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ABSTRACT 

Extreme Learning Machines (ELM) traditionally employ the 

squared loss function as the training criterion. However, this 

function is highly sensitive to outliers, which can amplify 

their impact on training outcomes of the model, causing the 

model to deviate from the true data distribution and reducing 

robustness of the model. Additionally, traditional ELM may 

encounter overfitting issues when dealing with high-

dimensional dataset. To tackle these issues, this study intro-

duces an innovative ELM frameworkthat integrates capped ℓ1 

regularization with pinball loss function, termed as Cℓ1-

PELM. The capped ℓ1 regularization helps prevent overfit-

ting, and the pinball loss function, due to its linear relationship 

with the error, effectively mitigates the adverse effects of 

outliers on model training. This paper employs an iterative 

reweighting algorithm to optimize the objective function, 

ensuring rapid convergence of the model during the training 

process. Experimental results on 18 real-world datasets dem-

onstrate that Cℓ1-PELM exhibits superior robustness, genera-

lization performance, and stability in comparison to other 

advanced algorithms, particularly in environments with out-

liers. 
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1. INTRODUCTION 
ELM [1-2] generate random connection weights for the input 

and hidden layers, along with the biases for the neurons in the 

hidden layer, which remain unchanged during the training 

process. By determining the number of hidden layer neurons, 

the output weights can be calculated by applying the Moore-

Penrose inverse matrix method to obtain the unique optimal 

solution. Compared with traditional training algorithms, ELM 

stands out for its simple implementation, quick training, and 

excellent generalization performance. It has gained significant 

attention and found application in multiple areas, including 

face recognition [3], electricity market forecasting [4], and 

fuel cell system [5]. However, outliers in the datasets may 

lead to overfitting of the model. ELM typically uses the 

squared loss function, which performs best when the errors 

are normally distributed, but the actual error distribution may 

not meet this assumption. To minimize the influence of out-

liers on model accuracy while maintaining the training speed 

and generalization advantages of ELM, constructing a robust 

ELM model in the field of machine learning is particularly 

necessary and significant. 

Currently, improvements to robustness of ELM are primarily 

focused on two aspects. Firstly, the optimization of the loss 

function. Wang et al. [6]introduced the pinball loss function 

into ELM to minimize quantile errors, effectively suppressing 

the impact of outliers on the decision function. Yang et al. 

[7]applied the maximum mixed correlation entropy criterion 

to semi-supervised ELM,enhancing ability of the modelto 

resist outliers in the dataset, thereby improving robustnessthe 

model.Secondly, the introduction of regularization terms in 

ELM is aimed at preventing overfitting. Bala et al. 

[8]introduced an online sequential ELM based on ℓ21 norm 

regularization, suitable for real-time data processing, reducing 

the time and memory consumption required for the model 

retraining each time new data is added.Dai et al.[9] proposed a 

novel regularization method to address the needs of multi-

dimensional output tasks in ELM. This method extends the 

traditional ℓ1/2 regularization to ℓ2,1/2 regularization. 

Through this extension, it is possible to enhance robustness of 

the model to outliers while maintaining model performance. 

This paper presents an innovative ELM model that integrates 

capped ℓ1 regularization and pinball loss function, solved 

through an iterative reweighting method, with the aim of en-

hancing robustness of the model in the face of outliers in the 

dataset. The organization of the paper is as follows: the 

second section offers a concise overview of the theoretical 

foundations of ELM; the third section outlines the proposed 

algorithm; the fourth section offers experimental descriptions 

and result analysis; finally, summarizes the paper. 

2. RELATED WORKS 

2.1 Capped ℓ1 Regularization 
Capped ℓ1 regularization [10,11] is an improved method over 

the traditional ℓ1 regularization[12], designed to more effec-

tively approximate the ℓ0 regularization[13].The mathemati-

cal formulation of capped ℓ1 regularization is as follows: 

( ) min( ,| |)u j ju        (1) 
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Where u  is threshold and 0u  .As depicted in Figure 1, 

when the absolute value of the output weight is less than the 

threshold u , capped ℓ1 regularization behaves identically to 

ℓ1 regularization; when the absolute value of the output 

weight exceeds the threshold u , the capped ℓ1 regularization 

is capped at the threshold u . This approach effectively bal-

ances complexity of the modeland its robustness against out-

liers. 

 

Figure 1: Capped ℓ1 Regularization 

2.2 Pinball Loss Function 
Pinball loss function [14] is the loss function designed for 

quantile regression, which can effectively reduce sensitivity of 

the model to outliers. It is defined as follows:
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Where p denotes the quantile. By adjusting the value of p , it 

is possible to estimate different quantiles.As depicted in Fig-

ure 2, the pinball loss function exhibits linearity and asymme-

try. When the error ie  is greater than 0, the growth rate of the 

squared loss function increases more rapidly than that of the 

pinball loss function with the increase in error; the converse is 

also true. 

 

Figure2: Pinball loss function 

2.3 Iterative Reweighted Robust Regulari-

zation ELM 
To tackle the sensitivity of the squared loss function to out-

liers, this paper employs a reweighting approach to incorpo-

rate the L1 loss function into ELM to enhance the robustness 

of the model.This model can be realized by addressing the 

following optimization problem: 
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Where C  represents the regularization parameter, which is 

utilized to control the complexity of themodel. Lagrangian 

function for equation (3) is constructed as follows: 
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Where i is Lagrange multiplier. This paper employs an itera-

tive reweighting method to solve equation (4). Each iteration 

is akin to tackling a weighted least squares problem, where 

the weights are determined by the errors from the previous 

iteration. Utilize the Karush-Kuhn-Tucker (KKT) conditions 

to obtain the best solution: 
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Where
 w 

represents the weight function for ℓ1 norm, specif-

ically 
6( ) 1/ max(| |,10 )i iew e  . From equation (5), the out-

put weights can be derived as follows: 
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Where 1[ ( ),..., ( )]T

NH h x h x

1{ ( ),..., ( )}NNW diag w we e . 

3. ELM WITH CAPPED ℓ1 REGULARI-

ZATION AND PINBALL LOSS FUNC-

TION 
To improve the generalization performance of ELM, this pa-

per proposes Cℓ1-PELM. The optimization problem of it is 

formulated as follows: 
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The optimal solution is obtained by constructing the Lagran-

gian function and employing KKT conditions. 
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Where LW represents the weight function for capped ℓ1 regu-

larization, specifically 

1 2{ , ,..., }( ) ( ) ( )L L L L LW diag w w w  
              (9) 
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And NW  represents the weight function for pinball loss func-

tion, specifically 

1 2{ , ,..., }( ) ( ) ( )N N N N NW diag w e w e w e              (11) 
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The algorithm of Cℓ1-PELM is as follows: 

Input: 1 max, , , , , , , ;{( , )}N

i i i Lx y pC u t    

Step 1: Initialize (0) (0)I; ; 1;N LW W I t    

Step 2: Calculate the output weightsusing Equations (6). 

Step 3: Compute errors
( )( ) ;t

i i ie h x y   

Step 4: Update LW  and NW using Equations (10) and (12). 

Step 5: Update the output weights
 1t




 using Equation(8). 

Step 6: If maxt t
 or 

   1
|| ||

t t
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
 , stop the iteration and 

obtain the solution 
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 

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   1t t

 

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to Step 3.   

Output: The weights  . 

4. EXPERIMENTS 
this study compares Cℓ1-PELM with the regularized extreme 

learning machine (RELM) [15], weighted regularized extreme 

learning machine (WELM) [16], iteratively reweighted robust 

regularized extreme learning machine (ℓ1ELM, ℓ1- ℓ1ELM) 

[17], and pinball loss-based extreme learning machine (PELM) 

[6] to validate the effectiveness of it. Parameters C , p , u  are 

picked from sets (2^-19 2^-18 2^-17…2^17 2^18 2^19), (0.05 

0.1 0.15…0.9 0.95 1), (0.0001 0.001 0.01 0.1 1 10 100 1000 

10000),respectively.   is set to 0.001. RMSE is used to as-

sess the performance of each model. All algorithms employ 

the Sigmoid function as the activation function, with a maxi-

mum iteration limit of 20. For each parameter configuration, 

the experiments are conducted independently 10 times to ob-

tain the average test RMSE. The optimal parameters are de-

termined based on the lowest average RMSE. The values of 

all datasets are normalized to the range (-1,1). The experimen-

tal hardware platform features an Intel Core i7-12700 proces-

sor running at 4.70 GHz, 16 GB of RAM, and a 64-bit Win-

dows 10 OS. The programming environment is MATLAB 

R2020b. 

4.1 Robustness Experimental Analysis 
To verify the robustness of Cℓ1-PELM in handling dataset 

containing outliers, this paper employed a random sampling 

method to generate outliers, and randomly sampled values 

between the minimum and maximum outputs of the training 

samples and added these values to the designated outputs to 

create outliers [17].Table 1 presents detailed information of 

18 real-world datasets, including the dimensionality of the 

datasets, the sizes of the training and test sets. Experiments 

were conducted on datasets with outlier ratios of 0%, 10%, 

and 20%, respectively. Table 2 presents the experimental 

findings, with the best results emphasized in bold.  

As shown in Table 2, Cℓ1-PELM achieved the lowest RMSE 

on 11 datasets under the scenario with no outliers (0%). When 

Table 1. Information on 18 real-world datasets 

datasets 
Feature 

dimension 
Training set Testing set 

Machine 6 140 69 

Diabetes 2 20 23 

Cooling 8 400 368 

Mpg 7 200 192 

Yacht 6 200 108 

BH 13 300 206 

Concrete 8 600 430 

NO2 7 300 200 

Pollution 15 40 20 

Pyrim 27 40 34 

ENBC 8 400 368 

Triazines 60 120 66 

Servo 4 120 47 

Bodyfat 14 160 92 

Abalone 7 2000 2177 

Airfoil 5 1000 503 

MG 6 700 685 

Space_ga 6 1800 1307 

the outlier ratio increased to 10%, Cℓ1-PELM attained the 

optimal prediction accuracy on 14 datasets. Even when the 

outlier ratio further increased to 20%, Cℓ1-PELM maintained 

the best prediction accuracy on 16 datasets. It is not difficult 

to observe that Cℓ1-PELM is suitable for datasets containing 

outliers, and as the proportion of outliers increases, the ro-

bustness and stability of the model improve. 

It is noteworthy that, compared to the other five algorithms, 

the RMSE of Cℓ1-PELM exhibits only minimal fluctuation 

with the increase in the ratio of outliers, as shown in Figure 3 

(a). RELM uses the squared loss function demonstrates the 

poorest performance on datasets containing outliers. WELM, 

which employs aniterativereweighting method, experiences a 

significant increase in RMSE as the ratio of outliers grows. 

ℓ1ELM that utilizes an ℓ1 loss functionshows better perfor-

mance due to ability of the ℓ1 norm to somewhat mitigate the 

impact of outliers. ℓ1- ℓ1ELM, which uses the ℓ1 norm for 

both the loss function and regularization term, further en-

hances robustness of ℓ1- ℓ1ELM. The PELM, which employs 

the pinball loss function, can adapt to datasets with outliers by 

adjusting the quantile parameter p , thus demonstrating rela-

tively good performance. However, when compared with the 

Cℓ1-PELM proposed in this paper, these algorithms all exhi-

bit greater fluctuations in response to changes in the ratio of 
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outliers, and their RMSE values are not as optimal as those of 

the Cℓ1-PELM.The phenomenon in Figure 3 (a) is the same 

as that in Figure3 (a). 

Table 2 Comparison of RMSE experimental results on real-world datasets 

datasets 
Outlier 

ratio 
RELM WELM ℓ1ELM PELM ℓ1- ℓ1ELM Cℓ1-PELM 

Diabetes 0% 0.6171 0.6185 0.6244 0.6202 0.6008 0.5902 

 10% 0.6874 0.6463 0.6481 0.6444 0.6112 0.6096 

 20% 0.7227 0.6445 0.6535 0.6328 0.6163 0.6134 

Mpg 0% 2.7911 2.7873 2.8082 2.8007 2.7939 2.7825 

 10% 4.0918 2.8401 2.8815 2.8789 2.8577 2.8427 

 20% 5.3817 3.2517 3.0269 2.9305 3.0336 2.9167 

Yacht 0% 1.9021 1.9360 2.3088 2.6243 1.6115 1.4117 

 10% 7.0368 3.7690 2.7096 2.9632 2.6337 1.9675 

 20% 9.7171 6.3775 4.7369 3.5731 4.4640 2.3636 

Concrete 0% 6.4257 6.5276 6.7397 6.9040 6.7773 6.7361 

 10% 9.2527 7.4908 7.5653 7.6599 7.5582 7.3435 

 20% 11.9875 8.4785 8.4698 7.9129 8.5101 7.6945 

Pollution 0% 41.2155 40.0596 41.9972 41.4652 41.4997 40.8425 

 10% 48.5809 44.5537 45.1348 45.0374 43.6350 43.5461 

 20% 53.6576 48.2616 47.3794 45.6842 45.5953 44.3591 

BH 0% 3.8803 4.0380 4.0233 3.9963 4.0033 3.9814 

 10% 4.9008 4.1636 4.1711 4.1548 4.1312 4.1166 

 20% 6.4469 4.4858 4.3243 4.2542 4.3508 4.1977 

NO2 0% 0.5135 0.5168 0.5226 0.5227 0.5223 0.5222 

 10% 0.5895 0.5235 0.5334 0.5250 0.5330 0.5248 

 20% 0.7242 0.5466 0.5552 0.5252 0.5568 0.5230 

Pyrim 0% 0.0864 0.0833 0.0818 0.0808 0.0802 0.0789 

 10% 0.0990 0.0816 0.0828 0.0828 0.0811 0.0819 

 20% 0.1095 0.0936 0.0893 0.0832 0.0817 0.0805 

ENBC 0% 1.4003 1.4071 1.4875 1.5554 1.4322 1.4233 

 10% 3.3833 1.8603 1.6957 1.6987 1.6358 1.5908 

 20% 4.9116 2.6779 2.2271 1.7866 2.2397 1.6901 

Machine 0% 57.3521 55.8167 55.2525 55.2559 56.4308 53.3809 

 10% 93.8634 62.7115 57.1769 56.8396 59.378 54.5161 

 20% 126.0512 67.4567 59.4492 58.1149 63.3377 56.7770 

Triazines 0% 0.1350 0.1362 0.1339 0.1330 0.1328 0.1324 

 10% 0.1408 0.1382 0.1396 0.1345 0.1379 0.1335 

 20% 0.1464 0.1454 0.1444 0.1365 0.1410 0.1343 

Servo 0% 0.5942 0.5712 0.6004 0.5931 0.6079 0.5944 

 10% 0.9802 0.7562 0.6805 0.6598 0.6893 0.6062 

 20% 1.1891 0.8974 0.7565 0.6633 0.7565 0.6285 

Bodyfat 0% 0.0034 0.0028 0.0028 0.0028 0.0029 0.0028 

 10% 0.0074 0.0033 0.0029 0.0029 0.0030 0.0029 

 20% 0.0137 0.0047 0.0031 0.0029 0.0033 0.0030 

Abalone 0% 2.1793 2.1900 2.1964 2.1765 2.1926 2.1722 

 10% 2.6630 2.1743 2.1759 2.1792 2.1716 2.1722 

 20% 3.6169 2.2320 2.2044 2.1820 2.2018 2.1782 

MG 0% 0.2265 0.2265 0.2267 0.2265 0.2266 0.2265 

 10% 0.2265 0.2266 0.2272 0.2265 0.2279 0.2266 

 20% 0.2264 0.2268 0.2270 0.2265 0.2269 0.2266 

Cooling 0% 2.1686 2.2153 2.3265 2.3738 2.2673 2.2431 

 10% 3.7425 2.5159 2.5011 2.5151 2.4196 2.3354 

 20% 5.1184 3.2732 2.9698 2.6084 2.9362 2.4921 
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Airfoil 0% 3.1448 3.1784 3.2834 3.4680 3.1225 3.0628 

 10% 4.2038 3.4038 3.4498 3.4878 3.3746 3.2130 

 20% 5.6325 3.7226 3.6950 3.5089 3.6851 3.2896 

Space_ga 0% 0.2000 0.2000 0.2000 0.2000 0.2001 0.2000 

 10% 0.2583 0.2010 0.2201 0.2010 0.2055 0.2000 

 20% 0.3673 0.2077 0.2386 0.2019 0.2170 0.2000 

 

(a) Yacht dataset 

 

(b) Airfoil dataset 

Figure3: The RMSE of RELM, WELM, ℓ1ELM, PELM, 

ℓ1- ℓ1ELMand Cℓ1-PELM algorithms under (a) Yacht, (b) 

Airfoil datasets with 0%, 10%, and 20%levels of outliers 

4.2 Parameter Analysis 

4.2.1 Parameter p Analysis 
In the model proposed in this paper, the pinball loss function 

offers the advantage of mitigating the adverse effects of out-

liers by setting different quantile parameters p . To identify 

the optimal parameter p , this study employed a grid search 

approach across each real dataset. The objective of this me-

thod is to train the model to achieve the most effective output 

weights across each realdatasets, thereby enhancing the pre-

dictive accuracy and robustness of model. By doing so, we 

ensure that the model remains efficient and stable even when 

confronted with challenging data characteristics. 

To investigate the impact of p on the performance of Cℓ1-

PELM, we conducted experimental on Pollution and Pyrim 

datasets under varying outlier ratios,as illustrated in Figure 4, 

the experimental outcomes are displayed. It is evident that for 

Pollution dataset, the optimal p values corresponding to the 

lowest RMSE were 0.6, 0.5, and 0.4 at outlier ratios of 0%, 

10%, and 20%, respectively. For Pyrim dataset, the optimal 

p values were 0.65, 0.5, and 0.45 at outlier ratios of 0%, 10%, 

and 20%. This finding indicates that Cℓ1-PELM can effec-

tively control the rate of error growth through p tuning. 

Moreover, the results reveal that when datasets contain a 

higher ratioof outliers, selecting smaller parameter values is a 

more appropriate. 

 

(a) Pollution dataset 

 

(b) Pyrim dataset 

Figure.4 Influence of parameters on RMSE  

4.2.2 Parameter u  Analysis 
This paper employs the cappedℓ1 norm as a regularization 

term for the model. The capped ℓ1 regularization term in-

cludes a threshold parameter u , which allows for the restric-

tion of output weights to a fixed size u when they exceed the 

threshold parameter u . This effectively limits the excessive 

increase of output weights, thereby preventing model overfit-
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ting. During the experimental evaluation on real datasets, a 

grid search method was utilized to determine the optimal pa-

rameter u . By employing this approach, the predictive per-

formance and robustness of modelare enhanced. 

To investigate the impact of u  on the performance of Cℓ1-

PELM, we selected Diabetes and NO2 datasets and conducted 

experiments under varying outlier ratios. The results of the 

experiments are depicted in Figure 5. Figure 5(a) illustrates 

RMSE trends of Cℓ1-PELM on Diabetes dataset at different 

outlier ratios. It can be observed that as the parameter u  in-

creases, the RMSE initially decreases, then increases, and 

finally decreases again to stabilize, reaching its minimum 

value at 100u   and remaining constant thereafter. Figure 

5(b) shows RMSE trends on NO2 dataset with three different 

outlier ratios. The results indicate that RMSE decreases to a 

minimum value and then stabilizes as u  increases. Overall, 

under different outlier ratios, RMSE of Cℓ1-PELM can be 

effectively regulated by appropriately selecting u , thereby 

enhancing predictionaccuracyof the model. 

 

(a)Diabetes dataset 

 

(b)NO2 dataset 

Figure.5 Influence of parameters on RMSE  

5. CONCLUSION 
This paper proposes a novelELM regression model that inte-

grates capped ℓ1 regularization and pinball loss function. 

Compared with traditional regularized ELM models, Capped 

ℓ1 regularization mitigates overfitting by limiting the magni-

tude of u , thereby reducing the model complexity.To address 

the issue of outliers in datasets, the model employs pinball 

loss function with different quantile parameters to reduce the 

adverse effects of outliers on its performance. The model is 

solved using an iterative reweighting algorithm to accelerate 

the model training speed. Experiments were conducted on 18 

real-world datasets with varying ratios of outliers to validate 

robustness of the proposed Cℓ1-PELM and compare it with 

RELM, WELM, PELM, ℓ1ELM, and ℓ1-ℓ1ELM. The results 

demonstrate the Cℓ1-PELM outperformed other algorithms in 

terms of robustness and stability in most cases. 

In future research, the model proposed in this paper holds 

broad application potential. Particularly within the context of 

naive bayes models, the introduction of the pinball loss func-

tion is expected to further enhance classification accuracy. 

This improvement will be especially beneficial when dealing 

with imbalanced datasets, as it will optimize model perfor-

mance more effectively. 
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