
International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.81, April 2025

32

Analysis of Intelligent Path Planning using BFS in Complex
Environment

T. Sneha, B. Pavithra, N. Vaishnavi, K. Lohith, N. Suresh Kumar
Department of Computer Science and Engineering, GITAM School of Technology, GITAM (Deemed to be

University), Visakhapatnam

ABSTRACT
Breadth-First Search (BFS) is a method to explore or search

through graphs step by step. In this task, the BFS is used to find

the shortest path from source to destination. In the present paper

the workflow of BFS is presented node by node by moving level

by level and checking all nearby rooms before going deeper. In

the present work the time and memory consumed is analyzed

during the graph traversing by BFS. The queue is considered to

track the search nodes and find the best path. Along the way,

also returned which rooms were checked, which paths were

avoided, and how BFS helps in finding the shortest route.

Finally, the shortest route is identified and calculated the path

cost.

Keywords
Breadth-First Search (BFS), path finding, path cost, graph,

artificial intelligence

1. INTRODUCTION
Controlling a robot in complex environments is tedious job,

especially when it comes to autonomous environment. There

are many challenges the robot must face such as obstacle

avoidance and moving goal-directed path. At the same time

routing the robot in shortest path is also a challenging task for

the developer. In the present scenario, a closed building is

considered and analysis done for a particular floor with pre-

defines nodes and vertices. The route for the destination is

unknown to the robot [1].

In the present work, an autonomous vehicle is guided to reach

the destination. The vehicle is free to move on the floor and

need to explore best path to reach the destination. The grid

layout of the floor is represented in figure 1. The path, obstacles,

and other objects on the floor are represented in figure 1. The

grid layout is converted and considered as unweighted graph for

exploring the best path for the vehicle. The Breadth-First

Search (BFS) algorithm is suitable for finding the shortest path

in non-weighted graphs. Here the BFS is opted, as the vehicle

needs to explore all the paths and ensures the shortest route for

destination [1][2][3]. In the present scenario the starting

location (start node) for the vehicle is considered at room No.

218 and destination (goal node) is room No. 229. The step-by-

step directions of the vehicle with respect to the graph are

shown in figure 2 in tree structure.

Breadth-First Search (BFS) is one of the most fundamental

algorithms in graph theory. It explores nodes (or rooms, in the

present context) in a breadthwise manner, meaning it visits all

neighbours of a given node before moving deeper into the tree.

This systematic approach ensures that BFS is highly effective

for finding the shortest path in a tree [5][6]. In the current

scenario, the tree is represented by the layout of rooms,

corridors, and steps as shown in the Figure 1. Each room is

treated as a node, and the connecting corridors or paths

represent the edges. BFS will be used to traverse the tree from

room 218 (starting node) to room 229 (target node).

2. METRICS OF BFS

2.1 Key Components of BFS

2.1.1 Time Complexity: BFS explores every node and

edge once, resulting in a time complexity of O(V+E) [7][8].

Where, rooms are represented as vertices and corridors are

represented as edges. The edges are connected between

vertices. For the present layout, these values are calculated

based on the number of rooms and connections.
2.1.2 Space Complexity: BFS uses a queue to store nodes

during traversal, leading to a space complexity proportional to

O(V). The maximum queue size depends on the breadth of the

graph. [7][8].
2.1.3 Nodes Traversed: BFS explores all possible paths

systematically until it reaches the target node [9]. In the present

case, it is observed the sequence of rooms traversed to reach

room 229.

2.1.4 Total Nodes: The algorithm ensures that every

accessible node is visited at least once. In the present layout, the

total nodes represent the total rooms.

2.2 Mathematical Representation and Steps

2.2.1. Representation:

The layout can be represented as a graph G=(V,E) where V is

the set of rooms, and E includes edges connecting the rooms.

For example, there is an edge between room 218 and its

adjacent rooms (217 and 219) as shown in Figure1.

2.2.2 Algorithm Steps:
Initialization: Start from room 218. Mark it as visited and add

it to the queue as shown in figure 3.

• Traversal: Dequeue a room, check if it is room 229, and

enqueue all its unvisited neighbours.

• Path Construction: Record the path traversed to backtrack

and identify the shortest path.

2.3 Applications of Breadth-First Search

(BFS) [5][8]:

2.3.1 Finding the Shortest Path in Unweighted

Graphs:

BFS is great for finding the shortest way from one point to

another when all moves have the same cost. Since it explores

everything at the same level first, it always finds the shortest

route. It is mostly used in navigation apps, board games, and

etec.,

2.3.2 Peer-to-Peer (P2P) Networks:

In P2P networks, BFS helps find data by searching connected

devices step by step. For instance, it is used in finding files in

torrent sharing and resource searching in distributed networks.

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.81, April 2025

33

2.3.3 Web Crawling

Search engines use BFS to scan web pages efficiently. It starts

from one page and moves to all linked pages before going

deeper. It is mostly used in indexing in webpages, scraping

social media connections, and etc.

2.3.4 Social Network Analysis:

BFS helps study relationships in social networks by checking

who’s connected to whom. For example, finding how two

people are connected (like LinkedIn's "degrees of separation"),

and Finding groups or communities in social networks.

2.3.5 Solving Mazes and Puzzles:

BFS explores all possible paths in an orderly way, making it

perfect for solving mazes and puzzles. It helps in finding the

shortest escape route in a maze and Word ladder puzzles.

2.3.6 Network Flow and Connectivity:

BFS is used in network algorithms to figure out the best way to

send stuff like water, electricity, or data. It is mainly used in

Optimizing traffic or resource flow in cities, and checking the

connection of a data center to a resource.

2.3.7 Broadcasting in Networks:

BFS models how messages or updates spread across networks,

making sure everyone gets the info. It is used in sending

software updates across a distributed system, flooding protocols

in wireless networks and etc.

2.3.8 Game AI:

Games use BFS to explore possible moves and find the best

options. For instance, the Chess and checkers for evaluating

moves for optimization, and Helping characters find the

shortest route in grid-based games.
2.4 Merits of BFS [5]:
• Always Finds the Shortest Path (in Unweighted Graphs)

BFS guarantees the shortest path from start to end in an

unweighted graph.

• Always Finds a Solution (if One Exists)
If there's a path, BFS will find it.

• Searches Level by Level
BFS checks all nodes at one level before moving deeper.

• Used in Many Problems
BFS helps with pathfinding, network flow, checking

bipartite graphs, and finding connected components.

• Can Be Done Faster with Parallel Computing
BFS can run on multiple systems at once to speed things

up.

• Good for Shallow Graphs
If a graph isn't too deep, BFS uses less memory.

2.5 Limitations of BFS
• Uses a Lot of Memory

BFS stores all nodes at the current level and their

neighbors, which can take up a lot of space in big graphs.

• Doesn’t Work for Weighted Graphs

BFS ignores edge weights, so it can’t find the shortest path

in weighted graphs. Dijkstra’s or A* work better.

• Not Good for Deep Graphs

If a graph is very deep, BFS must explore many nodes,

making it slow.

• No Built-in Backtracking

BFS doesn’t easily go back and change paths, which can

be a problem in some cases.

• Struggles with Infinite Graphs

BFS might run forever or use too much memory in very

large or infinite graphs.

• Needs Extra Storage
BFS depends on a queue, which can be a problem if

memory is limited.
3. METHODOLOGY
Robot Movement from room 218 to destination 229 is explored

in the following sections based on Optimized paths with respect

to shortest to longest distance. The goal is to move the robot

from room 218 to room 229 by following the most efficient

paths. Below is a step-by-step breakdown of the three paths,

arranged from shortest to longest, along with possible dead

ends. The reason for robot traversing via different paths are

analysed in the following sections. In these path the robot move

from starting point 218 and considered the best path to reach

the destination room 229 which is a goal node.

3.1 Path 1 (Shortest Path - Side Path Route)
The sequence of Path1 on the selected floor is in the following

order.

 218 → 215 → 208 → 209 → 210 → 211 → 228 → 229

Step-by-Step Movement:

1. Move Left from Room 218 to Room 215.

2. Move Left Again to Room 208.

3. Move Up to Room 209.

4. Continue Up to Room 210.

5. Move Up Again to Room 211.

6. Turn Right at Room 211 and enter the Corridor at

Room 228.

7. Move Left into goal node 229.

Why This Path?

• Shortest route to goal node 229.

• Avoids the long corridor and reduces travel time.

Dead Ends in Path 1:

• If the robot does not turn at Room 215, it might go

towards Entry Gate (207) and get stuck.

If the robot misses the turn at room 211, it might go into a loop.

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.81, April 2025

34

Figure 1 Grid Layout of the floor

3.2 Path 2 (Medium Distance - Steps Shortcut

Path)
The sequence of Path2 on the selected floor is in the following

order

 218 → 219 → 220 → 221 → Steps → 228 → 229

Step-by-Step Movement:

1. Move Up from Room 218 to Room 219.

2. Continue Up to Room 220.

3. Move Up Again to Room 221.

4. Take the Steps near Room 221 (Shortcut to Room

228).

5. Move Left into goal node 229.

Why This Path?

• Faster than Path 3 because it avoids the long corridor.

• Good option if the corridor is blocked or crowded.

Dead Ends in Path 2:

• If the robot misses the steps, it will be forced to follow

Path 3, making the journey longer.

•

3.3 Path 3 (Longest Path - Main Corridor

Route)
The sequence of Path3 on the selected floor is in the following

order

 218 → 219 → 220 → 221 → 224 → 225 → 226 → 227 →

228 → 229

Step-by-Step Movement:

1. Move Up from Room 218 to Room 219.

2. Continue Up to Room 220.

3. Move Up Again to Room 221.

4. Turn Left at Room 224 (Enter the Corridor).

5. Move Left passing Room 225, 226, and 227.

6. Turn Left Again at Room 228.

7. Move Left into goal node 229.

Why This Path?

• Most direct but longest due to the corridor path.

• Only use this if the other two paths are blocked.

 Dead Ends in Path 3:

• If the robot goes right at Room 224, it will reach a

dead end at Room 223.

https://shorturl.at/v28Kn

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.81, April 2025

35

Table 1: Best Routes & Efficiency

Path Distance Efficiency Best Use Case

Path 1 (Side Path Route

via 215, 208, 209, 211)
Shortest Fastest Best for quick movement

Path 2 (Steps Shortcut) Medium Faster Use if steps are available

Path 3 (Corridor Route) Longest Slowest Only use if other paths are blocked

Best Path for the Robot is analysed as shown in table 1.

• Path 1 is the best because it is shortest and fastest.

• Path 2 is a good backup if the robot can take the steps

shortcut.

• Path 3 is the longest and should only be used if the

other two are blocked.

This ensures the most efficient movement while avoiding dead

ends.

Key Reasons:
Efficiency: The robot follows the shortest, quickest path,

saving time and energy, making it faster and more cost-

effective.

Error Prevention: It avoids dead ends and mistakes, ensuring

smooth, uninterrupted movement.

Adaptability: The system can easily adjust to new

environments or changes, ensuring long-term flexibility.

Backup Routes: In case one path is blocked, the robot can

automatically choose another, avoiding delays.

Practical Applications: This project can be used in real-world

scenarios like warehouses, hospitals, or delivery systems,

making it ideal for industries requiring fast, reliable movement.

4. PATH TRAVERSING
The grid layout of the room is mapped to the directions east,

west, north, south, north-east, north-west, south-west, and

south-east. So, that it is easy for the robot to select the node in

specific direction towards destination. The destination is

present at North-west direction. The nodes are considered with

respect to these directions. The exploration of these nodes are

represented with tree structure for better exploration of robot

path as shown in figure 2.

4.1 Navigation Paths of Robot
The navigation of the robot is mapped with respect to the

directions such as east, west, north, and south. The best next

node in these directions is selected and moves until it reaches

to the goal node. The process will be repeated until it analyses

all the paths and finds the best path. While moving towards the

goal node it considers the directions to select the next best node.

4.1.1 Path: START → NORTH
This path branches into several sub-paths:

• NORTH → NORTH → CONTINUES

• NORTH → NORTH → CONTINUES

• NORTH → NORTH-EAST → DEAD END

• NORTH → NORTH-WEST →DEAD END

 NORTH → NORTH → CONTINUES (Further):

• NORTH → WEST → DEAD END

• NORTH → EAST → DEAD END

• NORTH → NORTH-WEST →EAST→ DEAD END

• NORTH → NORTH-WEST

→WEST→NORTHWEST→GOAL (successful)

• NORTH → NORTH-WEST →SOUTH-WEST→ DEAD

END

• NORTH → NORTH→ WEST →GOAL (successful)

• NORTH → NORTH →WEST→SOUTH→ DEAD END

• NORTH → EAST → DEAD END

4.1.2 Path: START → SOUTH
This path branches into several sub-paths:

1. SOUTH → SOUTH-EAST → DEAD END

4.1.3 Path: START → NORTH-WEST
 This path branches into several sub-paths:

1. NORTH-WEST → SOUTH → DEAD END

2. NORTH-WEST → NORTH-EAST → CONTINUES

NORTH-WEST → NORTH-EAST → CONTINUES:

o NORTH-EAST → NORTH-EAST → CONTINUE

o NORTH-EAST → EAST → DEAD END

o NORTH-EAST → EAST → DEAD END

o NORTH-EAST →WEST → GOAL (successful)

 Dead Ends: 12

 GOAL Nodes Reached: 3

4.2 General Observations and Insights
The robot succeeding movements in different directions are

shown in figure 2.

• The diagram figure 2 demonstrates a hierarchical tree

structure starting from a single START node.

• The tree splits into multiple branches, each exploring

potential directions like NORTH, SOUTH, EAST,

WEST, and their combinations.
Key Nodes:

• Dead Ends (X): These are nodes where the

exploration terminates without success, represented

by red crosses.

• Goal Nodes (Green): There are three successful

endpoints where the paths lead to the GOAL, as

shown in green.

Branching Characteristics:

• Some paths terminate early (e.g., SOUTH directly

leads to a dead end).

• Others extend deeply with multiple sub-paths before

reaching a GOAL or a DEAD END.

Total Nodes of Interest:

• Dead Ends: The diagram contains 12 dead ends,

where exploration ceases.

• Goals Reached: 3 paths successfully reach the goal.

Optimization Opportunities:

• Paths leading to dead ends could represent

unnecessary exploration.

Efficient search strategies can be applied to minimize traversal

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.81, April 2025

36

Figure 2. Path traversing in Tree structure

5. QUEUE

The possible node selections are done through queue data

structure. The node which existent for long time or entered first

is removed from the queue and returned for robot path. The

order of inserting and removing nodes from the queue is

represented in figure 3. The queue starts with the start node

being enqueued. Upon dequeuing start, the possible moves

north, south, and northwest are enqueued. Next, north is

dequeued, enqueueing of south and northwest. When south is

dequeued, northeast is added to the queue. Then, northwest is

dequeued, resulting in northeast and south being enqueued.

Continuing, south is dequeued, and northwest is added again.

The next step involves dequeuing northwest, leading to the

enqueueing of northeast. When northeast is dequeued, east and

west are enqueued. After that, south is dequeued, adding

northwest to the queue. The next dequeued node, northeast,

results in west and east being enqueued. Northwest is then

dequeued, enqueuing another northwest. When northeast is

dequeued, it leads to the enqueueing of east and west. East is

then dequeued, adding west to the queue. West is then

dequeued, which results in the goal node being enqueued.

https://shorturl.at/ApssP

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.81, April 2025

37

Figure 3. enqueue and Dequeuing the nodes

Heuristic values:

The heuristic values are assigned based on the direction as

shown below. The North and west are assigned highest heuristic

value, and South and East are assigned lower heuristic value.

Based on the pre-assigned heuristic values the heuristic values

for individual paths are calculates as follows. For path1 the

heuristic value calculated as 70, path2 is calculated as 75, and

path3 is calculated as 90. The individual node calculations with

respect to path distances are shown below.
Path 1:(North-West): It takes 12 nodes to reach the goal node

and calculated the path cost as below.

10+10+10+5+5+5+5+5+5+5+5→Goal (70)

Path 2:(North): It takes 13 nodes to reach the goal node and

calculated the path cost as below.

5+5+5+5+5+5+5+5+5+5+5+5+5+5+5→Goal (75)

Path 3:(North): It takes 16 nodes to reach the goal node and

calculated the path cost as below.

5+5+5+5+5+5+10+10+10+5+5+10+10→Goal (90)

From the above analysis the robot consideres the path1 as best

path with lower patch cost.

5.1 Time Complexity

Time complexity depends on how the robot navigates the

path.

Practical Time Complexity for 218 → 229 via 208

1. Number of Steps (Nodes Visited)

The robot follows 8 steps: 218 → 215 → 208 → 209 → 210

→ 211 → 228 → 229

Each step (moving between rooms) takes constant time O(1).

Total time = 8 × O(1) = O(N), where N is the number of

rooms visited.

2. Algorithm-Based Complexity

BFS (Breadth-First Search): It Checks all possible moves level

by level.

Time Complexity: O(N) for a single shortest path, but O(V +

E) if searching all paths.
3. Real-World Execution Time

Each step (movement between rooms) might take 0.5 seconds.

Total movement time ≈ 8 × 0.5s = 4 seconds (assuming no

delays).

Final Practical Time Complexity

Direct path: O(N) = O(8) (Linear Time)

For a large map search: O(V + E) (Graph Traversal Time)

Real-time execution: ~4 seconds (for 8 steps, assuming 0.5s

per step).

5.2 Space Complexity:
Practical Space Complexity Calculation for 218 → 229 via

208

1. Memory Used for Storing the Path

The robot follows the path: 218 → 215 → 208 → 209 → 210

→ 211 → 228 → 229 (8 rooms).

Each room (node) can be stored as a fixed-size structure (e.g.,

room ID, coordinates).

If each room takes 4 bytes, then storing the path needs:

8 rooms × 4 bytes = 32 bytes

2. Memory Used for Algorithm Execution

BFS (Breadth-First Search):

Uses a queue to track visited rooms.

Worst-case memory: O(W) (width of the graph).

If maximum simultaneous storage is 4 rooms, it takes 4 × 4 =

16 bytes.

3. Other Memory Considerations

Visited rooms List (to avoid re-visiting): 8 × 1 byte = 8 bytes

Additional Variables (pointers, counters, etc.): ~8 bytes

Total Practical Space Usage

BFS: ~32 bytes (lower because queue is managed efficiently)

Thus, the practical space complexity remains O(N) (linear) and

small (32 bytes for this path).

6. CONCLUSION
Breadth-First Search (BFS) is a simple way to explore complex

graphs step by step. It always finds the shortest path in

unweighted graphs. In the present work, BFS found three

different paths from source (room 218) to goal (room 229) by

checking each level one by one. This made sure no path was

missed. BFS is useful for finding the best way to move in small

spaces. But it has some problems, like using a lot of memory

and not working well with weighted paths. Even with these

issues, BFS is still a good choice for finding short paths in

mazes, networks, and maps. The path optimization can be

further optimized with hybrid model.

7. REFERENCES
[1] B. S. Harapan, Pencarian Shortest Path Dinamik dengan

Algoritma Bellman Based Flood Fill dan Implementasinya

pada Robot Micromouse, Institut Teknologi Bandung,

2009.

[2] I. Elshamarka and B. S. S. Abu, Design and Implementation

of a Robot for Maze-Solving using Flood-Fill Algorithm,

Universiti Teknologi Petronas. 2012.

[3] R. K. Sreekanth, “Artificial intelligence algorithms,” IOSR

Journal of Computer Engineering, vol. 6, no. 3 September-

October 2012.

[4] D. Zai, H. Budiati and S.B. Berutu, "Simulation of the

Shortest Route to Tourism Locations in Nias Using the

Breadth-FirstSearch and Tabu Search Methods", InFact

Journal ,Vol. 1 No. 2, Nov. 2016.[2] B. Fu et al., "An

improved A* algorithm for the industrial robot path

planning with high success rate and short length,"Rob.

Auton. Syst., vol. 106, pp. 26–37, 2018.

[5] S. K. Debnath et al., "A review on graph search algorithms

for optimal energy efficient path planning for an

unmanned airvehicle," Indones. J. Electr. Eng. Comput.

Sci., vol. 15, no. 2, pp. 743–750, 2019.

International Journal of Computer Applications (0975 – 8887)

Volume 186 – No.81, April 2025

38

[6] G. L. Andrade and D. H. Thomas, "An Optimized Breadth-

First Search Algorithm for Routing in Optical

AccessNetworks," IEEE Lat. Am. Trans., vol. 17, no. 7,

pp. 1088–1095, 2019.

[7] R. Zhou and E. A. Hansen, "Breadth-first heuristic

search," Artif. Intell., vol. 170, no. 4–5, pp. 385–408,

2006.

[8] D. C. Kozen, "Lecture 4. Depth-First and Breadth-First

Search," in The Design and Analysis of Algorithms,

Springer, NewYork, NY, 2011.

[9] F. Zhang et al., "An adaptive breadth-first search algorithm

on integrated architectures," J. Supercomput., vol. 74, no.

11,pp. 6135–6155, 2018.

[10] A. N. Putri, "Search the blind breadth first search algorithm

in 3d game engine maze third person shooter android

based onintelligent agent". Transformatika Journal, Vol.

14, No. 1, Jul. 2016.

IJCATM : www.ijcaonline.org

