 

adopted to translate Malayalam language into Indian Sign 

Language (ISL) as discussed in [13]. HamNoSys (Hamburg 

Notation System) was utilized for intermediate representation 

of sign language. In this approach the system accepts the set of 

words and generates an animated section from the set of words. 

This system then turns the words into the Hamburg Notation 

System. The Kerala government has implemented a program 
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designed to comprehensively parse all developments related to 

the teaching of sign language and promoting subtle awareness 

as per [14]. This initiative is predominantly based on the 

Spanish language, facilitating the conversion of basic words 

into Spanish. This approach proves advantageous for Spanish-

speaking individuals with hearing impairments, as it enables 

them to grasp sign language more quickly, with the conversion 

occurring into Spanish instead of English, which is commonly 

used for ASL. 

D. Kelly et al. [15] have introduced a continuous system that 

utilizes a sequence of sign language gestures to generate an 

automated training set and extract sign patterns from that set. 

Their system monitors sentences, determines associated 

compound sign gestures, and employs instance learning with a 

density matrix technique for the supervision of noisy texts. 

Segundo et al. [16], have conducted various experiments to 

develop a statistical model for converting speech data into sign 

language for deaf individuals. An animated presentation and a 

statistical translation module were employed to automate 

speech recognition. Your provided sentences are generally 

correct, but there are a few minor adjustments for clarity and 

completeness.  

In a study by Shivashankara et al. [17], the authors explored an 

optimal approach towards ASL recognition. They employed an 

efficient system for recognizing ASL gestures. S. Liu et al. [18] 

addressed the challenge of image classification with a small 

training sample size. Their work focuses on the adoption of 

very deep convolutional neural networks for improved image 

classification, even when faced with limited training data. 

Several studies have shown the efficiency and accuracy of 

CNNs for ASL classification. The synthesis of these diverse 

studies provides a foundation for the development of a 

dependable and effective sign language recognition system 

with potential applications in real-world scenarios for the 

benefit of the deaf and mute community. 

3. DATASET 
The ASL [19] dataset consists of 69600 images which was used 

to train, validate, and test the deep learning neural network 

models for accurate sign language to coherent text conversion. 

The images from the actual dataset are shown in Figure 1. This 

dataset has 29 class labels (‘A’ to ‘Z’, an option for ‘space’, 

‘delete’ and ‘nothing’) and for the training purpose letter ‘A’ 

corresponds to class value 0, ‘B’ corresponds to class value 1, 

and so on, while ‘space’, ‘delete’ and ‘nothing’ corresponds to 

class values 27, 28 and 29 respectively. To speed up the training 

process while maintaining important features of the pixels, the 

images were downsized to 64 by 64 size. Training set consisted 

of 55680 images and testing set consisted of 13920 images both 

belonging to above mentioned 29 classes. 

    
Figure 1. Letter ‘H’ and Letter ‘Y’ 

4. METHODOLOGY 
The following section explains the novel methodology that has 

been undertaken to convert American sign language into 

coherent and meaningful sentences in the form of voice. 

4.1 Image Processing 
To enhance the training process without losing important 

details in the sign language images, the input images were 

resized to a compact 64 by 64-pixel size format. This not only 

made the training process faster but also kept the key aspects 

of sign language gestures intact. This resizing not only 

accelerated the training phase but also ensured that crucial 

details in the sign language gestures were preserved. Another 

important consideration in our data preprocessing pipeline was 

to mitigate the risk of encountering the "exploding gradients" 

issue often associated with convolutional neural networks and 

transfer learning models. To address this concern, an important 

step of rescaling the image data to fall within the range of 0 to 

1 was employed. By bringing the pixel values into this 

standardized range after loading them into the NumPy arrays, 

numerical stability during training was maintained, preventing 

potential gradient related challenges. Figure 3. in our 

framework visually outlines the series of steps involved in 

processing the sign language images, ensuring that our model 

receives clean, appropriately sized, and rescaled data for 

effective training. Additionally, it is worth noting that data 

augmentation techniques were implemented to populate the 

dataset further.  

Data augmentation involves applying various transformations 

to the existing images, such as rotation, scaling, and horizontal 

flipping, to create additional training examples. Figure 2 

depicts images after the application of data augmentation 

technique. This approach not only diversifies the dataset but 

also enhances the model's ability to generalize and recognize 

sign language gestures under different conditions. Data 

augmentation technique was a valuable tool for improving the 

robustness and accuracy of the proposed sign language 

recognition system. Appropriate augmentation values were 

thoroughly analyzed and selected with respect to the model 

architecture and behavior as discussed in section 4.3. 

   

Figure 2. Letter ‘H’ and Letter ‘Y’ after augmentation 
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Figure 3. Overall Process Flow 

4.2 Model Architecture 
The overall model architecture as represented in Figure 3. 

suggests the flow of the approach. First, the dataset was 

collected and then augmented using various data augmentation 

techniques such as rotation range, height shift range and width 

shift range.  

The augmented data was introduced in various neural network 

architectures and the architecture with the most promising 

metrics was selected and downloaded. The loaded model was 

incorporated in a webcam and every single frame from the 

input video was transferred to the model to perform a prediction 

of the character. The predicted character was then displayed on 

the screen to form a sentence or a word which was then 

corrected using the transformer library (T5Tokenizer and 

T5ForConditionalGeneration). The corrected sentence was 

then converted into voice using the gTTS (Google Text to 

speech) API. 

4.3 Model Training 
The model is trained on a dataset which consists of 29 different 

classes with a total of 69600 diverse images of each character 

present in the English alphabet. Each class contains 

approximately 2400 images taken under different lighting 

conditions. The entire dataset was divided into two categories, 

training data and testing data. The train data had 55,680 images 

and the test data had 13,920 images. The total number of 

trainable parameters were around 21,26,365. 

4.3.1 Proposed Model 1 
The Sign language to voice Converter utilized a carefully 

crafted CNN architecture. The architecture comprised multiple 

convolutional layers with batch normalization, dropout layers 

to mitigate overfitting, and max-pooling layers for effective 

feature extraction and spatial down-sampling. The final layers 

include densely connected units with SoftMax activation 

function, enabling precise multi-class classification. Training 

efficiency is enhanced through strategic callbacks, including 

Model Checkpoint for preserving the best model. 

ReduceLROnPlateau for dynamic learning rate adjustment, and 

Early Stopping to prevent overfitting. During training, the 

model undergoes 50 epochs with the Stochastic Gradient 

Descent (SGD) optimizer and categorical cross-entropy loss. 

The training progress is continuously monitored, and the 

model's performance is rigorously evaluated on the validation 

set, capturing accuracy and loss metrics. This holistic approach, 

combining a thoughtful CNN architecture and effective 

callback strategies, resulted in a robust and relatively accurate 

Sign Language classifier capable of accurate and efficient 

gesture interpretation and recognition. The training and 

validation accuracies and losses are visually depicted in Figure 

4. and Figure 5. respectively. 

 
Figure 4 Train and validation accuracy 
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Figure 5. Train and validation loss 

4.3.2 Proposed Model 2 
The CNN exhibits a hierarchical architecture designed for 

effective feature extraction and classification of the input 

frames. The model begins with a series of convolutional layers, 

each comprising a 5 by 5 kernel size. The padding has been set 

to ‘same.’ An activation function which is rectified linear unit 

(ReLU) function has been utilized in the proposed hierarchical 

CNN architecture, which introduces non-linearity to the model. 

The convolutional layers, denoted as Conv2D(32), 

Conv2D(64), Conv2D(128), and Conv2D(256), sequentially 

extract hierarchical features from the input data. The number in 

parentheses represents the number of filters (or channels) in 

each convolutional layer, determining the depth of feature 

maps produced by that layer. For example, Conv2D(32) has 32 

filters. These convolutional layers are interspersed with max-

pooling layers, employing a 2x2 pool size and a stride of 2. 

Max-pooling contributes to spatial down-sampling, reducing 

the spatial dimensions of the feature maps, and promotes 

translation invariance by retaining the most significant 

information in each region. In summary, the Conv2D layers 

with varying filter sizes played a crucial role in hierarchically 

extracting features from the input frames, and the max-pooling 

layers aided in down-sampling, thereby enhancing the model's 

ability to recognize and classify features with translation 

invariance. 

To mitigate overfitting and enhance the overall generalization, 

dropout layers with a dropout rate of 0.3 were strategically 

inserted after each max-pooling operation. This inclusion 

served to regularize the model during training, preventing 

reliance on specific nodes and encouraging a better 

representation of the underlying patterns in the data. 

Following the convolutional layers, the model transitioned to a 

fully convolutional layer (FCN) for high-level feature 

aggregation and extraction. The Flattened layer is employed to 

convert the 3D tensor output of the convolutional layers into a 

1D vector, facilitating the connection to densely connected 

layers. The subsequent dense layers with 256 neurons 

introduced non-linearity through ReLU activation, contributing 

to the model's capacity to capture intricate relationships within 

the data. The final layer of the network consisted of a densely 

connected layer, having a SoftMax activation function with the 

units set to 29, which is equal to the number of classes in the 

classification task. This layer outputs probability distributions 

over the classes, enabling the model to make predictions. The 

choice of the SoftMax activation function ensured that the 

predicted probabilities sum up to 1, facilitating clear class 

assignments. The training and validation accuracies and losses 

are visually depicted in Figure 6. and Figure 7. respectively. 

 

Figure 6 Train and validation accuracy 

 

Figure 7. Train and validation loss 

4.3.3 Proposed Model 3 
The proposed CNN architecture for image classification is 

designed to effectively capture and learn intricate features from 

the input frames. The model comprises two convolutional 

blocks, each consisting of a convolutional layer with a 5 by 5 

kernel and padding layer that has been set to ‘same’, followed 

by max-pooling with a 2 by 2 pool size to down sample the 

spatial dimensions. Dropout layers with a rate of 0.3 are 

incorporated after each max-pooling operation to mitigate 

model overfitting and enhance and improvise the 

generalization process. 

After the convolutional segments of the architecture, the model 

undergoes a pivotal transition from convolutional layers to 

fully connected layers. This transition involves flattening the 

output, essentially reshaping the multi-dimensional feature 

maps into a one-dimensional vector. This step allows the 

network to consolidate the spatial information learned by the 

convolutional layers before progressing to higher-level 

abstractions. 

Following this flattening step, the model introduces a fully 

connected layer, a critical element that comprises 128 neurons. 

Each of these neurons is activated by rectified linear units 

(ReLU). The rectified linear unit activation function allows the 

network to model complex relationships within the data, 

enhancing its capacity to capture intricate patterns. To mitigate 

the risk of overfitting, a dropout layer is implemented after the 

fully connected layer, with a dropout rate set to 0.5. Dropout is 

a regularization technique that randomly drops out a fraction of 

neurons during training, preventing the network from relying 

too heavily on specific neurons and improving generalization 

to new data. 
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The final layer of the network is a densely connected layer. This 

layer utilized a SoftMax activation function with the number of 

units set to 29, corresponding to the total number of classes 

present in the classification task. The SoftMax function 

normalizes the output into a probability distribution across the 

different classes, facilitating the assignment of the most 

probable class for a given input. 

In summary, this transition from convolutional to fully 

connected layers, along with the introduction of activation 

functions, dropout regularization, and a SoftMax layer, 

encapsulates the model's capacity to learn intricate features and 

make informed predictions in a classification scenario with 29 

distinct classes. The training and validation accuracies and 

losses are visually depicted in Figure 8. and Figure 9. 

respectively. 

 

Figure 8 Train and validation accuracy 

 

Figure 9. Train and validation loss 

4.3.4 VGG 16 Model 
The proposed model leverages the VGG16 architecture, a well-

established convolutional neural network with pre-trained 

weights on ImageNet dataset, to address the task of sign 

language recognition. ImageNet is a widely recognized and 

extensively used dataset in the field of computer vision and 

machine learning. Developed by researchers at Stanford 

University, ImageNet is a large-scale dataset that plays an 

important role in advancing image classification and object 

recognition research.  

By not incorporating the fully connected layers of the pre-

trained VGG16 model and introducing customized layers, the 

model is tailored to meet specific requirements of the problem 
of ASL classification. The customization included a flattening 

layer followed by a densely connected layer featuring 256 

neurons, activated by the rectified linear unit activation 

function. To safeguard against overfitting, a dropout layer was 

incorporated into the architecture. 

During the training process, the categorical cross-entropy loss 

function, and the Adam optimizer with a learning rate of 0.0001 

were employed. The model undergoes training for ten epochs, 

with each epoch iterating through the training data. The 

utilization of categorical cross-entropy facilitates the 

optimization process by measuring the dissimilarity between 

predicted and true class distributions. The Adam optimizer, 

known for its adaptive learning rate and efficiency, further 

refined the model's performance during training. The layers of 

the pre-trained VGG16 model were frozen during training to 

retain the knowledge and information that has been captured 

from the ImageNet dataset, preventing undesired alterations to 

the base model. 

In summary, the proposed model's architecture, extended the 

VGG16 base model with careful customization, coupled with 

meticulous choices in loss function, optimizer, and training 

strategy, helped to create a strategic and informed approach to 

addressing the complexities inherent in sign language 

recognition. The training and validation accuracies and losses 

are visually depicted in Figure 10. and Figure 11. respectively. 

 

Figure 10 Train and validation accuracy 

 

Figure 11. Train and validation loss 
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Table 1. Comparative analysis of various models used. 

Model used Epochs Train accuracy Test accuracy loss Val loss 

Proposed model 1 50 0.9725 0.9718 0.3394 0.5218 

Proposed model 2 25 0.9899 0.9963 0.0302 0.0125 

Proposed model 3 20 0.8745 0.9743 0.561 0.0237 

VGG16 30 0.8712 0.9235 0.4025 0.4358  

5. RESULT 
The analysis report for all the four models that were trained on 

the dataset as mentioned in section 3, is shown in Table 1 

above. The proposed model 2 as described in section 4.3.2 gave 

the best evaluation metrics. As a result, it was downloaded and 

incorporated into the web camera where it predicted the 

characters dynamically as and when the input frame was sent 

to the CNN model for classification. In the practical 

implementation, a 2-second timer was introduced following the 

accurate prediction of each letter and a 4-second timer after the 

completion of a sentence. These timers served as indicators to 

control the processing flow of the system. After successfully 

predicting a letter, the 2-second timer allowed for a brief pause, 

ensuring stability before processing the next input. The 4-

second timer, initiated at the end of a sentence, acted as a signal 

to halt processing and trigger the output of the corresponding 

voice. This intentional delay after sentence completion helps in 

ensuring a coherent and well-paced delivery of the translated 

sign language into voice. These timers contributed to the 

overall efficiency and user experience of the proposed system 

by introducing intentional pauses for smoother transition. 

6. GRAMMAR CORRECTION 
"MotionScript," is empowered by the T5-Flan Large language 

model from the transformer library (T5Tokenizer and 

T5ForConditionalGeneration), marking a pivotal stride in 

enhancing communication for the deaf and mute community. 

T5's advanced features, including addition of stop words and 

grammar correction, elevated MotionScript's precision in 

converting sign language gestures into clear and grammatically 

refined text. Impactful integration of T5 within MotionScript, 

promotes articulate and effective communication across 

various domains, simplifying language processing for inclusive 

interactions. The words generated post the classification task 

was seamlessly transmitted to the LLM. In real-time, this LLM 

adeptly transformed these words into coherent and meaningful 

sentences, significantly reducing the overall time required for 

effective communication. This distinctive feature constitutes 

the novelty of our approach. 

7. VOICE CONVERSION 
The gTTS (Google text to speech) API was utilized to convert 

the corrected sentences into voice in real time by temporarily 

saving the text and pronouncing once requested by the user. 

8. FUTURE SCOPE 
While our deep learning model has shown remarkable promise 

by training on the American Sign Language dataset, there are 

exciting avenues for future development and expansion. The 

model developed can be trained on diverse datasets and 

different sign languages such as the Indian Sign Language, 

British sign language or any other local version of sign 

languages. This expansion and diversification can open doors 

to more inclusive communication, transcending linguistic 

barriers and benefiting a broader range of communities. 

The model that has been developed gives better classification 

results if the input frames are considerably clear and are 

captured under proper lighting conditions. To enhance its 

robustness, we can increase the dataset and make use of 

advanced techniques such as image augmentation. By 

introducing controlled noise or variations into the images 

during training, we can equip the model to perform effectively 

even in less-than-ideal visual conditions. 

In the current iteration of our model, users are granted a 5-

second window to input a character via a live webcam, with the 

system subsequently displaying the corresponding text on the 

screen. As part of future enhancements, there is an opportunity 

to optimize the model further, thereby reducing the processing 

time required for character recognition and text display, 

ultimately enhancing the efficiency and responsiveness of the 

system. 

The current model, utilizes the T5 – Flan Large model that 

requires a minimum of three words as input for effective 

processing and accurate output text generation. The language 

model can further be enhanced and optimized in future libraries 

to streamline and reduce this input requirement, thereby 
enhancing the flexibility and efficiency of the system. 

9. CONCLUSION 
In this work, a comparative analysis of four distinct custom 

neural network models were conducted to perform accurate and 

effective sign language recognition task The goal was to 

identify the most suitable model that could seamlessly interpret 

ASL gestures. The rigorous experimentation involved a 

thorough evaluation of each model's performance, considering 

factors such as accuracy, efficiency, and adaptability to the 

unique challenges posed by sign language recognition. 

Through a systematic comparison, we aimed to discern which 

model exhibited superior performance, ultimately guiding the 

decision-making process in selecting the optimal architecture 

for the task. 

Additionally, a novel technique for grammar correction was 

introduced by integrating it with a fine-tuned Large Language 

Model. This innovative approach addressed the nuances of sign 

language translation by ensuring that the generated sentences 

not only maintained accuracy but also adhered to grammatical 

norms. The integration of grammar correction with a finely 
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tuned LLM was a deliberate effort to enhance the coherence 

and meaningfulness of the translated sign language gestures in 

real-time. 

The comparative analysis and the novel technique of grammar 

correction contribute to the depth and uniqueness of our work, 

aiming to not only advance the field of sign language 

recognition but also to improve the overall communicative 

experience for the deaf and mute community. 
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