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ABSTRACT 

This study presents a detailed performance analysis of a 24-

node Beowulf cluster built with Raspberry Pi 4B devices, 

equipped with 8GB of RAM, running a 64-bit operating system 

utilizing the STREAM Benchmark which is a widely 

recognized tool for evaluating memory bandwidth performance 

in high-performance computing (HPC) environments. Unlike 

typical processor benchmarks that focus on computing power, 

STREAM a memory bandwidth benchmark focuses on how 

quickly data can be transferred between the memory and the 

processor, which is a critical performance factor in high-

performance computing (HPC) systems like Beowulf clusters. 

Fundamental memory operations Copy, Scale, Add, and Triad, 

are utilized to assess how efficiently the cluster handles 

memory-intensive workloads across increasing MPI process 

counts. 

Additionally, MPI-based communication benchmarks assess 

the inter-node message-passing performance, providing deeper 

insights into memory bandwidth utilization under distributed 

computing conditions. The findings offer valuable insights on 

the perspectives of using Raspberry Pi clusters for HPC 

applications in education, research, and prototyping. 

Furthermore, recommendations for performance optimizations 

and system enhancements are proposed to improve scalability, 

efficiency, and communication overhead in such low-cost HPC 

clusters. 

Keywords 

Raspberry Pi 4 Beowulf cluster, Cluster, Message Passing 

Interface (MPI), MPICH, Memory Performance, Low-cost 

Clusters, Parallel Computing, ARM Architecture, STREAM 

Benchmark 

1. INTRODUCTION 
In recent years, the development of single-board computers 

(SBCs) with enhanced processing capabilities has made it 

possible to explore low-cost alternatives for building high-

performance computing (HPC) clusters. The Raspberry Pi 4B, 

equipped with an ARM Cortex-A72 quad-core processor and 

8GB of RAM, has emerged as a popular choice for building 

Beowulf clusters for parallel and distributed computing 

experiments. Unlike traditional HPC systems that rely on costly 

and power-intensive hardware, SBC-based clusters offer a 

unique opportunity to investigate performance scalability at a 

fraction of the cost. 

The performance of (HPC) systems is influenced by several 

critical factors, including memory bandwidth, latency, 

communication efficiency, and computational capabilities. 

Stream variations, which measure sustained memory 

bandwidth and access patterns, provide insights into how 

effectively a system can handle data-intensive tasks. Memory 

bandwidth, the rate at which data is transferred between 

memory and processors, directly impacts the speed of 

computation, especially in memory-bound applications. 

Latency, the time taken to access or transfer data, is equally 

critical, as it affects overall system responsiveness and the 

efficiency of parallel processing. 

The STREAM benchmark consists of four simple yet effective 

tests:  

Copy – Measures how fast data can be duplicated evaluating 

raw memory transfer speed (load/store performance). 

Scale – Similar to Copy, but with an extra multiplication step. 

Tests the ability to perform simple arithmetic (multiplication) 

while moving data. 

Add – Measures the bandwidth when adding two arrays 

element-wise. In other word, tests how quickly two arrays can 

be added together, assessing the system’s performance in basic 

vector addition, requiring more memory operations. 

Triad – A combination of all three, representing a real-world 

scientific workload. Measures bandwidth for the most complex 

of the four operations, combining addition and scaling and 

represents a more realistic computational pattern found in many 

scientific and engineering applications. 

By running these tests across multiple processing units, 

STREAM helps identify memory bottlenecks, test memory 

bandwidth scaling, and assess the overall efficiency of the 

system’s data transfers. For a Raspberry Pi 4B Beowulf cluster, 

this benchmarking is particularly useful in understanding how 

well the system handles parallel workloads and whether 

communication between nodes is a limiting factor. 

In essence, STREAM provides a simple yet powerful way to 

evaluate whether a system’s memory bandwidth is a 

performance bottleneck, making it invaluable for researchers 

optimizing cluster performance. 

This study focuses on evaluating the performance of a 24-node 

Beowulf cluster composed of Raspberry Pi 4B nodes, with an 

emphasis on memory performance, inter-node communication, 

and variations in memory-intensive operations, providing 

insights into how effectively the cluster handles large data 

streams. 

The findings aim to illuminate the performance trends and 

bottlenecks associated with memory-intensive workloads in 

Raspberry Pi-based clusters. Additionally, recommendations 

for optimizing performance through software and hardware 
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enhancements are discussed to guide future developments in 

cost-effective, distributed computing systems. 

Traditional high-performance computing (HPC) systems 

primarily utilize CPUs for double-precision floating-point 

calculations, which are critical for scientific simulations, 

numerical analysis, and large-scale computations. However, 

modern supercomputing architectures have evolved to 

incorporate a heterogeneous mix of processing units, including 

Graphics Processing Units (GPUs) and Field-Programmable 

Gate Arrays (FPGAs). GPUs excel at massively parallel 

operations due to their thousands of cores optimized for 

concurrent data processing, making them ideal for machine 

learning, matrix operations, and simulations. FPGAs, on the 

other hand, offer reconfigurable hardware that can be tailored 

to specific computational tasks, providing significant 

improvements in power efficiency and performance for 

specialized workloads. This shift towards heterogeneous 

computing enables supercomputing systems to achieve higher 

throughput, reduced latency, and improved energy efficiency, 

paving the way for breakthroughs in areas such as artificial 

intelligence, climate modeling, and computational biology [1], 

[2]. 

The Raspberry Pi (RPi) 4 Model B with 8GB of RAM, as 

shown in "Figure 1," is utilized in the Beowulf cluster. It 

features a 64-bit quad-core ARMv8 Cortex-A72 CPU running 

at 1.5 GHz, offering three times the processing power of each 

predecessor RPi 3B+ model [3], [4].  

The affordability of the Raspberry Pi was a key factor in 

exploring its potential as a cost-effective solution for 

constructing a high-performance computing cluster and 

evaluating its capability to operate efficiently in parallel. 

clustering mode. 

 

Figure 1: Single Board Computer (SBC) - Raspberry Pi 4 

Model B [3]. 

2. SYSTEM DESCRIPTION 

2.1 Hardware Equipment 
The Beowulf cluster consists of 24 Raspberry Pi 4 devices, as 

depicted in "Figure 2". One Raspberry Pi 4B (8GB) serves as 

the master (or head) node, tasked with managing job allocation 

and resource distribution, while the remaining 23 Raspberry Pis 

function as worker nodes, executing tasks as directed by the 

master node.  

The nodes are organized into four stacks, each containing six 

Raspberry Pis, and connected through one Gigabit switches 

(TL-SG1024D), enabling a maximum network throughput of 

1000 Mbps per node. This network configuration facilitates the 

creation of a cohesive computing system resembling a 

supercomputer. The entire cluster is powered by two switch-

mode power supplies, each rated at 60 amps with a 5V output 

boosted to 5.80V to compensate for voltage drops along the 

wiring.  

Moreover, the master (or head) node comprises a Samsung 

(1TB) 980 PCI-E 3 NVMe M.2 SSD external disk whereas the 

slave (or worker) nodes host each one of a (256 GB) Patriot 

P300P256GM28 NVME M.2 2280 external disk.  

 

 

Figure 2: Deployment of the Beowulf Cluster with (24) 

RPi-4B (8GB) 

2.2 Software Tools 
The Operating System used to setup the RPi’s in the cluster is 

the latest "Debian GNU/Linux 12 (bookworm)" which is the 

latest official supported Operating System (OS - 64 bits) with 

Kernel version 6.6.62+rpt-rpi-v8 and the CPU architecture and 

capabilities of the system "Figure 3","Figure 4". 

The second software package required for the setup was the 

Message Passing Interface (MPI), specifically the MPICH 

implementation. MPICH is a highly efficient and widely 

adaptable implementation of MPI, which is one of the most 

commonly used frameworks for passing message in parallel 

computing. It is important to note that MPI itself is not a library 

but a standardized framework for designing message-passing 

libraries, as recommended by the MPI Forum. Among the 

prominent MPI implementations available for use on 

Raspberry Pi are OpenMPI and MPICH. For this project, 

MPICH was selected. Originally an acronym for Message 

Passing Interface Chameleon, MPICH adheres to the MPI 

standard and supports applications written in C, C++, and 

FORTRAN. 

The third software package installed was the GNU Compiler 

Collection (GCC) Fortran compiler, which is well-suited for 

high-performance computing due to its optimization and multi-

threading capabilities. As the default compiler suits many HPC 

environments, GCC is crucial for compiling and optimizing 

parallel computing applications. 

The fourth essential software package was OpenBLAS, a 

highly optimized Basic Linear Algebra Subprograms (BLAS) 

library. OpenBLAS provides efficient implementations for 

performing linear algebra operations, which are foundational 

for many scientific and engineering computations. 

Finally, the STREAM benchmark software package is needed 

to be downloaded and compiled accordingly.  
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Figure 3: OS release, Kernel Version, RAM memory and 

RPi HW version. 

 

Figure 4: CPU architecture and System Capabilities. 

2.3 Design 
Τhe RPi cluster architecture diagram is depicted in “Figure 5”. 

It comprises 24 Raspberry Pi 4B devices, each equipped with 

8GB of memory [4], interconnected through a 24-port Gigabit 

Ethernet switch (1000 Mbps). Among the 24 nodes, one serves 

as the master (or head) node, while the remaining 23 function 

as worker nodes. The network configuration uses static IP 

addressing, ensuring that each node has a unique and fixed IP 

address. Communication between the master node and the 

worker nodes is conducted exclusively through secure shell 

(SSH) connections. 

The master node is equipped with a Samsung 980 PCIe 3.0 

NVMe M.2 SSD (1TB), capable of theoretical maximum write 

speeds of 3000 MB/s and read speeds of 3500 MB/s. The 

worker nodes were upgraded to use Patriot P300P256GM28 

NVMe M.2 SSDs (256GB), with maximum write and read 

speeds of 1100 MB/s and 1700 MB/s, respectively. The 

Raspberry Pi 4B’s support for external booting allowed the 

SSDs to be mounted via USB 3.0 ports, which offer a 

theoretical transfer speed of 4.8 Gbps (600 MB/s), significantly 

outperforming USB 2.0’s maximum transfer rate of 480 Mbps 

(60 MB/s). 

 

Figure 5: RPi-4B Beowulf cluster architecture diagram 

[9]. 

By leveraging the superior read and write speeds of the NVMe 

SSDs, this phase of testing anticipated substantial performance 

improvements over the microSD-based setup. While the USB 

3.0 interface imposes some bandwidth limitations, the NVMe 

SSDs’ capabilities far exceed these constraints, ensuring a 

notable enhancement in cluster performance.    

3. STREAM variations and advanced 

memory performance.  

The STREAM benchmark is a widely used tool for measuring 

the sustainable memory bandwidth and performance of 

memory subsystems in high-performance computing (HPC) 

systems [5], [6]. It provides insight into how efficiently a 

system can move data between the CPU and memory, which is 

critical for many scientific and engineering workloads that are 

memory-bound. The purpose of STREAM benchmark is to: 

- To measure the memory bandwidth of a system under a 

realistic workload. 

- To test the system's ability to handle large, vector-style 

operations that involve significant data movement. 

- To evaluate memory hierarchy performance, such as cache 

utilization and main memory throughput. 

The core concept of STREAM benchmark relies on three pillars 

such as [7], [8]: 

- Memory Bandwidth: Refers to the rate at which data can be 

transferred between memory and the CPU. High memory 

bandwidth is essential for workloads that require frequent 

data access, such as numerical simulations or machine 

learning. 

- Large Data Arrays: STREAM operates on arrays much 

larger than the system's cache to ensure the measurement 

reflects main memory performance rather than cache 

performance 

- Simplicity: The benchmark consists of simple, loop-based 

operations that are easy to implement and optimize, making 

it suitable for a wide variety of systems. 

STREAM measures the performance of four basic vector 

operations, which are representative of common computational 

workloads. The Key Metrics are addressed below: 

- Copy: Copies one array into another, tests memory 

bandwidth for read and write operations following the 

formula 𝐶 = 𝐴  
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- Scale: Scales an array by a constant factor, tests 

computational throughput and memory bandwidth 

following the formula 𝐵 = 𝑠𝑐𝑎𝑙𝑎 × 𝐴. 

- Add: Performs element-wise addition of two arrays into a 

third, and tests memory bandwidth for multiple data 

streams following the formula 𝐶 = 𝐴 + 𝐵. 

- Triad: Combines scaling and addition operations and tests 

the system's ability to handle multiple, simultaneous 

memory operations following the formula 𝐶 = 𝐴 +
 𝑠𝑐𝑎𝑙𝑎𝑟 × 𝐵. 

These vector operations allow STREAM to measure memory 

bandwidth in practical scenarios, such as computational 

workloads involving linear algebra, data analytics, or 

numerical simulations. 

The output of the STREAM across the cluster provides the 

performance for four memory bandwidth operations: 

- Copy:  Measure 𝑎[𝑖] = 𝑏[𝑖] 
- Scale: Measure  𝑎[𝑖] = 𝑠𝑐𝑎𝑙𝑎𝑟 ∗ 𝑏[𝑖] 
- Add: Measure 𝑎[𝑖] = 𝑏[𝑖] + 𝑐[𝑖] 
- Triad: Measure 𝑎[𝑖] = 𝑏[𝑖] + 𝑠𝑐𝑎𝑙𝑎𝑟 ∗ 𝑐[𝑖]  

The STREAM benchmarking methodology is based on the 

following key parameters: 

- Array Size: Arrays must be significantly larger than the 

system's cache (typically hundreds of megabytes) to ensure 

measurements reflect main memory performance. The size 

is controlled via DSTREAM_ARRAY_SIZE parameter. 

- Iterations: Each kernel is executed multiple times (default 

value is 10 to minimize noise and measure stable 

performance. 

- Best time: The shortest execution time across iterations is 

used to calculate memory bandwidth for each kernel, 

ensuring results are not skewed by transient delays. 

- Output Metrics: The output metrics are the below: 

Bandwidth (MB/s): Memory throughput for each 

operation. 

Execution Times (s): Average, minimum, and maximum 

times for each kernel. 

 

The STREAM Benchmark does not need to be installed on each 

worker node individually. It only needs to be compiled and 

executed on the master node, provided that: 

- Shared File System: The worker nodes have access to the 

same directory where the stream_mpi binary is located, 

typically through a shared file system like NFS (Network 

File System). 

- MPI Environment: The MPI environment is properly 

configured so that the master node can distribute the 

benchmark workload to the worker nodes. 

As a general recommendation in terms of requirements for 

selecting DSTREAM_ARRAY_SIZE parameter are the 

following: 

- Stream benchmark requirements:  A general 

recommendation is that the total size of all three arrays ( 

𝑎, 𝑏, 𝑎𝑛𝑑 𝑐 should be at least 4 times the size of the CPU 

cache (L2 and L3 combined). For Raspberry Pi 4B, the L2 

cache is 1MB and there is no L3 cache, so each array should 

be much larger than 4MB. 

- Memory Allocation per Node: Each Raspberry Pi 4B has 

8GB of RAM. Avoid using 100% of the memory for the 

benchmark to leave room for the operating system and 

other processes. A safe usage is 75% − 80% of total 

memory per node. 

- Distribution Execution Considerations: When running 

STREAM in an MPI environment, the total array size will 

be distributed across nodes. The 

DSTREAM_ARRAY_SIZE represents the size per 

process. 

Each array ( 𝑎, 𝑏, 𝑎𝑛𝑑 𝑐) needs STREAM_ARRAY_SIZE × 

size of (double) bytes. Since a double is 8 bytes the memory 

usage per array is calculated as: 

( 𝑀𝑒𝑚𝑜𝑟𝑦 𝑢𝑠𝑎𝑔𝑒 𝑝𝑒𝑟 𝑎𝑟𝑟𝑎𝑦 = 𝑋 × 8 𝑏𝑦𝑡𝑒𝑠)  

The total memory usage for all three arrays is given by: 

 ( 𝑇𝑜𝑡𝑎𝑙 𝑀𝑒𝑚𝑜𝑟𝑦 𝑢𝑠𝑎𝑔𝑒 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑡ℎ𝑟𝑒𝑒 𝑎𝑟𝑟𝑎𝑦𝑠 = 3 × 𝑋 ×
8 𝑏𝑦𝑡𝑒𝑠).  

As an example, we have for one RPi node: 

Usage memory: ( 8𝐺𝐵 × 0.75 = 6𝐺𝐵 = 6 × 10243 =
6,442,450,944 𝑏𝑦𝑡𝑒𝑠) 

Memory per array: Divide by 3 arrays: ( 6,442,450,944 ÷
3 = 2,147,483,648) 

Elements per array: Divide by 8 (size of double): 

( 2,147,483,648 ÷ 8 =  268,435,456) elements per array. 

As a result, we have DSTREAM_ARRAY_SIZE = 

268,435,456 (elements per process). For 1 process per node the 

maximum DSTREAM_ARRAY_SIZE = 268,435,456 

elements per node. 

If it runs run multiple MPI processes per node then the 

STREAM_ARRAY_SIZE is divided by the number of 

processes per node to avoid exceeding available memory 

meaning DSTREAM_ARRAY_SIZE = (
268,435,456

4
=

67,108,864) 

The recommended Values are: 

1 process per node: DSTREAM_ARRAY_SIZE=268,435,456 

2 process per node: DSTREAM_ARRAY_SIZE= 134,217,728 

3 process per node: DSTREAM_ARRAY_SIZE= 89,478,485 

4 processes per node: DSTREAM_ARRAY_SIZE=67,108,864 

 

To sum up: 

 

Usable memory for STREAM: ( 8𝐺𝐵 × 0.75 = 6𝐺𝐵 = 6 ×
10243 = 6,442,450,944 𝑏𝑦𝑡𝑒𝑠) 

Usable memory per core/process:  

𝑃𝑒𝑟 − 𝑐𝑜𝑟𝑒 𝑚𝑒𝑚𝑜𝑟𝑦 =  
𝑈𝑠𝑎𝑏𝑙𝑒 𝑚𝑒𝑚𝑜𝑟𝑦 𝑓𝑜𝑟 𝑆𝑇𝑅𝐸𝐴𝑀

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑒𝑠 

=  
6,442,450,944 𝑏𝑦𝑡𝑒𝑠 

4
= 

≈ 1.5 𝐺𝐵 (1,610,612,736 𝑏𝑦𝑡𝑒𝑠) 

As a result, for single process on entire RPi: use 

DSTREAM_ARRAY_SIZE=268,435,456, and for multiple 

processes (4 processes for 4 cores) in (1) RPi, use 

DSTREAM_ARRAY_SIZE=67,108,864. 

To force execution on a single core the used command is:  

(# 1 process on core 0) 

taskset -c 0 mpiexec -np 1 ./stream_mpi.  

 

To force execution on two cores the used command is:  
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(# 2 processes on cores 0 and 1) 

taskset -c 0,1 mpiexec -np 2 ./stream_mpi. 

 

To force execution on three cores the used command is:  

(# 3 processes on cores 0, 1, and 2) 

taskset -c 0,1 mpiexec -np 3 ./stream_mpi. 

 

To force execution on four cores the used command is:  

(# 4 processes on cores 0, 1, 2, and 3) 

taskset -c 0,1,2,3 mpiexec -np 4 ./stream_mpi 

 

The (-np) flag in mpiexec should match the number of 

processes you want to launch (1 for single-core, 2 for two-core, 

etc.). If you use (-np 1) for all commands, only one process will 

run, regardless of the specified cores. 

Alternatively, the easiest method is to let MPI manage core 

binding automatically, as used in this study, where one MPI 

process is automatically assigned per core: 

# 1 process 

mpiexec --bind-to core -np 1 ./stream_mpi 

# 2 processes 

mpiexec --bind-to core -np 2 ./stream_mpi 

# 3 processes 

mpiexec --bind-to core -np 3 ./stream_mpi 

# 4 processes 

mpiexec --bind-to core -np 4 ./stream_mpi 

 

In this study for  (𝑛𝑝 = 1) (1 process) the 

DSTREAM_ARRAY_SIZE=171,798,691 used (≈ 48 

% 𝑅𝑃𝑖 𝑚𝑒𝑚𝑜𝑟𝑦 (8𝐺𝐵) due to inability to compile for larger 

array sizes.  The whole research focuses on using (𝑛𝑝 = 2,3,4) 

with (2,3,4) processes respectively since there is value to 

compare efficiency by allocating the same percentage of usable 

physical memory. 

3.1 Stream Variations and advanced 

Memory Performance in one RPi node. 
The testing in one RPi node starts with the compilation of the 

stream.c package per used MPI process and corresponding 

DSTREAM_ARRAY_SIZE: 

 

# 1 process 

 DSTREAM_ARRAY_SIZE = 171,798,691 ≈
48 % 𝑅𝑃𝑖 𝑚𝑒𝑚𝑜𝑟𝑦 (8𝐺𝐵) 

Compilation: 

$mpicc -O3 -fopenmp -

DSTREAM_ARRAY_SIZE=171,798,691 stream.c -o 

stream_mpi  

Command: 

$ mpiexec --bind-to core -np 1 ./stream_mpi 

 

# 2 process 

 DSTREAM_ARRAY_SIZE = 134, 217,728 ≈
75 % 𝑅𝑃𝑖 𝑚𝑒𝑚𝑜𝑟𝑦 (8𝐺𝐵) 

Compilation: 

$mpicc -O3 -fopenmp -DSTREAM_ARRAY_SIZE=134, 

217,728 stream.c -o stream_mpi  

Command: 

$ mpiexec --bind-to core -np 2 ./stream_mpi 

 

# 3 process 

 DSTREAM_ARRAY_SIZE = 89,478,485 ≈
75 % 𝑅𝑃𝑖 𝑚𝑒𝑚𝑜𝑟𝑦 (8𝐺𝐵) 

Compilation: 

$mpicc -O3 -fopenmp -

DSTREAM_ARRAY_SIZE=89,478,485 stream.c -o 

stream_mpi  

Command: 

$ mpiexec --bind-to core -np 3 ./stream_mpi 

 

# 4 process 

 DSTREAM_ARRAY_SIZE = 67,108,864 ≈
75 % 𝑅𝑃𝑖 𝑚𝑒𝑚𝑜𝑟𝑦 (8𝐺𝐵) 

Compilation: 

$mpicc -O3 -fopenmp -

DSTREAM_ARRAY_SIZE=67,108,864 stream.c -o 

stream_mpi  

Command: 

$ mpiexec --bind-to core -np 4 ./stream_mpi 

 

 
Figure 6: Stream_mpi test for one RPi in one core with 

CPU (1) core usage 

Each MPI process acts independently and does not share data 

with the other. Since (--bind-to core) is used, MPI ensures that 

each process is pinned to a separate core, and the STREAM 

results show memory bandwidth per core, rather than total 

system bandwidth. 

The STREAM benchmark tests were conducted using 1 to 4 

MPI processes (cores) “Table 1”, “Figure 7”, “Figure 8”. The 

results reveal key insights about the performance 

characteristics of the system, including the memory bandwidth 

and average execution time of different operations. As an 

example, “Figure 6” presents the Stream_mpi test results in 

Command Line Interface (CLI) for one RPi in one core with 

one MPI process.  

Below is an evaluation analysis of a STREAM benchmark test 

with varying numbers of MPI processes (np=1, 2, 3, 4) in one 

RPi, follows: 

- Performance Scaling: 

From 1 to 2 MPI processes: Performance remains relatively 

stable, with a minor decrease in Copy and Scale Best Rate, 

while Add and Triad Best Rate remain close. This suggests 
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that the Raspberry Pi 4B efficiently utilizes two MPI 

processes without significant overhead. 

From 2 to 3 MPI processes: Significant performance 

degradation is observed across all benchmarks. Copy Best 

Rate drops from 5096.2 MB/s to 1624.1 MB/s, and Add 

Best Rate drops from 4560.3 MB/s to 1278.7 MB/s. The 

steep decline suggests the system is struggling with 

memory contention or CPU resource distribution. 

From 3 to 4 MPI processes: Performance continues to drop, 

but at a slightly slower rate compared to the transition from 

2 to 3 processes. The Copy Best Rate further declines to 

1039.2 MB/s, indicating that increasing MPI processes 

beyond two causes inefficient CPU resource sharing. 

 

- Time Metrics Trends: 

Copy, Scale, Add, and Triad execution times all increase as 

MPI processes grow. The first transition (1 to 2 processes) 

nearly doubles the execution time in Copy and Scale, while 

the Add and Triad Avg Time show a significant increase as 

well. 

For (3 and 4) MPI processes introduce execution time 

instability, with Scale Avg Time exceeding 1 second. The 

execution time trends suggest that cache thrashing or 

memory bandwidth saturation is occurring. 

Triad Avg Time remains relatively high from (3 to 4) 

processes, showing a plateau effect, which may indicate 

that the memory system has hit a bottleneck and thus it is 

unable to accommodate further parallelism efficiently. 

 

- Bottleneck Identification: 

Memory Bandwidth Saturation: The Raspberry Pi 4B has 

limited memory bandwidth, and with each additional MPI 

process, the available bandwidth per process decreases 

significantly. 

Cache Contention: Since the RPi 4B has a shared L2 cache 

(1MB) across all cores, the performance degradation 

between 2 and 3 MPI processes suggests excessive cache 

contention. 

Hyperthreading Absence: The RPi 4B does not support 

hyperthreading, meaning that each additional MPI process 

competes for physical CPU cores, resulting in diminishing 

returns. 

- Efficiency: 

The (1) MPI process is the most efficient configuration, 

utilizing 48% of RAM with the best memory bandwidth 

performance. 

The (2) MPI processes still provide a reasonable tradeoff 

between performance and parallelization, but execution 

time increases significantly. 

For 3 and 4 MPI processes exhibit inefficiency, as 

performance drops despite the additional processes. This 

indicates that the system is unable to effectively distribute 

workload across all available cores. 

Practical Implication: Running more than two MPI 

processes on a single RPi does not yield any computational 

benefits and may even degrade performance. 

 

As a conclusion, and based on the observations the best 

performance configuration is that when using 1 or 2 MPI 

processes per Raspberry Pi which provides the best balance 

between performance and efficiency. 

3.2 Stream Variations and advanced 

Memory Performance in the whole Cluster.  
The STREAM benchmark is a widely recognized tool for 

evaluating memory bandwidth and computational performance 

in high-performance computing (HPC) systems. In the context 

of a Beowulf cluster comprising 24 Raspberry Pi 4B nodes, 

STREAM variations offer a unique opportunity to analyze the 

interplay between memory performance and cluster-wide 

scalability. Each node in the cluster provides 8GB of RAM and 

utilizes the ARM Cortex-A72 processor, making it an ideal 

testbed for exploring memory bandwidth, latency, and the 

efficiency of data transfer across distributed nodes. 

By leveraging STREAM variations, the cluster's advanced 

memory performance can be characterized through critical 

operations such as Copy, Scale, Add, and Triad. These 

operations simulate typical memory access patterns found in 

scientific and engineering workloads. Conducting STREAM 

on the entire cluster enables a comprehensive analysis of both 

local (intra-node) memory bandwidth and the effects of 

network communication on distributed memory access. 

This study aims to highlight the cluster's ability to handle 

memory-intensive applications, focusing on scalability, 

memory bandwidth utilization, and on overall performance. 

Such insights are essential for optimizing workloads in 

distributed computing environments and understanding the 

limitations of small-scale, low-cost clusters in HPC scenarios. 

The Methodology is very simple and explained below: 

- Distribute the stream.c source code:  

scp stream.c pi@nodeX:/path/to/destination/ 

 

- Compile with MPI: 

mpicc -O3 -fopenmp -

DSTREAM_ARRAY_SIZE=67108864 stream.c -o 

stream_mpi 

The above command refers to 75% physical memory for each 

RPi involving 4 processes per node. 

 

- Copy the compiled stream_mpi binary to all worker nodes. 

pi@rpi4B-ma-00:~/cloud $ scp stream_mpi 

pi@192.168.X.YYY:/home/pi/cloud 

 

- Define a machine file:  where this file contains the worker 

RPis for the testing. 

 

- Run STREAM across the cluster: To ensure one process per 

core across all nodes it’s needed to modify the 

“machinefile” in such a way so as the MPI to assign one 

process per core per involved RPi. 

Taking into account from the STREAM Variation testing in (1) 

RPi there was an observation revealing that for both memory 

bandwidth and execution time, the optimal configuration is 

(𝑛𝑝 = 2) where this setup achieves the highest bandwidth 

while maintaining manageable execution times.  Despite this 

observation the whole Beowulf cluster tested for (2, 3, 4 

processes) per RPi to evaluate the performance. 

As a result, this setup used to STREAM test the Beowulf cluster 

with the below recommended Value such as: 

2 processes per node: DSTREAM_ARRAY_SIZE= 134, 

217,728. 

mailto:pi@192.168.X.YYY:/home/pi/cloud
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Compile: $mpicc -O3 -fopenmp -

DSTREAM_ARRAY_SIZE=134,217,728 stream.c -o 

stream_mpi. 

3 processes per node: DSTREAM_ARRAY_SIZE= 89, 

478,485. 

Compile: $mpicc -O3 -fopenmp -

DSTREAM_ARRAY_SIZE=134,217,728 stream.c -o 

stream_mpi. 

4 processes per node: DSTREAM_ARRAY_SIZE=67,108,864 

 

Compile: $mpicc -O3 -fopenmp -

DSTREAM_ARRAY_SIZE=67,108,864 stream.c -o 

stream_mpi. 

It’s very critical to secure the specific number of MPI processes 

run in each RPi during the test cases. The above critical 

condition is achieved by using this command:  

$ export OMP_NUM_THREADS=YY; mpiexec -f 

machinefile -np YY --bind-to core ./stream_mpi, where (YY) 

represents the particular MPI processes related to the number 

of RPi involved in the test defined in machinefile. 

 

The results of the STREAM benchmark in the whole Beowulf 

cluster for 2 processes per RPi are addressed in “Table 2” and 

depicted in a graph in "Figure 9", "Figure 10".  

The results of the STREAM benchmark in the whole Beowulf 

cluster for 3 processes per RPi are addressed in “Table 3” and 

depicted in a graph in "Figure 11", "Figure 12".  

The results of the STREAM benchmark in the whole Beowulf 

cluster for 4 processes per RPi are addressed in “Table 4” and 

depicted in a graph in "Figure 13", "Figure 14".  

Table 1. STREAM Benchmark results in one RPi (1 to 4 MPI processes) 

STREAM Benchmark to 1 RPi (1-4 MPI processes) 

Cores Used  
(MPI 

Processes) 

Copy:  
Best Rate  

(MB/s) 

Copy: 
Avg Time  

(s) 

Scale:  
Best Rate  

(MB/s) 

Scale:  
Avg Time  

(s) 

Add:  
Best Rate  

(MB/s) 

Add:  
Avg Time  

(s) 

Triad:  
Best Rate  

(MB/s) 

Triad:  
Avg Time 

(s) 

1 
(48% RAM 

usage) 
5494.3 0.515084 5471.4 0.52371 4544.2 0.929131 4574.5 0.917187 

2 
(75% RAM 

usage) 
5096.2 1.04129 5351.1 0.958763 4560.3 1.539043 4552.9 1.513349 

3 
(75% RAM 

usage) 
1624.1 1.017769 1408.4 1.125475 1278.7 1.803441 1872.4 1.728948 

4 
(75% RAM 

usage) 
1039.2 1.088948 1050.5 1.07822 964.3 1.715477 989.9 1.722957 
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Figure 7: STREAM Benchmark Performance (Best Rates) on 1 RPi (1 to 4 MPI processes)  

 

Figure 8: STREAM Benchmark: Average Times Trends from 1 to 4 MPI processes (cores) in one RPi 

Table 2. STREAM Benchmark results: Beowulf Cluster, from 1-24 RPi (2 to 48 MPI processes) (2 MPI processes per RPi) 

STREAM Benchmark results: Beowulf Cluster, from 1-24 RPi (2 to 48 MPI processes) _2 MPI processes per RPi 
75% RAM usage 

RPi's Cores Used  
(MPI 

Processes) 

Copy:  
Best Rate  

(MB/s) 

Copy:  
Avg Time  

(s) 

Scale:  

Best Rate  

(MB/s) 

Scale:  
Avg Time  

(s) 

Add:  
Best Rate  

(MB/s) 

Add:  
Avg Time  

(s) 

Triad:  
Best Rate  

(MB/s) 

Triad:  
Avg Time 

(s) 

1 2 5096.2 1.04129 5351.1 0.958763 4560.3 1.539043 4552.9 1.513349 

4 8 5740 0.959117 5504.2 0.87531 4894.6 1.452127 4917.6 1.40689 

8 16 5707.6 0.927779 5541.2 0.895493 4919.7 1.438768 4913.4 1.400841 

12 24 5768.3 0.898212 4148.3 0.981586 4221.9 1.559666 4611.8 1.471469 

16 32 5795.7 0.887485 5534.6 0.872828 4883.5 1.457799 4920.1 1.40687 

20 40 5782.6 0.902209 3924.1 1.010822 4121.4 1.569748 4554.9 1.482986 

24 48 5710.5 0.918919 4154.4 0.975173 4221.4 1.551108 4640.8 1.465694 
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Figure 9: STREAM Benchmark: Beowulf Cluster (Best Rates) from 2 to 48 MPI processes (cores) 

(2 MPI processes per RPi) 

 

 

Figure 10: STREAM Benchmark: Beowulf Cluster Avg Times Trends from 2 to 48 MPI processes (cores) 

(2 MPI processes per RPi) 
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Figure 11: STREAM Benchmark: Beowulf Cluster (Best Rates) from 3 to 72 MPI processes (cores) 

(3 MPI processes per RPi) 

Table 3. STREAM Benchmark results: Beowulf Cluster, from 1-24 RPi (3 to 72 MPI processes) (3 MPI processes per RPi) 

STREAM Benchmark results: Beowulf Cluster, from 1-24 RPi (3 to 72 MPI processes) (3 MPI processes per RPi) 
75% RAM usage 

RPi's Cores Used  
(MPI 

Processes) 

Copy:  
Best Rate  

(MB/s) 

Copy:  
Avg Time  

(s) 

Scale:  
Best Rate  

(MB/s) 

Scale:  
Avg Time  

(s) 

Add:  
Best Rate  

(MB/s) 

Add:  
Avg Time  

(s) 

Triad:  
Best Rate  

(MB/s) 

Triad:  
Avg Time 

(s) 

1 3 1624.1 1.017769 1408.4 1.125475 1278.7 1.803441 1872.4 1.728948 

4 12 1726.5 0.973419 1222.7 1.209682 1830.7 1.681236 2716.4 1.941561 

8 24 1527.3 1.018542 1285.4 1.206808 1806.7 1.700405 2583.2 2.005628 

12 36 1655.6 0.983558 1349.8 1.100449 1655.2 1.632339 2427.2 1.668023 

16 48 1714.5 0.992582 1289.5 1.143349 2005.4 1.634786 3571.4 1.744102 
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Figure 12: STREAM Benchmark: Beowulf Cluster Avg Times Trends from 3 to 72 MPI processes (cores) 

(3 MPI processes per RPi) 

 

Table 4. STREAM Benchmark results: Beowulf Cluster, from 1-24 RPi (4 to 96 MPI processes) (4 MPI processes per RPi) 

STREAM Benchmark results: Beowulf Cluster, from 1-24 RPi (4 to 96 MPI processes) _4 MPI processes per RPi 
75% usage 

RPi's Cores Used  
(MPI 

Processes) 

Copy:  
Best Rate  

(MB/s) 

Copy:  
Avg Time  

(s) 

Scale:  
Best Rate  

(MB/s) 

Scale:  
Avg Time  

(s) 

Add:  
Best Rate  

(MB/s) 

Add:  
Avg Time  

(s) 

Triad:  
Best Rate  

(MB/s) 

Triad:  
Avg Time 

(s) 

1 4 1039.2 1.088948 1050.5 1.07822 964.3 1.715477 989.9 1.722957 

4 16 1070.5 1.065174 1207.7 0.953312 1029.9 1.654204 1185 1.65954 

8 32 1119.7 1.040162 1427.1 0.933345 1416.1 1.69616 2069.5 1.721273 
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Figure 13: STREAM Benchmark: Beowulf Cluster (Best Rates) from 4 to 92 MPI processes (cores) 

(4 MPI processes per RPi) 

 

 

Figure 14: STREAM Benchmark: Beowulf Cluster (Avg Times Trends) from 4 to 92 MPI processes (cores) 

(4 MPI processes per RPi) 
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- Bottleneck Identification: 
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significantly. At 24 RPi (48 MPI processes), 

communication latency and network congestion start 

outweighing computational benefits, leading to slower 

scaling of the bandwidth gains. 

 

Memory Bandwidth Utilization: The results suggest that 

memory bandwidth saturation starts beyond 16 RPi, 

particularly for the Scale and Add operations. This is likely 

due to the single LPDDR4-3200 memory channel in 

Raspberry Pi 4B devices, which becomes a limiting factor 

in sustaining performance across high MPI counts. 

 

Process Scheduling Inefficiencies: The Linux scheduler 

may struggle to optimally allocate CPU resources when 

many MPI processes run concurrently, resulting in process 

migrations or unnecessary context switching 

. 

- Efficiency: 

Memory Bandwidth Efficiency: The best bandwidth 

efficiency is seen around 16-32 MPI processes, (8-16 RPis) 

where memory utilization is high, and performance scaling 

is still benefiting from increased parallelism. 

 

Network Efficiency: Since a Gigabit Ethernet switch is 

used, interconnect efficiency may degrade as more nodes 

communicate, leading to increased latency in memory 

access for remote processes. 

 

Computational Efficiency: Efficiency starts declining at 48 

MPI processes, as seen from the slower scaling of Copy and 

Scale operations. This suggests that the cluster may not 

optimally utilize additional computational resources 

beyond a certain point due to bottlenecks in interconnects 

and memory access. 

 

As a conclusion, the STREAM benchmarking analysis with the 

setup of using 2 MPI processes per RPi shows that scaling is 

effective up to 16-20 RPi (32-40 MPI processes), after which 

performance stagnation begins. Memory contention, inter-node 

communication, and cache limitations emerge as primary 

bottlenecks when running at full capacity. To optimize 

efficiency, load balancing, and MPI communication strategies 

(such as message aggregation), and cache-aware computation 

techniques should be explored. 

 

STREAM benchmark analysis with 3 MPI processes per RPi 

in whole Beowulf Cluster, “Table 3”, “Figure 11", “Figure 

12”: 

- Performance Scaling: 

The performance scaling when using 3 MPI processes per 

RPi shows a non-linear trend across different benchmarks 

as the number of MPI processes increases. Initially, there is 

a slight improvement in performance, but after a certain 

threshold, efficiency drops due to increasing 

communication overhead and memory contention. 

Copy Operation: The best rate starts at 1624.1 MB/s (1 RPi, 

3 MPI processes) and gradually increases up to 1737.1 

MB/s (20 RPis, 60 MPI processes) before slightly declining 

to 1723.8 MB/s at 24 RPis, 72 MPI processes. The 

performance scaling shows some improvement but is 

limited by memory bandwidth saturation and inter-node 

communication overhead. 

 

Scale Operation: The best rate fluctuates slightly, showing 

an increasing trend up to 20 RPis, 60 MPI processes 

(1173.4 MB/s) before dropping at 24 RPis, 72 MPI 

processes (1767.8 MB/s). This suggests that data 

movement efficiency is hindered by increased thread 

synchronization requirements. 

 

Add Operation: The best rate follows a similar trend, 

peaking at 20 RPis, 60 MPI processes (2002.5 MB/s) 

before dropping to 1737.7 MB/s at 24 RPis, 72 MPI 

processes. This suggests increased overhead from 

excessive memory access operations. 

 

Triad Operation: The best rate increases steadily, reaching 

3571.4 MB/s at 16 RPis, 48 MPI processes, before 

declining to 2246.6 MB/s at 24 RPis, 72 MPI processes. 

This suggests a major bottleneck in memory access latency 

and cache contention. 

 

- Bottleneck Identification: 

Memory Bandwidth Saturation: The Raspberry Pi 4B is 

limited by its LPDDR4-3200 memory, which cannot 

sustain high-performance demands as the number of 

parallel processes increases. The Copy and Scale best rates 

plateau around 1700 MB/s, indicating that memory 

throughput has reached its hardware-imposed limit. 

 

Inter-Node Communication Overhead: With a Gigabit 

Ethernet interconnect, higher MPI processes (above 48-60 

MPI) create excessive data exchange between nodes. Add 

and Triad operations demonstrate variations beyond 60 

MPI processes. 

 

Process Synchronization Delays: As more MPI processes 

are introduced per node, synchronization overhead 

increases, leading to reduced performance scaling. Increase 

in avg times (s) for Scale and Add operations confirms 

synchronization inefficiencies 

 

- Efficiency: 

Best Efficiency Observed at 16-20 RPis (48-60 MPI 

Processes): The Copy and Scale operations maintain 

consistent best rates (~1700 MB/s), suggesting this is the 

most optimal configuration before performance 

degradation. The Add and Triad operations peak at 16 RPis 

(48 MPI processes), indicating that this is the best balance 

of compute and memory access efficiency. 

Efficiency Declines Beyond 72 MPI Processes: The 

increasing average execution times suggest that adding 

more MPI processes does not translate into proportional 

speedups. The best rate declines after 60 MPI processes 

which suggests that network latency, memory contention, 

and process scheduling inefficiencies limit further 

scalability. 

. 

As a conclusion the performance results when using 3 MPI 

processes per RPi, highlight the challenges of scaling beyond a 

certain threshold in a Raspberry Pi-based Beowulf cluster. 

While there is an initial increase in memory bandwidth up to 

16 RPis (48 MPI processes), the overall efficiency deteriorates 

beyond this point due to cache contention, memory bandwidth 

saturation, and MPI communication overhead. The Triad and 

Add benchmarks show peak performance at intermediate scales 

but suffer from inter-process synchronization inefficiencies at 

higher process counts. These findings emphasize the 

importance of optimizing workload distribution and memory 

access patterns to enhance the scalability of Raspberry Pi 

clusters in high-performance computing applications. 
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STREAM benchmark analysis with 4 MPI processes per RPi 

in whole Beowulf Cluster, “Table 4”, “Figure 13", “Figure 

14”: 

- Performance Scaling: 

The performance trend when using 4 MPI processes per 

RPi shows diminishing returns as the process count 

increases. Up to 16 RPis (64 MPI processes), there is a 

moderate improvement in bandwidth for Copy, Scale, Add, 

and Triad operations. However, beyond 16 RPis, 

performance fluctuates and slightly declines in some cases, 

particularly in Scale and Triad benchmarks. The Copy 

(Best Rate) peaks at 1296.3 MB/s at 16 RPis but then drops 

slightly, showing inefficiencies in memory handling. Triad 

performance fluctuates significantly, with a peak at 16 RPis 

(3515.8 MB/s), but declines to 1479.9 MB/s at 24 RPis. 

 

- Bottleneck Identification: 

Several bottlenecks impact when using 4 MPI processes per 

RPi performance based on the observations such as: 

Memory Bandwidth Saturation: The LPDDR4-3200 

memory channel limits further gain in performance despite 

increased MPI processes. 

Interconnect Latency: As the number of MPI processes 

grows, communication overhead due to inter-node 

messaging increases, introducing additional latency. 

Process Scheduling Overhead: The Linux scheduler 

distributes workloads sub-optimally at high MPI counts, 

further affecting efficiency. 

 

- Efficiency: 

The efficiency when using 4 MPI processes per RPi 

configuration declines significantly beyond 16 RPis (64 

MPI processes). The increasing execution time in Scale and 

Add operations suggests higher contention in memory 

access. Furthermore, Triad and Copy bandwidth reduction 

at 24 RPis (96 MPI processes) indicates that system 

resources are overloaded with excessive parallelism, 

leading to diminishing computational returns. 

When using 4 MPI processes per RPi, this setup demonstrates 

moderate scaling improvements up to 16 RPis (64 MPI 

processes), performance beyond this point stagnates or declines 

due to memory bandwidth limitations, interconnect overhead, 

and cache contention. The findings suggest that increasing MPI 

processes beyond an optimal threshold does not provide 

additional performance benefits in a Raspberry Pi-based 

cluster. Optimizing process affinity, communication patterns, 

and workload distribution could help mitigate these scaling 

issues and improve efficiency. 

4. CONCLUSION 
The final STREAM Benchmark results for the entire Beowulf 

cluster synthesize the insights obtained from the single-node 

(RPi-1) and multi-node reflecting how the Beowulf cluster 

scales with increasing MPI processes and nodes. The key focus 

is on Performance Scaling, Bottleneck Identification, and 

Efficiency across different configurations.  

With a single RPi, the best bandwidth performance occurs at 1-

2 MPI processes, with performance degradation beyond 2 MPI 

processes. Severe performance drops at 3 and 4 MPI processes 

due to resource contention 

In summary, for the cluster performance, utilizing 2 MPI 

processes per RPi, 3 MPI processes per RPi, and 4 MPI 

processes per RPi in the whole cluster we have: 

2 MPI processes per RPi in cluster: based on observations this 

setup achieves the best balance between performance and 

resource utilization. 

3 MPI processes per RPi in cluster: based on observations this 

setup shows diminishing returns, with stagnation in key 

benchmarks due to memory and interconnect limitations. 

4 MPI processes per RPi in cluster: This setup exhibits 

performance regression, indicating that increasing MPI 

processes beyond 48 does not yield further gain. 

In terms of bottleneck identification based on observations a 

Memory Bandwidth Saturation appears exceeding LPDDR4-

3200 limits efficient scaling. Cache Contention appears when 

more processes cause increased cache misses and memory 

stalls. It may be an Interconnect Overhead when growing MPI 

communication costs reduce efficiency and maybe a process 

scheduling issues shows up interpreting that Linux struggles 

with optimal resource allocation at higher process counts. 

5. FUTURE WORK 
For future work, a comprehensive investigation into the HPCG 

benchmark performance on the Beowulf cluster could provide 

deeper insights into its computational efficiency and memory 

bandwidth utilization under realistic workloads. This research 

should focus on evaluating the interplay between 

communication overhead and computational intensity across 

increasing MPI processes, particularly for sparse matrix 

operations. Additionally, profiling the energy consumption and 

thermal behavior during HPCG tests can help optimize the 

cluster for power-efficient high-performance computing. 

Comparing HPCG results with STREAM metrics would also 

offer a clearer understanding of bandwidth-bound versus 

compute-bound performance characteristics in the cluster. 
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