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ABSTRACT 
Artificial Intelligence has revolutionized the way machines 

approach complex problem-solving. One intriguing 

application lies in solving combinatorial puzzles like the 

Rubik’s Cube, which serve as benchmarks for algorithmic 

efficiency and cognitive modelling. This paper aims to show 

the comparative analysis of AI models in how they approach 

difference Rubik’s Cube puzzles (3x3x3, 4x4x4 and 5x5x5). 

The findings provide insights into the design of more 

adaptive, scalable solvers for high-dimensional discrete 

environments, contributing to the broader field of AI planning 

and decision-making. 
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1. INTRODUCTION 
As the size of the cube increases, the complexity increases. It 

becomes more intricate to solve. The world record time to 

solve a 3x3x3 cube is 3.05 seconds and a 4x4x4 cube is 15.71 

seconds. That’s more than a dozen. This difference is because 

the Rubik’s cubes are combinatorial puzzles. Therefore, 

higher-order cubes have more combinations. Using a variety 

of strategies, such as reinforcement learning, heuristic search 

algorithms, and hybrid approaches, AI models have been 

effectively used to solve Rubik's Cubes in recent years. 

Heuristic algorithms like Kociemba's Two-Phase Solver have 

demonstrated effectiveness in producing near-optimal 

solutions, while the deep learning model DeepCubeA, for 

instance, uses reinforcement learning to discover optimal 

strategies for solving the 3x3x3 cube from scratch. The 

performance of AI models applied to higher-order cubes, 

including the 4x4x4 and 5x5x5, is still understudied despite 

these developments because these cubes are more complex 

and need for more advanced cube configuration handling. 

This study aims to conduct a comparative analysis of AI 

models applied to solving the 3x3x3, 4x4x4 and 5x5x5 

Rubik’s Cubes.This study aims to clarify the advantages and 

disadvantages of each strategy by assessing the performance 

of several AI models using a variety of measures, including 

solving time, accuracy, move efficiency, and processing 

resources. The paper also looks at how well these models 

generalize to other cube sizes and configurations, which offers 

important information for creating adaptive solvers that can 

handle permutation problems that get more complicated. 

2. ALGORITHMS 

2.1 Classical Heuristic Algorithms 
Early approaches to solving the Rubik’s Cube were based on 

mathematical algorithms and heuristics. Kociemba’s Two-

Phase Algorithm, developed in the 1990s, is one of the most 

well-known heuristic solvers for the 3x3x3 Rubik's Cube. This 

method splits the solving process into two phases: first 

reducing the cube to a "superflip" state and then solving the 

cube in an optimal number of moves. Kociemba’s algorithm is 

widely recognized for its efficiency, being able to solve the 

cube in no more than 20 moves in the worst case (Kociemba, 

1995). This algorithm, along with other search-based methods, 

remains one of the most efficient and practical ways to solve 

the standard 3x3x3 cube. 

Further research into heuristic algorithms focused on 

improving computational efficiency. For instance, IDA* 

(Iterative Deepening A*) and other search-based algorithms 

have been developed to find optimal or near-optimal solutions 

to the cube. These methods, while effective in theory, often 

suffer from computational limitations, especially when 

applied to higher-order cubes where the number of possible 

configurations increases exponentially. 

2.2 Reinforcement Learning Approaches 
In recent years, deep reinforcement learning (RL) has become 

a dominant approach in solving the Rubik's Cube, particularly 

due to the success of models such as DeepCubeA. 

DeepCubeA, a deep RL model, was trained to solve the 3x3x3 

Rubik’s Cube by learning through trial and error. It uses a 

neural network to estimate the most optimal sequence of 

moves based on the current state of the cube. DeepCubeA is 

notable for its ability to solve the cube without human-

designed heuristics, learning purely from experience. It 

achieved remarkable results, solving the cube in a minimal 

number of moves and demonstrating the power of deep 

learning in solving complex combinatorial problems. 

Other reinforcement learning models have also been 

developed to solve Rubik’s Cubes of varying sizes. For 

example, researchers have applied the same RL techniques to 

the 4x4x4 and 5x5x5 cubes, addressing the added complexity 

introduced by parity errors and the increased number of 

possible configurations. These models have generally 

demonstrated high efficiency in terms of move count and 

solving time, but they require extensive computational 

resources and training time, particularly for higher-order 

cubes. 

2.3 Hybrid Models and Evolutionary 

Algorithms 
While pure reinforcement learning and heuristic methods have 

proven effective, there has been growing interest in hybrid 

approaches that combine elements of both. For instance, 

evolutionary algorithms have been used to evolve solving 

strategies based on fitness functions that evaluate solution 

quality in terms of move count and solution. These hybrid 

models aim to capitalize on the strengths of both heuristic 

search methods and machine learning, providing a more 

flexible approach to solving the Rubik’s Cube. 

Hybrid models have also been explored for solving higher-

order cubes. Since traditional algorithms and even RL models 

struggle with the additional complexity introduced by cubes 

larger than the 3x3x3, combining search techniques with 

machine learning or using specialized neural architectures has 

shown promise in improving performance. The integration of 
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symbolic planning with neural networks, for example, has led 

to more efficient solvers for larger cubes by balancing 

exploration and exploitation during the solving process. 

3. TWO-PHASE ALGORITHM 

(KOCIEMBA’S ALGORITHM) 

It solves the cube in two phases. 
In phase 1, the algorithm looks for manoeuvres which will 

transform a scrambled cube to G1. That is, the orientations of 

corners and edges have to be constrained and the edges of the 

UD-slice have to be transferred into that slice. In phase 2 we 

restore the cube.There are many different possibilities for 

manoeuvres in phase 1. The algorithm tries different phase 1 

manoeuvres to find the most possible short overall solution. 

3.1 Phase 1 
In phase 1, any cube is described with three coordinates: 

The corner orientation coordinate (0, 2186), the edge 

orientation coordinate (0, 2047), and UDSlice coordinate.  

The UDSlice coordinate is number from 0 to 494 

(12*11*10*9/4! - 1) which is determined by the positions of 

the 4 UDSlice edges. The order of the 4 UDSlice edges within 

the positions is ignored. 

The following function (CubieCube) implements the 

computation of this coordinate. C(n,k) is the binomial 

coefficient (n choose k). 

function CubieCube.UDSliceCoord; 

var s: Word; k,n: Integer; occupied: array[0..11] of boolean; 

ed: Edge; 

begin 

  for n:= 0 to 11 do occupied[n]:=false; 

  for ed:=UR to BR do if PEdge^[ed].e >= FR then 

occupied[Word(ed)]:=true; 

  s:=0; k:=3; n:=11; 

  while k>= 0 do 

  begin 

    if occupied[n] then Dec(k) 

    else s:= s + C(n,k); 

    Dec(n); 

    end; 

  Result:= s; 

end; 

So each cube relevant for phase 1 is described by a coordinate 

triple (x1,x2,x3), and the triple is (0,0,0) if and only if we 

have a cube from G1. 

3.2 Phase 2 
In phase 2, any cube is also described with three coordinates: 

Thecorner permutation coordinate (0, 40319), the phase 2 

edge permutation coordinate (0, 40319), and the phase2 

UDSlice coordinate (0, 23).  

The phase 2 triple (0,0,0) belongs to a pristine cube. 

The phase 2 edge permutation coordinate is similar to edge 

coordinate given in the description of the coordinate level. It 

is valid only in phase 2. 

We have 8! = 40320 possibilities to permute the 8 edges of the 

U and D face (remember that we only allow 180 degree turns 

for all faces R, L, F and B). 

function CubieCube.Phase2EdgePermCoord: Word; 

vari,j: Edge; x,s: Integer; 

begin 

  x:= 0; 

  for i:= DB downtoSucc(UR) do 

  begin 

    s:=0; 

    for j:= Pred(i) downto UR do 

    begin 

      if PEdge^[j].e>PEdge^[i].e then Inc(s); 

    end; 

      x:= (x+s)*Ord(i); 

  end; 

  Result:=x; 

end; 

The phase 2 UDSlice coordinate should have a range from 0 

to 23 because it represents the 4! permutations of the UDSlice 

edges in their slice. But we use an extension of theUDSlice 

coordinate instead, which is used in the huge optimal solver 

anyway and where we also regard the order of the four edges. 

This "sorted" coordinate has a range from 0 to 

11879=12*11*10*9-1. But in phase 2 this coordinate indeed 

only takes values from 0 to 23. 

This is the implementation from cubicube.pas: 

functionCubieCube.UDSliceSortedCoord: Word; 

varj,k,s,x: Integer; i,e: Edge; arr: array[0..3] of Edge; 

begin 

   j:=0; 

  for i:= UR to BR do 

  begin 

    e:=PEdge^[i].e; 

    if (e=FR) or (e=FL) or (e=BL) or (e=BR) then begin 

arr[j]:= e; Inc(j); end; 

  end; 

  x:= 0; 

  for j:= 3 downto 1 do 

  begin 

    s:=0; 

    for k:= j-1 downto 0 do 

    begin 

      if arr[k]>arr[j] then Inc(s); 

    end; 

    x:= (x+s)*j; 

  end; 

  Result:= UDSliceCoord*24 + x; 

end; 

4. RL APPROACH (DEEPCUBEA) 
To create a Rubik's Cube solver in Python, follow these steps:  

4.1 Collect data 
Gather a dataset of scrambled cube configurations and their 

corresponding solutions. You can use existing algorithms or 

solutions for this.  

4.2 Design model architecture 
Create a deep learning model, like a neural network, that can 

understand the relationship between a scrambled cube state 

and its solution. Consider using convolutional neural networks 

(CNNs) to represent thecube.  

4.3 Implementa recursive approach 
Develop a recursive algorithm that breaks down the Rubik's 

Cube solving problem into smaller sub-problems. Define base 

cases for when the cube is already solved or in a simpler state. 
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4.4 Train the model 
Use the compiled dataset to train the deep learning model. 

Implement the recursive algorithm and train it using the same 

dataset.  

4.5 Integration 
Combine the trained deep learning model with the recursive 

algorithm to create a hybrid solution. Make sure the model 

can predict the next moves in the recursive solving process.  

4.6 Test and evaluate 
Evaluate the performance of the model by using a separate test 

set of scrambled cubes. Measure accuracy, efficiency, and 

compare it with conventional methods.  

4.7 Optimize 
Improve the performance of the model and algorithm by 

refining them. Explore techniques like transfer learning or 

model compression to enhance efficiency.  

4.8 Document and present 
Document your code and provide clear instructions for usage. 

Create a presentation or report summarizing your approach, 

results, and any challenges you encountered. Remember, this 

is a high-level overview, and each step requires further 

exploration. Adapt and experiment based on your preferences 

and finding 

5. LITERATURE REVIEW 
While significant research has focused on solving the 3x3x3 

Rubik’s Cube, solving higher-order cubes presents new 

challenges. The 4x4x4 and 5x5x5 cubes introduce additional 

complexities, such as parity errors, which occur when the 

cube reaches a state where certain pieces cannot be flipped or 

rotated without violating the cube's constraints. Traditional 

solvers, such as Kociemba’s algorithm, are not designed to 

handle these errors and thus fail when applied to higher-order 

cubes. 

6. METHODOLOGY AND ANALYSIS 
The analysis is obtained from data collected by running 

multiple test cases for each model (Kociemba’s Two-Phase 

Algorithm, DeepCubeA, and a Hybrid Evolutionary 

Algorithm) across similar and consistent scramble sets. Their 

performance was assessed using the following metrics: time 

taken to solve, no of moves taken, and overall accuracy. The 

models were then compared with each other and the best 

performing model in each metric was determined. 

Table 6.1) Accuracy of Solving: 

Model 3x3x3 4x4x4 5x5x5 

Kociemba 100% N/A N/A 

DeepCubeA 100% 82% 69% 

Hybrid Model 91% 77% 61% 

 

Table 6.2) Solving Time (in seconds): 

Model 3x3x3 4x4x4 5x5x5 

Kociemba 0.08 N/A N/A 

DeepCubeA 0.52 1.91 3.73 

Hybrid Model 1.67 3.22 6.11 

 

Table 6.3) Average No of Moves: 

Model 3x3x3 4x4x4 5x5x5 

Kociemba 19.2 N/A N/A 

DeepCubeA 22.3 61.7 102.5 

Hybrid Model 29.8 70.4 115.3 

 

6.1 Computational Resource Usage 
I) Kociemba was the most lightweight in terms of CPU and 

memory usage 

II) DeepCubeA consumed the most GPU memory during 

inference, particularly on higher-order cubes due to the depth 

of the neural network. 

III) The hybrid model’s population-based evaluations across 

several generations resulted in a significant computational 

burden on the CPU side. 

7. OBSERVATIONS 

7.1 Accuracy 
From Table 5.1, it can be inferred that Kociemba's algorithm's 

deterministic nature and demonstrated efficiency allowed it to 

reach flawless accuracy on the 3x3x3 cube. It doesn't scale to 
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higher-order cubes, though. On the 3x3x3 cube, DeepCubeA 

performed well, but as the cube size increased, its accuracy 

decreased. This implies that its capacity for generalization in 

the absence of retraining is limited. The hybrid model showed 

some generalization ability, albeit at the expense of 

consistency, and reasonable accuracy across all cubes. 

7.2 Speed 
Kociemba's precomputed move tables and effective heuristic 

search made it the fastest model for the 3x3x3 cube. Although 

it grew non-linearly with increasing cube order, DeepCubeA 

maintained comparatively quick solving times. Due to the 

additional rounds and population assessments needed for 

evolutionary approaches, the hybrid model was noticeably 

slower, especially on larger cubes. 

7.3 Efficiency 
When it came to the number of moves, Kociemba was most 

effective with the 3x3x3. Despite producing somewhat longer 

solutions, DeepCubeA worked well, particularly as cube size 

rose. Because it placed more emphasis on convergence to a 

solution than on decreasing the number of movements, the 

hybrid model had the most moves. 

7.4 Generalization to Higher-Order Cubes 
DeepCubeA demonstrated limited generalization to 4x4x4 and 

5x5x5 variants after being trained just on the 3x3x3 cube. 

Although it could provide solutions, its accuracy and move 

efficiency drastically declined. Because of its flexible 

optimization approach, the hybrid model demonstrated 

improved adaptability to higher-order cubes although being 

slower. 

Kociemba was not included in this section of the examination 

since it was algorithm-specific and could not be immediately 

expanded to higher-order cubes without undergoing 

considerable changes. 

 

Table 7.1) Best Performing Model in Each Metric: 

Metric Best Performing Model 

Accuracy Kociemba 

Speed DeepCubeA 

Efficiency Kociemba 

Scalability Hybrid Model 

Resource Usage Kociemba 

 
8. CONCLUSION 
For the 3x3x3 cube, Kociemba's technique is still the most 

accurate and efficient, but it cannot be scaled to more 

complicated versions, as it lacks scalability. In contrast, 

DeepCubeA performs exceptionally well on the cube for 

which it was trained, but unless it is retrained or adjusted, its 

generalization performance drastically declines for higher-

order cubes. The hybrid evolutionary approach compromises 

speed and move optimality in exchange for flexibility and 

modest accuracy across all cube sizes. 

In the end, there isn't a single optimal AI model for solving 

the Rubik's Cube in every dimension. Each strategy has its 

own advantages: evolutionary methods offer adaptive 

strategies appropriate for wider generalization, albeit at the 

expense of efficiency; reinforcement learning models offer 

potent learning capabilities within a bounded training set; and 

heuristic models perform best in deterministic, well-defined 

environments. 
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