
International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.78, April 2025

41

Performance Analysis of Raspberry Pi 4B (8GB) Beowulf

Cluster: STREAM Benchmarking

Dimitrios Papakyriakou
PhD Candidate

Department of Electronic Engineering
Hellenic Mediterranean University

Crete, Greece

Ioannis S. Barbounakis
Assistant Professor

Department of Electronic
Engineering

Hellenic Mediterranean University
Crete, Greece

ABSTRACT

This study presents a detailed performance analysis of a 24-

node Beowulf cluster built with Raspberry Pi 4B devices,

equipped with 8GB of RAM, running a 64-bit operating system

utilizing the STREAM Benchmark which is a widely

recognized tool for evaluating memory bandwidth performance

in high-performance computing (HPC) environments. Unlike

typical processor benchmarks that focus on computing power,

STREAM a memory bandwidth benchmark focuses on how

quickly data can be transferred between the memory and the

processor, which is a critical performance factor in high-

performance computing (HPC) systems like Beowulf clusters.

Fundamental memory operations Copy, Scale, Add, and Triad,

are utilized to assess how efficiently the cluster handles

memory-intensive workloads across increasing MPI process

counts.

Additionally, MPI-based communication benchmarks assess

the inter-node message-passing performance, providing deeper

insights into memory bandwidth utilization under distributed

computing conditions. The findings offer valuable insights on

the perspectives of using Raspberry Pi clusters for HPC

applications in education, research, and prototyping.

Furthermore, recommendations for performance optimizations

and system enhancements are proposed to improve scalability,

efficiency, and communication overhead in such low-cost HPC

clusters.

Keywords

Raspberry Pi 4 Beowulf cluster, Cluster, Message Passing

Interface (MPI), MPICH, Memory Performance, Low-cost

Clusters, Parallel Computing, ARM Architecture, STREAM

Benchmark

1. INTRODUCTION
In recent years, the development of single-board computers

(SBCs) with enhanced processing capabilities has made it

possible to explore low-cost alternatives for building high-

performance computing (HPC) clusters. The Raspberry Pi 4B,

equipped with an ARM Cortex-A72 quad-core processor and

8GB of RAM, has emerged as a popular choice for building

Beowulf clusters for parallel and distributed computing

experiments. Unlike traditional HPC systems that rely on costly

and power-intensive hardware, SBC-based clusters offer a

unique opportunity to investigate performance scalability at a

fraction of the cost.

The performance of (HPC) systems is influenced by several

critical factors, including memory bandwidth, latency,

communication efficiency, and computational capabilities.

Stream variations, which measure sustained memory

bandwidth and access patterns, provide insights into how

effectively a system can handle data-intensive tasks. Memory

bandwidth, the rate at which data is transferred between

memory and processors, directly impacts the speed of

computation, especially in memory-bound applications.

Latency, the time taken to access or transfer data, is equally

critical, as it affects overall system responsiveness and the

efficiency of parallel processing.

The STREAM benchmark consists of four simple yet effective

tests:

Copy – Measures how fast data can be duplicated evaluating

raw memory transfer speed (load/store performance).

Scale – Similar to Copy, but with an extra multiplication step.

Tests the ability to perform simple arithmetic (multiplication)

while moving data.

Add – Measures the bandwidth when adding two arrays

element-wise. In other word, tests how quickly two arrays can

be added together, assessing the system’s performance in basic

vector addition, requiring more memory operations.

Triad – A combination of all three, representing a real-world

scientific workload. Measures bandwidth for the most complex

of the four operations, combining addition and scaling and

represents a more realistic computational pattern found in many

scientific and engineering applications.

By running these tests across multiple processing units,

STREAM helps identify memory bottlenecks, test memory

bandwidth scaling, and assess the overall efficiency of the

system’s data transfers. For a Raspberry Pi 4B Beowulf cluster,

this benchmarking is particularly useful in understanding how

well the system handles parallel workloads and whether

communication between nodes is a limiting factor.

In essence, STREAM provides a simple yet powerful way to

evaluate whether a system’s memory bandwidth is a

performance bottleneck, making it invaluable for researchers

optimizing cluster performance.

This study focuses on evaluating the performance of a 24-node

Beowulf cluster composed of Raspberry Pi 4B nodes, with an

emphasis on memory performance, inter-node communication,

and variations in memory-intensive operations, providing

insights into how effectively the cluster handles large data

streams.

The findings aim to illuminate the performance trends and

bottlenecks associated with memory-intensive workloads in

Raspberry Pi-based clusters. Additionally, recommendations

for optimizing performance through software and hardware

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.78, April 2025

42

enhancements are discussed to guide future developments in

cost-effective, distributed computing systems.

Traditional high-performance computing (HPC) systems

primarily utilize CPUs for double-precision floating-point

calculations, which are critical for scientific simulations,

numerical analysis, and large-scale computations. However,

modern supercomputing architectures have evolved to

incorporate a heterogeneous mix of processing units, including

Graphics Processing Units (GPUs) and Field-Programmable

Gate Arrays (FPGAs). GPUs excel at massively parallel

operations due to their thousands of cores optimized for

concurrent data processing, making them ideal for machine

learning, matrix operations, and simulations. FPGAs, on the

other hand, offer reconfigurable hardware that can be tailored

to specific computational tasks, providing significant

improvements in power efficiency and performance for

specialized workloads. This shift towards heterogeneous

computing enables supercomputing systems to achieve higher

throughput, reduced latency, and improved energy efficiency,

paving the way for breakthroughs in areas such as artificial

intelligence, climate modeling, and computational biology [1],

[2].

The Raspberry Pi (RPi) 4 Model B with 8GB of RAM, as

shown in "Figure 1," is utilized in the Beowulf cluster. It

features a 64-bit quad-core ARMv8 Cortex-A72 CPU running

at 1.5 GHz, offering three times the processing power of each

predecessor RPi 3B+ model [3], [4].

The affordability of the Raspberry Pi was a key factor in

exploring its potential as a cost-effective solution for

constructing a high-performance computing cluster and

evaluating its capability to operate efficiently in parallel.

clustering mode.

Figure 1: Single Board Computer (SBC) - Raspberry Pi 4

Model B [3].

2. SYSTEM DESCRIPTION

2.1 Hardware Equipment
The Beowulf cluster consists of 24 Raspberry Pi 4 devices, as

depicted in "Figure 2". One Raspberry Pi 4B (8GB) serves as

the master (or head) node, tasked with managing job allocation

and resource distribution, while the remaining 23 Raspberry Pis

function as worker nodes, executing tasks as directed by the

master node.

The nodes are organized into four stacks, each containing six

Raspberry Pis, and connected through one Gigabit switches

(TL-SG1024D), enabling a maximum network throughput of

1000 Mbps per node. This network configuration facilitates the

creation of a cohesive computing system resembling a

supercomputer. The entire cluster is powered by two switch-

mode power supplies, each rated at 60 amps with a 5V output

boosted to 5.80V to compensate for voltage drops along the

wiring.

Moreover, the master (or head) node comprises a Samsung

(1TB) 980 PCI-E 3 NVMe M.2 SSD external disk whereas the

slave (or worker) nodes host each one of a (256 GB) Patriot

P300P256GM28 NVME M.2 2280 external disk.

Figure 2: Deployment of the Beowulf Cluster with (24)

RPi-4B (8GB)

2.2 Software Tools
The Operating System used to setup the RPi’s in the cluster is

the latest "Debian GNU/Linux 12 (bookworm)" which is the

latest official supported Operating System (OS - 64 bits) with

Kernel version 6.6.62+rpt-rpi-v8 and the CPU architecture and

capabilities of the system "Figure 3","Figure 4".

The second software package required for the setup was the

Message Passing Interface (MPI), specifically the MPICH

implementation. MPICH is a highly efficient and widely

adaptable implementation of MPI, which is one of the most

commonly used frameworks for passing message in parallel

computing. It is important to note that MPI itself is not a library

but a standardized framework for designing message-passing

libraries, as recommended by the MPI Forum. Among the

prominent MPI implementations available for use on

Raspberry Pi are OpenMPI and MPICH. For this project,

MPICH was selected. Originally an acronym for Message

Passing Interface Chameleon, MPICH adheres to the MPI

standard and supports applications written in C, C++, and

FORTRAN.

The third software package installed was the GNU Compiler

Collection (GCC) Fortran compiler, which is well-suited for

high-performance computing due to its optimization and multi-

threading capabilities. As the default compiler suits many HPC

environments, GCC is crucial for compiling and optimizing

parallel computing applications.

The fourth essential software package was OpenBLAS, a

highly optimized Basic Linear Algebra Subprograms (BLAS)

library. OpenBLAS provides efficient implementations for

performing linear algebra operations, which are foundational

for many scientific and engineering computations.

Finally, the STREAM benchmark software package is needed

to be downloaded and compiled accordingly.

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.78, April 2025

43

Figure 3: OS release, Kernel Version, RAM memory and

RPi HW version.

Figure 4: CPU architecture and System Capabilities.

2.3 Design
Τhe RPi cluster architecture diagram is depicted in “Figure 5”.

It comprises 24 Raspberry Pi 4B devices, each equipped with

8GB of memory [4], interconnected through a 24-port Gigabit

Ethernet switch (1000 Mbps). Among the 24 nodes, one serves

as the master (or head) node, while the remaining 23 function

as worker nodes. The network configuration uses static IP

addressing, ensuring that each node has a unique and fixed IP

address. Communication between the master node and the

worker nodes is conducted exclusively through secure shell

(SSH) connections.

The master node is equipped with a Samsung 980 PCIe 3.0

NVMe M.2 SSD (1TB), capable of theoretical maximum write

speeds of 3000 MB/s and read speeds of 3500 MB/s. The

worker nodes were upgraded to use Patriot P300P256GM28

NVMe M.2 SSDs (256GB), with maximum write and read

speeds of 1100 MB/s and 1700 MB/s, respectively. The

Raspberry Pi 4B’s support for external booting allowed the

SSDs to be mounted via USB 3.0 ports, which offer a

theoretical transfer speed of 4.8 Gbps (600 MB/s), significantly

outperforming USB 2.0’s maximum transfer rate of 480 Mbps

(60 MB/s).

Figure 5: RPi-4B Beowulf cluster architecture diagram

[9].

By leveraging the superior read and write speeds of the NVMe

SSDs, this phase of testing anticipated substantial performance

improvements over the microSD-based setup. While the USB

3.0 interface imposes some bandwidth limitations, the NVMe

SSDs’ capabilities far exceed these constraints, ensuring a

notable enhancement in cluster performance.

3. STREAM variations and advanced

memory performance.

The STREAM benchmark is a widely used tool for measuring

the sustainable memory bandwidth and performance of

memory subsystems in high-performance computing (HPC)

systems [5], [6]. It provides insight into how efficiently a

system can move data between the CPU and memory, which is

critical for many scientific and engineering workloads that are

memory-bound. The purpose of STREAM benchmark is to:

- To measure the memory bandwidth of a system under a

realistic workload.

- To test the system's ability to handle large, vector-style

operations that involve significant data movement.

- To evaluate memory hierarchy performance, such as cache

utilization and main memory throughput.

The core concept of STREAM benchmark relies on three pillars

such as [7], [8]:

- Memory Bandwidth: Refers to the rate at which data can be

transferred between memory and the CPU. High memory

bandwidth is essential for workloads that require frequent

data access, such as numerical simulations or machine

learning.

- Large Data Arrays: STREAM operates on arrays much

larger than the system's cache to ensure the measurement

reflects main memory performance rather than cache

performance

- Simplicity: The benchmark consists of simple, loop-based

operations that are easy to implement and optimize, making

it suitable for a wide variety of systems.

STREAM measures the performance of four basic vector

operations, which are representative of common computational

workloads. The Key Metrics are addressed below:

- Copy: Copies one array into another, tests memory

bandwidth for read and write operations following the

formula 𝐶 = 𝐴

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.78, April 2025

44

- Scale: Scales an array by a constant factor, tests

computational throughput and memory bandwidth

following the formula 𝐵 = 𝑠𝑐𝑎𝑙𝑎 × 𝐴.

- Add: Performs element-wise addition of two arrays into a

third, and tests memory bandwidth for multiple data

streams following the formula 𝐶 = 𝐴 + 𝐵.

- Triad: Combines scaling and addition operations and tests

the system's ability to handle multiple, simultaneous

memory operations following the formula 𝐶 = 𝐴 +
 𝑠𝑐𝑎𝑙𝑎𝑟 × 𝐵.

These vector operations allow STREAM to measure memory

bandwidth in practical scenarios, such as computational

workloads involving linear algebra, data analytics, or

numerical simulations.

The output of the STREAM across the cluster provides the

performance for four memory bandwidth operations:

- Copy: Measure 𝑎[𝑖] = 𝑏[𝑖]
- Scale: Measure 𝑎[𝑖] = 𝑠𝑐𝑎𝑙𝑎𝑟 ∗ 𝑏[𝑖]
- Add: Measure 𝑎[𝑖] = 𝑏[𝑖] + 𝑐[𝑖]
- Triad: Measure 𝑎[𝑖] = 𝑏[𝑖] + 𝑠𝑐𝑎𝑙𝑎𝑟 ∗ 𝑐[𝑖]

The STREAM benchmarking methodology is based on the

following key parameters:

- Array Size: Arrays must be significantly larger than the

system's cache (typically hundreds of megabytes) to ensure

measurements reflect main memory performance. The size

is controlled via DSTREAM_ARRAY_SIZE parameter.

- Iterations: Each kernel is executed multiple times (default

value is 10 to minimize noise and measure stable

performance.

- Best time: The shortest execution time across iterations is

used to calculate memory bandwidth for each kernel,

ensuring results are not skewed by transient delays.

- Output Metrics: The output metrics are the below:

Bandwidth (MB/s): Memory throughput for each

operation.

Execution Times (s): Average, minimum, and maximum

times for each kernel.

The STREAM Benchmark does not need to be installed on each

worker node individually. It only needs to be compiled and

executed on the master node, provided that:

- Shared File System: The worker nodes have access to the

same directory where the stream_mpi binary is located,

typically through a shared file system like NFS (Network

File System).

- MPI Environment: The MPI environment is properly

configured so that the master node can distribute the

benchmark workload to the worker nodes.

As a general recommendation in terms of requirements for

selecting DSTREAM_ARRAY_SIZE parameter are the

following:

- Stream benchmark requirements: A general

recommendation is that the total size of all three arrays (

𝑎, 𝑏, 𝑎𝑛𝑑 𝑐 should be at least 4 times the size of the CPU

cache (L2 and L3 combined). For Raspberry Pi 4B, the L2

cache is 1MB and there is no L3 cache, so each array should

be much larger than 4MB.

- Memory Allocation per Node: Each Raspberry Pi 4B has

8GB of RAM. Avoid using 100% of the memory for the

benchmark to leave room for the operating system and

other processes. A safe usage is 75% − 80% of total

memory per node.

- Distribution Execution Considerations: When running

STREAM in an MPI environment, the total array size will

be distributed across nodes. The

DSTREAM_ARRAY_SIZE represents the size per

process.

Each array (𝑎, 𝑏, 𝑎𝑛𝑑 𝑐) needs STREAM_ARRAY_SIZE ×

size of (double) bytes. Since a double is 8 bytes the memory

usage per array is calculated as:

(𝑀𝑒𝑚𝑜𝑟𝑦 𝑢𝑠𝑎𝑔𝑒 𝑝𝑒𝑟 𝑎𝑟𝑟𝑎𝑦 = 𝑋 × 8 𝑏𝑦𝑡𝑒𝑠)

The total memory usage for all three arrays is given by:

 (𝑇𝑜𝑡𝑎𝑙 𝑀𝑒𝑚𝑜𝑟𝑦 𝑢𝑠𝑎𝑔𝑒 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑡ℎ𝑟𝑒𝑒 𝑎𝑟𝑟𝑎𝑦𝑠 = 3 × 𝑋 ×
8 𝑏𝑦𝑡𝑒𝑠).

As an example, we have for one RPi node:

Usage memory: (8𝐺𝐵 × 0.75 = 6𝐺𝐵 = 6 × 10243 =
6,442,450,944 𝑏𝑦𝑡𝑒𝑠)

Memory per array: Divide by 3 arrays: (6,442,450,944 ÷
3 = 2,147,483,648)

Elements per array: Divide by 8 (size of double):

(2,147,483,648 ÷ 8 = 268,435,456) elements per array.

As a result, we have DSTREAM_ARRAY_SIZE =

268,435,456 (elements per process). For 1 process per node the

maximum DSTREAM_ARRAY_SIZE = 268,435,456

elements per node.

If it runs run multiple MPI processes per node then the

STREAM_ARRAY_SIZE is divided by the number of

processes per node to avoid exceeding available memory

meaning DSTREAM_ARRAY_SIZE = (
268,435,456

4
=

67,108,864)

The recommended Values are:

1 process per node: DSTREAM_ARRAY_SIZE=268,435,456

2 process per node: DSTREAM_ARRAY_SIZE= 134,217,728

3 process per node: DSTREAM_ARRAY_SIZE= 89,478,485

4 processes per node: DSTREAM_ARRAY_SIZE=67,108,864

To sum up:

Usable memory for STREAM: (8𝐺𝐵 × 0.75 = 6𝐺𝐵 = 6 ×
10243 = 6,442,450,944 𝑏𝑦𝑡𝑒𝑠)

Usable memory per core/process:

𝑃𝑒𝑟 − 𝑐𝑜𝑟𝑒 𝑚𝑒𝑚𝑜𝑟𝑦 =
𝑈𝑠𝑎𝑏𝑙𝑒 𝑚𝑒𝑚𝑜𝑟𝑦 𝑓𝑜𝑟 𝑆𝑇𝑅𝐸𝐴𝑀

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑒𝑠

=
6,442,450,944 𝑏𝑦𝑡𝑒𝑠

4
=

≈ 1.5 𝐺𝐵 (1,610,612,736 𝑏𝑦𝑡𝑒𝑠)

As a result, for single process on entire RPi: use

DSTREAM_ARRAY_SIZE=268,435,456, and for multiple

processes (4 processes for 4 cores) in (1) RPi, use

DSTREAM_ARRAY_SIZE=67,108,864.

To force execution on a single core the used command is:

(# 1 process on core 0)

taskset -c 0 mpiexec -np 1 ./stream_mpi.

To force execution on two cores the used command is:

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.78, April 2025

45

(# 2 processes on cores 0 and 1)

taskset -c 0,1 mpiexec -np 2 ./stream_mpi.

To force execution on three cores the used command is:

(# 3 processes on cores 0, 1, and 2)

taskset -c 0,1 mpiexec -np 3 ./stream_mpi.

To force execution on four cores the used command is:

(# 4 processes on cores 0, 1, 2, and 3)

taskset -c 0,1,2,3 mpiexec -np 4 ./stream_mpi

The (-np) flag in mpiexec should match the number of

processes you want to launch (1 for single-core, 2 for two-core,

etc.). If you use (-np 1) for all commands, only one process will

run, regardless of the specified cores.

Alternatively, the easiest method is to let MPI manage core

binding automatically, as used in this study, where one MPI

process is automatically assigned per core:

1 process

mpiexec --bind-to core -np 1 ./stream_mpi

2 processes

mpiexec --bind-to core -np 2 ./stream_mpi

3 processes

mpiexec --bind-to core -np 3 ./stream_mpi

4 processes

mpiexec --bind-to core -np 4 ./stream_mpi

In this study for (𝑛𝑝 = 1) (1 process) the

DSTREAM_ARRAY_SIZE=171,798,691 used (≈ 48

% 𝑅𝑃𝑖 𝑚𝑒𝑚𝑜𝑟𝑦 (8𝐺𝐵) due to inability to compile for larger

array sizes. The whole research focuses on using (𝑛𝑝 = 2,3,4)

with (2,3,4) processes respectively since there is value to

compare efficiency by allocating the same percentage of usable

physical memory.

3.1 Stream Variations and advanced

Memory Performance in one RPi node.
The testing in one RPi node starts with the compilation of the

stream.c package per used MPI process and corresponding

DSTREAM_ARRAY_SIZE:

1 process

 DSTREAM_ARRAY_SIZE = 171,798,691 ≈
48 % 𝑅𝑃𝑖 𝑚𝑒𝑚𝑜𝑟𝑦 (8𝐺𝐵)

Compilation:

$mpicc -O3 -fopenmp -

DSTREAM_ARRAY_SIZE=171,798,691 stream.c -o

stream_mpi

Command:

$ mpiexec --bind-to core -np 1 ./stream_mpi

2 process

 DSTREAM_ARRAY_SIZE = 134, 217,728 ≈
75 % 𝑅𝑃𝑖 𝑚𝑒𝑚𝑜𝑟𝑦 (8𝐺𝐵)

Compilation:

$mpicc -O3 -fopenmp -DSTREAM_ARRAY_SIZE=134,

217,728 stream.c -o stream_mpi

Command:

$ mpiexec --bind-to core -np 2 ./stream_mpi

3 process

 DSTREAM_ARRAY_SIZE = 89,478,485 ≈
75 % 𝑅𝑃𝑖 𝑚𝑒𝑚𝑜𝑟𝑦 (8𝐺𝐵)

Compilation:

$mpicc -O3 -fopenmp -

DSTREAM_ARRAY_SIZE=89,478,485 stream.c -o

stream_mpi

Command:

$ mpiexec --bind-to core -np 3 ./stream_mpi

4 process

 DSTREAM_ARRAY_SIZE = 67,108,864 ≈
75 % 𝑅𝑃𝑖 𝑚𝑒𝑚𝑜𝑟𝑦 (8𝐺𝐵)

Compilation:

$mpicc -O3 -fopenmp -

DSTREAM_ARRAY_SIZE=67,108,864 stream.c -o

stream_mpi

Command:

$ mpiexec --bind-to core -np 4 ./stream_mpi

Figure 6: Stream_mpi test for one RPi in one core with

CPU (1) core usage

Each MPI process acts independently and does not share data

with the other. Since (--bind-to core) is used, MPI ensures that

each process is pinned to a separate core, and the STREAM

results show memory bandwidth per core, rather than total

system bandwidth.

The STREAM benchmark tests were conducted using 1 to 4

MPI processes (cores) “Table 1”, “Figure 7”, “Figure 8”. The

results reveal key insights about the performance

characteristics of the system, including the memory bandwidth

and average execution time of different operations. As an

example, “Figure 6” presents the Stream_mpi test results in

Command Line Interface (CLI) for one RPi in one core with

one MPI process.

Below is an evaluation analysis of a STREAM benchmark test

with varying numbers of MPI processes (np=1, 2, 3, 4) in one

RPi, follows:

- Performance Scaling:

From 1 to 2 MPI processes: Performance remains relatively

stable, with a minor decrease in Copy and Scale Best Rate,

while Add and Triad Best Rate remain close. This suggests

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.78, April 2025

46

that the Raspberry Pi 4B efficiently utilizes two MPI

processes without significant overhead.

From 2 to 3 MPI processes: Significant performance

degradation is observed across all benchmarks. Copy Best

Rate drops from 5096.2 MB/s to 1624.1 MB/s, and Add

Best Rate drops from 4560.3 MB/s to 1278.7 MB/s. The

steep decline suggests the system is struggling with

memory contention or CPU resource distribution.

From 3 to 4 MPI processes: Performance continues to drop,

but at a slightly slower rate compared to the transition from

2 to 3 processes. The Copy Best Rate further declines to

1039.2 MB/s, indicating that increasing MPI processes

beyond two causes inefficient CPU resource sharing.

- Time Metrics Trends:

Copy, Scale, Add, and Triad execution times all increase as

MPI processes grow. The first transition (1 to 2 processes)

nearly doubles the execution time in Copy and Scale, while

the Add and Triad Avg Time show a significant increase as

well.

For (3 and 4) MPI processes introduce execution time

instability, with Scale Avg Time exceeding 1 second. The

execution time trends suggest that cache thrashing or

memory bandwidth saturation is occurring.

Triad Avg Time remains relatively high from (3 to 4)

processes, showing a plateau effect, which may indicate

that the memory system has hit a bottleneck and thus it is

unable to accommodate further parallelism efficiently.

- Bottleneck Identification:

Memory Bandwidth Saturation: The Raspberry Pi 4B has

limited memory bandwidth, and with each additional MPI

process, the available bandwidth per process decreases

significantly.

Cache Contention: Since the RPi 4B has a shared L2 cache

(1MB) across all cores, the performance degradation

between 2 and 3 MPI processes suggests excessive cache

contention.

Hyperthreading Absence: The RPi 4B does not support

hyperthreading, meaning that each additional MPI process

competes for physical CPU cores, resulting in diminishing

returns.

- Efficiency:

The (1) MPI process is the most efficient configuration,

utilizing 48% of RAM with the best memory bandwidth

performance.

The (2) MPI processes still provide a reasonable tradeoff

between performance and parallelization, but execution

time increases significantly.

For 3 and 4 MPI processes exhibit inefficiency, as

performance drops despite the additional processes. This

indicates that the system is unable to effectively distribute

workload across all available cores.

Practical Implication: Running more than two MPI

processes on a single RPi does not yield any computational

benefits and may even degrade performance.

As a conclusion, and based on the observations the best

performance configuration is that when using 1 or 2 MPI

processes per Raspberry Pi which provides the best balance

between performance and efficiency.

3.2 Stream Variations and advanced

Memory Performance in the whole Cluster.
The STREAM benchmark is a widely recognized tool for

evaluating memory bandwidth and computational performance

in high-performance computing (HPC) systems. In the context

of a Beowulf cluster comprising 24 Raspberry Pi 4B nodes,

STREAM variations offer a unique opportunity to analyze the

interplay between memory performance and cluster-wide

scalability. Each node in the cluster provides 8GB of RAM and

utilizes the ARM Cortex-A72 processor, making it an ideal

testbed for exploring memory bandwidth, latency, and the

efficiency of data transfer across distributed nodes.

By leveraging STREAM variations, the cluster's advanced

memory performance can be characterized through critical

operations such as Copy, Scale, Add, and Triad. These

operations simulate typical memory access patterns found in

scientific and engineering workloads. Conducting STREAM

on the entire cluster enables a comprehensive analysis of both

local (intra-node) memory bandwidth and the effects of

network communication on distributed memory access.

This study aims to highlight the cluster's ability to handle

memory-intensive applications, focusing on scalability,

memory bandwidth utilization, and on overall performance.

Such insights are essential for optimizing workloads in

distributed computing environments and understanding the

limitations of small-scale, low-cost clusters in HPC scenarios.

The Methodology is very simple and explained below:

- Distribute the stream.c source code:

scp stream.c pi@nodeX:/path/to/destination/

- Compile with MPI:

mpicc -O3 -fopenmp -

DSTREAM_ARRAY_SIZE=67108864 stream.c -o

stream_mpi

The above command refers to 75% physical memory for each

RPi involving 4 processes per node.

- Copy the compiled stream_mpi binary to all worker nodes.

pi@rpi4B-ma-00:~/cloud $ scp stream_mpi

pi@192.168.X.YYY:/home/pi/cloud

- Define a machine file: where this file contains the worker

RPis for the testing.

- Run STREAM across the cluster: To ensure one process per

core across all nodes it’s needed to modify the

“machinefile” in such a way so as the MPI to assign one

process per core per involved RPi.

Taking into account from the STREAM Variation testing in (1)

RPi there was an observation revealing that for both memory

bandwidth and execution time, the optimal configuration is

(𝑛𝑝 = 2) where this setup achieves the highest bandwidth

while maintaining manageable execution times. Despite this

observation the whole Beowulf cluster tested for (2, 3, 4

processes) per RPi to evaluate the performance.

As a result, this setup used to STREAM test the Beowulf cluster

with the below recommended Value such as:

2 processes per node: DSTREAM_ARRAY_SIZE= 134,

217,728.

mailto:pi@192.168.X.YYY:/home/pi/cloud

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.78, April 2025

47

Compile: $mpicc -O3 -fopenmp -

DSTREAM_ARRAY_SIZE=134,217,728 stream.c -o

stream_mpi.

3 processes per node: DSTREAM_ARRAY_SIZE= 89,

478,485.

Compile: $mpicc -O3 -fopenmp -

DSTREAM_ARRAY_SIZE=134,217,728 stream.c -o

stream_mpi.

4 processes per node: DSTREAM_ARRAY_SIZE=67,108,864

Compile: $mpicc -O3 -fopenmp -

DSTREAM_ARRAY_SIZE=67,108,864 stream.c -o

stream_mpi.

It’s very critical to secure the specific number of MPI processes

run in each RPi during the test cases. The above critical

condition is achieved by using this command:

$ export OMP_NUM_THREADS=YY; mpiexec -f

machinefile -np YY --bind-to core ./stream_mpi, where (YY)

represents the particular MPI processes related to the number

of RPi involved in the test defined in machinefile.

The results of the STREAM benchmark in the whole Beowulf

cluster for 2 processes per RPi are addressed in “Table 2” and

depicted in a graph in "Figure 9", "Figure 10".

The results of the STREAM benchmark in the whole Beowulf

cluster for 3 processes per RPi are addressed in “Table 3” and

depicted in a graph in "Figure 11", "Figure 12".

The results of the STREAM benchmark in the whole Beowulf

cluster for 4 processes per RPi are addressed in “Table 4” and

depicted in a graph in "Figure 13", "Figure 14".

Table 1. STREAM Benchmark results in one RPi (1 to 4 MPI processes)

STREAM Benchmark to 1 RPi (1-4 MPI processes)

Cores Used
(MPI

Processes)

Copy:
Best Rate

(MB/s)

Copy:
Avg Time

(s)

Scale:
Best Rate

(MB/s)

Scale:
Avg Time

(s)

Add:
Best Rate

(MB/s)

Add:
Avg Time

(s)

Triad:
Best Rate

(MB/s)

Triad:
Avg Time

(s)

1
(48% RAM

usage)
5494.3 0.515084 5471.4 0.52371 4544.2 0.929131 4574.5 0.917187

2
(75% RAM

usage)
5096.2 1.04129 5351.1 0.958763 4560.3 1.539043 4552.9 1.513349

3
(75% RAM

usage)
1624.1 1.017769 1408.4 1.125475 1278.7 1.803441 1872.4 1.728948

4
(75% RAM

usage)
1039.2 1.088948 1050.5 1.07822 964.3 1.715477 989.9 1.722957

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.78, April 2025

48

Figure 7: STREAM Benchmark Performance (Best Rates) on 1 RPi (1 to 4 MPI processes)

Figure 8: STREAM Benchmark: Average Times Trends from 1 to 4 MPI processes (cores) in one RPi

Table 2. STREAM Benchmark results: Beowulf Cluster, from 1-24 RPi (2 to 48 MPI processes) (2 MPI processes per RPi)

STREAM Benchmark results: Beowulf Cluster, from 1-24 RPi (2 to 48 MPI processes) _2 MPI processes per RPi
75% RAM usage

RPi's Cores Used
(MPI

Processes)

Copy:
Best Rate

(MB/s)

Copy:
Avg Time

(s)

Scale:

Best Rate

(MB/s)

Scale:
Avg Time

(s)

Add:
Best Rate

(MB/s)

Add:
Avg Time

(s)

Triad:
Best Rate

(MB/s)

Triad:
Avg Time

(s)

1 2 5096.2 1.04129 5351.1 0.958763 4560.3 1.539043 4552.9 1.513349

4 8 5740 0.959117 5504.2 0.87531 4894.6 1.452127 4917.6 1.40689

8 16 5707.6 0.927779 5541.2 0.895493 4919.7 1.438768 4913.4 1.400841

12 24 5768.3 0.898212 4148.3 0.981586 4221.9 1.559666 4611.8 1.471469

16 32 5795.7 0.887485 5534.6 0.872828 4883.5 1.457799 4920.1 1.40687

20 40 5782.6 0.902209 3924.1 1.010822 4121.4 1.569748 4554.9 1.482986

24 48 5710.5 0.918919 4154.4 0.975173 4221.4 1.551108 4640.8 1.465694

0

1000

2000

3000

4000

5000

6000

1
(48% RAM usage)

2
(75% RAM usage)

3
(75% RAM usage)

4
(75% RAM usage)

B
es

t
R

at
es

 (
M

B
/s

)

Number MPI Processes (cores)

STREAM Benchmark Performance (Best Rates) on 1 RPi (1-4 MPI Processes)

Copy:
Best Rate
(MB/s)

Scale:
Best Rate
(MB/s)

Add:
Best Rate
(MB/s)

Triad:
Best Rate
(MB/s)

0

0.5

1

1.5

2

1
(48% RAM usage)

2
(75% RAM usage)

3
(75% RAM usage)

4
(75% RAM usage)

A
vg

 T
im

e
(s

)

Number MPI Processes (cores)

STREAM Benchmark: Avg Times Trends for 1 RPi (1-4 MPI Processes)

Copy:
Avg Time
(s)

Scale:
Avg Time
(s)

Add:
Avg Time
(s)

Triad:
Avg Time
(s)

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.78, April 2025

49

Figure 9: STREAM Benchmark: Beowulf Cluster (Best Rates) from 2 to 48 MPI processes (cores)

(2 MPI processes per RPi)

Figure 10: STREAM Benchmark: Beowulf Cluster Avg Times Trends from 2 to 48 MPI processes (cores)

(2 MPI processes per RPi)

0

2000

4000

6000

8000

0 5 10 15 20 25 30 35 40 45 50

B
es

t
R

at
e

(M
B

/s
)

MPI Processes

STREAM Benchmark performance (Best Rates) (1-24 RPi's) (2 MPI Processes
per RPi)

Copy:
Best Rate
(MB/s)

Scale:
Best Rate
(MB/s)

Add:
Best Rate
(MB/s)

Triad:
Best Rate
(MB/s)

0

0.4

0.8

1.2

1.6

2

0 5 10 15 20 25 30 35 40 45 50

A
ve

ra
ge

 T
im

e
(s

)

MPI Processes

STREAM Benchmark: Avg Times Trends for (1-24 RPi's) (2 MPI Processes per
RPi)

Copy:
Avg Time
(s)

Scale:
Avg Time
(s)

Add:
Avg Time
(s)

Triad:
Avg Time
(s)

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.78, April 2025

50

Figure 11: STREAM Benchmark: Beowulf Cluster (Best Rates) from 3 to 72 MPI processes (cores)

(3 MPI processes per RPi)

Table 3. STREAM Benchmark results: Beowulf Cluster, from 1-24 RPi (3 to 72 MPI processes) (3 MPI processes per RPi)

STREAM Benchmark results: Beowulf Cluster, from 1-24 RPi (3 to 72 MPI processes) (3 MPI processes per RPi)
75% RAM usage

RPi's Cores Used
(MPI

Processes)

Copy:
Best Rate

(MB/s)

Copy:
Avg Time

(s)

Scale:
Best Rate

(MB/s)

Scale:
Avg Time

(s)

Add:
Best Rate

(MB/s)

Add:
Avg Time

(s)

Triad:
Best Rate

(MB/s)

Triad:
Avg Time

(s)

1 3 1624.1 1.017769 1408.4 1.125475 1278.7 1.803441 1872.4 1.728948

4 12 1726.5 0.973419 1222.7 1.209682 1830.7 1.681236 2716.4 1.941561

8 24 1527.3 1.018542 1285.4 1.206808 1806.7 1.700405 2583.2 2.005628

12 36 1655.6 0.983558 1349.8 1.100449 1655.2 1.632339 2427.2 1.668023

16 48 1714.5 0.992582 1289.5 1.143349 2005.4 1.634786 3571.4 1.744102

20 60 1737.1 0.971126 1173.4 1.251281 2002.5 1.701607 3068.7 2.054771

24 72 1723.8 0.988274 1767.8 1.133976 1737.7 1.682659 2246.6 1.887046

0

1000

2000

3000

4000

-5 5 15 25 35 45 55 65 75

B
es

t
R

at
e

(M
B

/s
)

MPI Processes

STREAM Benchmark Performance (Best Rates) (1-24 RPi's) (3 MPI Processes
per RPi)

Copy:
Best Rate
(MB/s)

Scale:
Best Rate
(MB/s)

Add:
Best Rate
(MB/s)

Triad:
Best Rate
(MB/s)

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.78, April 2025

51

Figure 12: STREAM Benchmark: Beowulf Cluster Avg Times Trends from 3 to 72 MPI processes (cores)

(3 MPI processes per RPi)

Table 4. STREAM Benchmark results: Beowulf Cluster, from 1-24 RPi (4 to 96 MPI processes) (4 MPI processes per RPi)

STREAM Benchmark results: Beowulf Cluster, from 1-24 RPi (4 to 96 MPI processes) _4 MPI processes per RPi
75% usage

RPi's Cores Used
(MPI

Processes)

Copy:
Best Rate

(MB/s)

Copy:
Avg Time

(s)

Scale:
Best Rate

(MB/s)

Scale:
Avg Time

(s)

Add:
Best Rate

(MB/s)

Add:
Avg Time

(s)

Triad:
Best Rate

(MB/s)

Triad:
Avg Time

(s)

1 4 1039.2 1.088948 1050.5 1.07822 964.3 1.715477 989.9 1.722957

4 16 1070.5 1.065174 1207.7 0.953312 1029.9 1.654204 1185 1.65954

8 32 1119.7 1.040162 1427.1 0.933345 1416.1 1.69616 2069.5 1.721273

12 48 1131.8 1.041562 1259.4 1.0033 1140.7 1.798188 1711.2 1.772907

16 64 1296.3 1.026871 1350 0.958608 1873.3 1.721798 3515.8 1.655572

20 80 1231.1 1.048694 1176.2 1.042699 1450.6 1.810133 2538.3 1.758598

24 96 1119 1.081926 1149.9 1.020317 1113.7 1.765204 1479.9 1.784741

0

0.5

1

1.5

2

2.5

-5 5 15 25 35 45 55 65 75

A
ve

ra
ge

 T
im

e
(s

)

MPI Processes

STREAM Benchmark: Avg Times Trends for (1-24
RPi's) (3 MPI Processes per RPi)

Copy:
Avg Time
(s)

Scale:
Avg Time
(s)

Add:
Avg Time
(s)

Triad:
Avg Time
(s)

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.78, April 2025

52

Figure 13: STREAM Benchmark: Beowulf Cluster (Best Rates) from 4 to 92 MPI processes (cores)

(4 MPI processes per RPi)

Figure 14: STREAM Benchmark: Beowulf Cluster (Avg Times Trends) from 4 to 92 MPI processes (cores)

(4 MPI processes per RPi)

3.3 Stream Variations Analysis in the

whole Beowulf Cluster
STREAM benchmark analysis with 2 MPI processes per RPi

in whole Beowulf Cluster, “Table 2”, “Figure 9", “Figure 10”:

- Performance Scaling:

The performance scaling observed in the datasets when 2

MPI processes per RPi in whole cluster follows a trend

where memory bandwidth improves as the number of nodes

increases. The Copy (Best Rate) starts at 5096.2 MB/s for

2 MPI processes (1 RPi) and peaks at 5795.7 MB/s at 32

MPI processes (16 RPi). Similarly, the Scale, Add, and

Triad (Best Rates) generally increase as more nodes

contribute resources. However, performance stabilizes

beyond 16 RPi (32 MPI processes), suggesting diminishing

returns due to network communication overhead or

memory access limitations.

At 48 MPI processes (24 RPi), the performance for Copy

(Best Rate) (5710.5 MB/s) and Triad (Best Rate) (4640.8

MB/s) remains close to peak values, but Scale (4154.4

MB/s) and Add (4221.4 MB/s) show minor regression. This

implies that for some computational tasks, inter-node

communication or system contention might be affecting

performance at full system utilization.

- Bottleneck Identification:

Inter-Node Communication Overhead: As the number of

MPI processes increases, inter-node communication grows

0

500

1000

1500

2000

2500

3000

3500

4000

0 10 20 30 40 50 60 70 80 90 100

B
es

t
R

at
e

(M
B

/s
)

MPI Processes

STREAM Benchmark Performance (Best Rates) (1-24 RPi's)
(4 MPI Processes per RPi)

Copy:
Best Rate
(MB/s)

Scale:
Best Rate
(MB/s)

Add:
Best Rate
(MB/s)

Triad:
Best Rate
(MB/s)

0

0.5

1

1.5

2

0 10 20 30 40 50 60 70 80 90 100

A
ve

ra
ge

 T
im

e
(s

)

MPI Processes

STREAM Benchmark: Avg Times Trends (1-24 RPi's)
(4 MPI Processes per RPi)

Copy:
Avg Time
(s)

Scale:
Avg Time
(s)

Add:
Avg Time
(s)

Triad:
Avg Time
(s)

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.78, April 2025

53

significantly. At 24 RPi (48 MPI processes),

communication latency and network congestion start

outweighing computational benefits, leading to slower

scaling of the bandwidth gains.

Memory Bandwidth Utilization: The results suggest that

memory bandwidth saturation starts beyond 16 RPi,

particularly for the Scale and Add operations. This is likely

due to the single LPDDR4-3200 memory channel in

Raspberry Pi 4B devices, which becomes a limiting factor

in sustaining performance across high MPI counts.

Process Scheduling Inefficiencies: The Linux scheduler

may struggle to optimally allocate CPU resources when

many MPI processes run concurrently, resulting in process

migrations or unnecessary context switching

.

- Efficiency:

Memory Bandwidth Efficiency: The best bandwidth

efficiency is seen around 16-32 MPI processes, (8-16 RPis)

where memory utilization is high, and performance scaling

is still benefiting from increased parallelism.

Network Efficiency: Since a Gigabit Ethernet switch is

used, interconnect efficiency may degrade as more nodes

communicate, leading to increased latency in memory

access for remote processes.

Computational Efficiency: Efficiency starts declining at 48

MPI processes, as seen from the slower scaling of Copy and

Scale operations. This suggests that the cluster may not

optimally utilize additional computational resources

beyond a certain point due to bottlenecks in interconnects

and memory access.

As a conclusion, the STREAM benchmarking analysis with the

setup of using 2 MPI processes per RPi shows that scaling is

effective up to 16-20 RPi (32-40 MPI processes), after which

performance stagnation begins. Memory contention, inter-node

communication, and cache limitations emerge as primary

bottlenecks when running at full capacity. To optimize

efficiency, load balancing, and MPI communication strategies

(such as message aggregation), and cache-aware computation

techniques should be explored.

STREAM benchmark analysis with 3 MPI processes per RPi

in whole Beowulf Cluster, “Table 3”, “Figure 11", “Figure

12”:

- Performance Scaling:

The performance scaling when using 3 MPI processes per

RPi shows a non-linear trend across different benchmarks

as the number of MPI processes increases. Initially, there is

a slight improvement in performance, but after a certain

threshold, efficiency drops due to increasing

communication overhead and memory contention.

Copy Operation: The best rate starts at 1624.1 MB/s (1 RPi,

3 MPI processes) and gradually increases up to 1737.1

MB/s (20 RPis, 60 MPI processes) before slightly declining

to 1723.8 MB/s at 24 RPis, 72 MPI processes. The

performance scaling shows some improvement but is

limited by memory bandwidth saturation and inter-node

communication overhead.

Scale Operation: The best rate fluctuates slightly, showing

an increasing trend up to 20 RPis, 60 MPI processes

(1173.4 MB/s) before dropping at 24 RPis, 72 MPI

processes (1767.8 MB/s). This suggests that data

movement efficiency is hindered by increased thread

synchronization requirements.

Add Operation: The best rate follows a similar trend,

peaking at 20 RPis, 60 MPI processes (2002.5 MB/s)

before dropping to 1737.7 MB/s at 24 RPis, 72 MPI

processes. This suggests increased overhead from

excessive memory access operations.

Triad Operation: The best rate increases steadily, reaching

3571.4 MB/s at 16 RPis, 48 MPI processes, before

declining to 2246.6 MB/s at 24 RPis, 72 MPI processes.

This suggests a major bottleneck in memory access latency

and cache contention.

- Bottleneck Identification:

Memory Bandwidth Saturation: The Raspberry Pi 4B is

limited by its LPDDR4-3200 memory, which cannot

sustain high-performance demands as the number of

parallel processes increases. The Copy and Scale best rates

plateau around 1700 MB/s, indicating that memory

throughput has reached its hardware-imposed limit.

Inter-Node Communication Overhead: With a Gigabit

Ethernet interconnect, higher MPI processes (above 48-60

MPI) create excessive data exchange between nodes. Add

and Triad operations demonstrate variations beyond 60

MPI processes.

Process Synchronization Delays: As more MPI processes

are introduced per node, synchronization overhead

increases, leading to reduced performance scaling. Increase

in avg times (s) for Scale and Add operations confirms

synchronization inefficiencies

- Efficiency:

Best Efficiency Observed at 16-20 RPis (48-60 MPI

Processes): The Copy and Scale operations maintain

consistent best rates (~1700 MB/s), suggesting this is the

most optimal configuration before performance

degradation. The Add and Triad operations peak at 16 RPis

(48 MPI processes), indicating that this is the best balance

of compute and memory access efficiency.

Efficiency Declines Beyond 72 MPI Processes: The

increasing average execution times suggest that adding

more MPI processes does not translate into proportional

speedups. The best rate declines after 60 MPI processes

which suggests that network latency, memory contention,

and process scheduling inefficiencies limit further

scalability.

.

As a conclusion the performance results when using 3 MPI

processes per RPi, highlight the challenges of scaling beyond a

certain threshold in a Raspberry Pi-based Beowulf cluster.

While there is an initial increase in memory bandwidth up to

16 RPis (48 MPI processes), the overall efficiency deteriorates

beyond this point due to cache contention, memory bandwidth

saturation, and MPI communication overhead. The Triad and

Add benchmarks show peak performance at intermediate scales

but suffer from inter-process synchronization inefficiencies at

higher process counts. These findings emphasize the

importance of optimizing workload distribution and memory

access patterns to enhance the scalability of Raspberry Pi

clusters in high-performance computing applications.

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.78, April 2025

54

STREAM benchmark analysis with 4 MPI processes per RPi

in whole Beowulf Cluster, “Table 4”, “Figure 13", “Figure

14”:

- Performance Scaling:

The performance trend when using 4 MPI processes per

RPi shows diminishing returns as the process count

increases. Up to 16 RPis (64 MPI processes), there is a

moderate improvement in bandwidth for Copy, Scale, Add,

and Triad operations. However, beyond 16 RPis,

performance fluctuates and slightly declines in some cases,

particularly in Scale and Triad benchmarks. The Copy

(Best Rate) peaks at 1296.3 MB/s at 16 RPis but then drops

slightly, showing inefficiencies in memory handling. Triad

performance fluctuates significantly, with a peak at 16 RPis

(3515.8 MB/s), but declines to 1479.9 MB/s at 24 RPis.

- Bottleneck Identification:

Several bottlenecks impact when using 4 MPI processes per

RPi performance based on the observations such as:

Memory Bandwidth Saturation: The LPDDR4-3200

memory channel limits further gain in performance despite

increased MPI processes.

Interconnect Latency: As the number of MPI processes

grows, communication overhead due to inter-node

messaging increases, introducing additional latency.

Process Scheduling Overhead: The Linux scheduler

distributes workloads sub-optimally at high MPI counts,

further affecting efficiency.

- Efficiency:

The efficiency when using 4 MPI processes per RPi

configuration declines significantly beyond 16 RPis (64

MPI processes). The increasing execution time in Scale and

Add operations suggests higher contention in memory

access. Furthermore, Triad and Copy bandwidth reduction

at 24 RPis (96 MPI processes) indicates that system

resources are overloaded with excessive parallelism,

leading to diminishing computational returns.

When using 4 MPI processes per RPi, this setup demonstrates

moderate scaling improvements up to 16 RPis (64 MPI

processes), performance beyond this point stagnates or declines

due to memory bandwidth limitations, interconnect overhead,

and cache contention. The findings suggest that increasing MPI

processes beyond an optimal threshold does not provide

additional performance benefits in a Raspberry Pi-based

cluster. Optimizing process affinity, communication patterns,

and workload distribution could help mitigate these scaling

issues and improve efficiency.

4. CONCLUSION
The final STREAM Benchmark results for the entire Beowulf

cluster synthesize the insights obtained from the single-node

(RPi-1) and multi-node reflecting how the Beowulf cluster

scales with increasing MPI processes and nodes. The key focus

is on Performance Scaling, Bottleneck Identification, and

Efficiency across different configurations.

With a single RPi, the best bandwidth performance occurs at 1-

2 MPI processes, with performance degradation beyond 2 MPI

processes. Severe performance drops at 3 and 4 MPI processes

due to resource contention

In summary, for the cluster performance, utilizing 2 MPI

processes per RPi, 3 MPI processes per RPi, and 4 MPI

processes per RPi in the whole cluster we have:

2 MPI processes per RPi in cluster: based on observations this

setup achieves the best balance between performance and

resource utilization.

3 MPI processes per RPi in cluster: based on observations this

setup shows diminishing returns, with stagnation in key

benchmarks due to memory and interconnect limitations.

4 MPI processes per RPi in cluster: This setup exhibits

performance regression, indicating that increasing MPI

processes beyond 48 does not yield further gain.

In terms of bottleneck identification based on observations a

Memory Bandwidth Saturation appears exceeding LPDDR4-

3200 limits efficient scaling. Cache Contention appears when

more processes cause increased cache misses and memory

stalls. It may be an Interconnect Overhead when growing MPI

communication costs reduce efficiency and maybe a process

scheduling issues shows up interpreting that Linux struggles

with optimal resource allocation at higher process counts.

5. FUTURE WORK
For future work, a comprehensive investigation into the HPCG

benchmark performance on the Beowulf cluster could provide

deeper insights into its computational efficiency and memory

bandwidth utilization under realistic workloads. This research

should focus on evaluating the interplay between

communication overhead and computational intensity across

increasing MPI processes, particularly for sparse matrix

operations. Additionally, profiling the energy consumption and

thermal behavior during HPCG tests can help optimize the

cluster for power-efficient high-performance computing.

Comparing HPCG results with STREAM metrics would also

offer a clearer understanding of bandwidth-bound versus

compute-bound performance characteristics in the cluster.

6. ACKNOWLEDGMENTS
My sincere gratitude to Assistance Professor Ioannis S.

Barbounakis for the precious guidelines, knowledge and

contribution for the completion of this research.

7. REFERENCES
[1] Z. Xu, W. Zhang, and A. Y. Zomaya, "A heterogeneous

platform with GPU and FPGA for power-efficient high-

performance computing," 2014 IEEE International

Symposium on Integrated Circuits (ISIC), 2014, pp. 1-4,

doi: 10.1109/ISIC.2014.7029447.

[2] C. Pilato, H. Patel, and J. Teich, "Heterogeneous

computing utilizing FPGAs," Journal of Signal

Processing Systems, vol. 90, no. 3, pp. 471-482, 2018, doi:

10.1007/s11265-018-1382-7.

[3] Raspberry Pi 4 Model B. [Online]. Available:

raspberrypi.com/products/raspberry-pi-4-model-b/.

[4] Raspberry Pi 4 Model B specifications. [Online].

Available:

https://magpi.raspberrypi.com/articles/raspberry-pi-4-

specs-benchmarks

[5] McCalpin, J. D. (1995). Memory bandwidth and machine

balance in current high-performance computers. IEEE

Technical Committee on Computer Architecture (TCCA)

Newsletter. Retrieved from

https://www.cs.virginia.edu/stream/ref.html

[6] Henning, S., & Hasselbring, W. (2023). Benchmarking

Distributed Stream Data Processing Systems. arXiv

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.78, April 2025

55

preprint arXiv:2303.11088. Retrieved from

https://arxiv.org/pdf/1802.08496

[7] Gupta, N., Brandt, S. R., Wagle, B., Nanmiao,

Kheirkhahan,A., Diehl, P., Kaiser, H., & Baumann, F. W.

(2020). Deploying a Task-based Runtime System on

Raspberry Pi Clusters. arXiv preprint arXiv:2010.04106

[8] Fridman, Y., Desai, S. M., Singh, N., Willhalm, T., &

Oren, G. (2023). CXL Memory as Persistent Memory for

Disaggregated HPC: A Practical Approach. arXiv

preprint arXiv:2308.10714.

[9] Dimitrios Papakyriakou, Ioannis S. Barbounakis. High

Performance Linpack (HPL) Benchmark on Raspberry Pi

4B (8GB) Beowulf Cluster. International Journal of

Computer Applications. 185, 25 (Jul 2023), 11-19.

DOI=10.5120/ijca2023923005

IJCATM : www.ijcaonline.org

https://arxiv.org/pdf/1802.08496

