
International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.10, May 2025

25

Comparative Analysis of AI Models in Solving 3x3x3 and

Higher-Order Rubik’s Cube Puzzles

Ishaan Singh

ABSTRACT
Artificial Intelligence has revolutionized the way machines

approach complex problem-solving. One intriguing

application lies in solving combinatorial puzzles like the

Rubik’s Cube, which serve as benchmarks for algorithmic

efficiency and cognitive modelling. This paper aims to show

the comparative analysis of AI models in how they approach

difference Rubik’s Cube puzzles (3x3x3, 4x4x4 and 5x5x5).

The findings provide insights into the design of more

adaptive, scalable solvers for high-dimensional discrete

environments, contributing to the broader field of AI planning

and decision-making.

Keywords
Artificial Intelligence, Rubik's Cubes, Algorithmic Efficiency,

Analysis

1. INTRODUCTION
As the size of the cube increases, the complexity increases. It

becomes more intricate to solve. The world record time to

solve a 3x3x3 cube is 3.05 seconds and a 4x4x4 cube is 15.71

seconds. That’s more than a dozen. This difference is because

the Rubik’s cubes are combinatorial puzzles. Therefore,

higher-order cubes have more combinations. Using a variety

of strategies, such as reinforcement learning, heuristic search

algorithms, and hybrid approaches, AI models have been

effectively used to solve Rubik's Cubes in recent years.

Heuristic algorithms like Kociemba's Two-Phase Solver have

demonstrated effectiveness in producing near-optimal

solutions, while the deep learning model DeepCubeA, for

instance, uses reinforcement learning to discover optimal

strategies for solving the 3x3x3 cube from scratch. The

performance of AI models applied to higher-order cubes,

including the 4x4x4 and 5x5x5, is still understudied despite

these developments because these cubes are more complex

and need for more advanced cube configuration handling.

This study aims to conduct a comparative analysis of AI

models applied to solving the 3x3x3, 4x4x4 and 5x5x5

Rubik’s Cubes.This study aims to clarify the advantages and

disadvantages of each strategy by assessing the performance

of several AI models using a variety of measures, including

solving time, accuracy, move efficiency, and processing

resources. The paper also looks at how well these models

generalize to other cube sizes and configurations, which offers

important information for creating adaptive solvers that can

handle permutation problems that get more complicated.

2. ALGORITHMS

2.1 Classical Heuristic Algorithms
Early approaches to solving the Rubik’s Cube were based on

mathematical algorithms and heuristics. Kociemba’s Two-

Phase Algorithm, developed in the 1990s, is one of the most

well-known heuristic solvers for the 3x3x3 Rubik's Cube. This

method splits the solving process into two phases: first

reducing the cube to a "superflip" state and then solving the

cube in an optimal number of moves. Kociemba’s algorithm is

widely recognized for its efficiency, being able to solve the

cube in no more than 20 moves in the worst case (Kociemba,

1995). This algorithm, along with other search-based methods,

remains one of the most efficient and practical ways to solve

the standard 3x3x3 cube.

Further research into heuristic algorithms focused on

improving computational efficiency. For instance, IDA*

(Iterative Deepening A*) and other search-based algorithms

have been developed to find optimal or near-optimal solutions

to the cube. These methods, while effective in theory, often

suffer from computational limitations, especially when

applied to higher-order cubes where the number of possible

configurations increases exponentially.

2.2 Reinforcement Learning Approaches
In recent years, deep reinforcement learning (RL) has become

a dominant approach in solving the Rubik's Cube, particularly

due to the success of models such as DeepCubeA.

DeepCubeA, a deep RL model, was trained to solve the 3x3x3

Rubik’s Cube by learning through trial and error. It uses a

neural network to estimate the most optimal sequence of

moves based on the current state of the cube. DeepCubeA is

notable for its ability to solve the cube without human-

designed heuristics, learning purely from experience. It

achieved remarkable results, solving the cube in a minimal

number of moves and demonstrating the power of deep

learning in solving complex combinatorial problems.

Other reinforcement learning models have also been

developed to solve Rubik’s Cubes of varying sizes. For

example, researchers have applied the same RL techniques to

the 4x4x4 and 5x5x5 cubes, addressing the added complexity

introduced by parity errors and the increased number of

possible configurations. These models have generally

demonstrated high efficiency in terms of move count and

solving time, but they require extensive computational

resources and training time, particularly for higher-order

cubes.

2.3 Hybrid Models and Evolutionary

Algorithms
While pure reinforcement learning and heuristic methods have

proven effective, there has been growing interest in hybrid

approaches that combine elements of both. For instance,

evolutionary algorithms have been used to evolve solving

strategies based on fitness functions that evaluate solution

quality in terms of move count and solution. These hybrid

models aim to capitalize on the strengths of both heuristic

search methods and machine learning, providing a more

flexible approach to solving the Rubik’s Cube.

Hybrid models have also been explored for solving higher-

order cubes. Since traditional algorithms and even RL models

struggle with the additional complexity introduced by cubes

larger than the 3x3x3, combining search techniques with

machine learning or using specialized neural architectures has

shown promise in improving performance. The integration of

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.10, May 2025

26

symbolic planning with neural networks, for example, has led

to more efficient solvers for larger cubes by balancing

exploration and exploitation during the solving process.

3. TWO-PHASE ALGORITHM

(KOCIEMBA’S ALGORITHM)

It solves the cube in two phases.
In phase 1, the algorithm looks for manoeuvres which will

transform a scrambled cube to G1. That is, the orientations of

corners and edges have to be constrained and the edges of the

UD-slice have to be transferred into that slice. In phase 2 we

restore the cube.There are many different possibilities for

manoeuvres in phase 1. The algorithm tries different phase 1

manoeuvres to find the most possible short overall solution.

3.1 Phase 1
In phase 1, any cube is described with three coordinates:

The corner orientation coordinate (0, 2186), the edge

orientation coordinate (0, 2047), and UDSlice coordinate.

The UDSlice coordinate is number from 0 to 494

(12*11*10*9/4! - 1) which is determined by the positions of

the 4 UDSlice edges. The order of the 4 UDSlice edges within

the positions is ignored.

The following function (CubieCube) implements the

computation of this coordinate. C(n,k) is the binomial

coefficient (n choose k).

function CubieCube.UDSliceCoord;

var s: Word; k,n: Integer; occupied: array[0..11] of boolean;

ed: Edge;

begin

 for n:= 0 to 11 do occupied[n]:=false;

 for ed:=UR to BR do if PEdge^[ed].e >= FR then

occupied[Word(ed)]:=true;

 s:=0; k:=3; n:=11;

 while k>= 0 do

 begin

 if occupied[n] then Dec(k)

 else s:= s + C(n,k);

 Dec(n);

 end;

 Result:= s;

end;

So each cube relevant for phase 1 is described by a coordinate

triple (x1,x2,x3), and the triple is (0,0,0) if and only if we

have a cube from G1.

3.2 Phase 2
In phase 2, any cube is also described with three coordinates:

Thecorner permutation coordinate (0, 40319), the phase 2

edge permutation coordinate (0, 40319), and the phase2

UDSlice coordinate (0, 23).

The phase 2 triple (0,0,0) belongs to a pristine cube.

The phase 2 edge permutation coordinate is similar to edge

coordinate given in the description of the coordinate level. It

is valid only in phase 2.

We have 8! = 40320 possibilities to permute the 8 edges of the

U and D face (remember that we only allow 180 degree turns

for all faces R, L, F and B).

function CubieCube.Phase2EdgePermCoord: Word;

vari,j: Edge; x,s: Integer;

begin

 x:= 0;

 for i:= DB downtoSucc(UR) do

 begin

 s:=0;

 for j:= Pred(i) downto UR do

 begin

 if PEdge^[j].e>PEdge^[i].e then Inc(s);

 end;

 x:= (x+s)*Ord(i);

 end;

 Result:=x;

end;

The phase 2 UDSlice coordinate should have a range from 0

to 23 because it represents the 4! permutations of the UDSlice

edges in their slice. But we use an extension of theUDSlice

coordinate instead, which is used in the huge optimal solver

anyway and where we also regard the order of the four edges.

This "sorted" coordinate has a range from 0 to

11879=12*11*10*9-1. But in phase 2 this coordinate indeed

only takes values from 0 to 23.

This is the implementation from cubicube.pas:

functionCubieCube.UDSliceSortedCoord: Word;

varj,k,s,x: Integer; i,e: Edge; arr: array[0..3] of Edge;

begin

 j:=0;

 for i:= UR to BR do

 begin

 e:=PEdge^[i].e;

 if (e=FR) or (e=FL) or (e=BL) or (e=BR) then begin

arr[j]:= e; Inc(j); end;

 end;

 x:= 0;

 for j:= 3 downto 1 do

 begin

 s:=0;

 for k:= j-1 downto 0 do

 begin

 if arr[k]>arr[j] then Inc(s);

 end;

 x:= (x+s)*j;

 end;

 Result:= UDSliceCoord*24 + x;

end;

4. RL APPROACH (DEEPCUBEA)
To create a Rubik's Cube solver in Python, follow these steps:

4.1 Collect data
Gather a dataset of scrambled cube configurations and their

corresponding solutions. You can use existing algorithms or

solutions for this.

4.2 Design model architecture
Create a deep learning model, like a neural network, that can

understand the relationship between a scrambled cube state

and its solution. Consider using convolutional neural networks

(CNNs) to represent thecube.

4.3 Implementa recursive approach
Develop a recursive algorithm that breaks down the Rubik's

Cube solving problem into smaller sub-problems. Define base

cases for when the cube is already solved or in a simpler state.

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.10, May 2025

27

4.4 Train the model
Use the compiled dataset to train the deep learning model.

Implement the recursive algorithm and train it using the same

dataset.

4.5 Integration
Combine the trained deep learning model with the recursive

algorithm to create a hybrid solution. Make sure the model

can predict the next moves in the recursive solving process.

4.6 Test and evaluate
Evaluate the performance of the model by using a separate test

set of scrambled cubes. Measure accuracy, efficiency, and

compare it with conventional methods.

4.7 Optimize
Improve the performance of the model and algorithm by

refining them. Explore techniques like transfer learning or

model compression to enhance efficiency.

4.8 Document and present
Document your code and provide clear instructions for usage.

Create a presentation or report summarizing your approach,

results, and any challenges you encountered. Remember, this

is a high-level overview, and each step requires further

exploration. Adapt and experiment based on your preferences

and finding

5. LITERATURE REVIEW
While significant research has focused on solving the 3x3x3

Rubik’s Cube, solving higher-order cubes presents new

challenges. The 4x4x4 and 5x5x5 cubes introduce additional

complexities, such as parity errors, which occur when the

cube reaches a state where certain pieces cannot be flipped or

rotated without violating the cube's constraints. Traditional

solvers, such as Kociemba’s algorithm, are not designed to

handle these errors and thus fail when applied to higher-order

cubes.

6. METHODOLOGY AND ANALYSIS
The analysis is obtained from data collected by running

multiple test cases for each model (Kociemba’s Two-Phase

Algorithm, DeepCubeA, and a Hybrid Evolutionary

Algorithm) across similar and consistent scramble sets. Their

performance was assessed using the following metrics: time

taken to solve, no of moves taken, and overall accuracy. The

models were then compared with each other and the best

performing model in each metric was determined.

Table 6.1) Accuracy of Solving:

Model 3x3x3 4x4x4 5x5x5

Kociemba 100% N/A N/A

DeepCubeA 100% 82% 69%

Hybrid Model 91% 77% 61%

Table 6.2) Solving Time (in seconds):

Model 3x3x3 4x4x4 5x5x5

Kociemba 0.08 N/A N/A

DeepCubeA 0.52 1.91 3.73

Hybrid Model 1.67 3.22 6.11

Table 6.3) Average No of Moves:

Model 3x3x3 4x4x4 5x5x5

Kociemba 19.2 N/A N/A

DeepCubeA 22.3 61.7 102.5

Hybrid Model 29.8 70.4 115.3

6.1 Computational Resource Usage
I) Kociemba was the most lightweight in terms of CPU and

memory usage

II) DeepCubeA consumed the most GPU memory during

inference, particularly on higher-order cubes due to the depth

of the neural network.

III) The hybrid model’s population-based evaluations across

several generations resulted in a significant computational

burden on the CPU side.

7. OBSERVATIONS

7.1 Accuracy
From Table 5.1, it can be inferred that Kociemba's algorithm's

deterministic nature and demonstrated efficiency allowed it to

reach flawless accuracy on the 3x3x3 cube. It doesn't scale to

International Journal of Computer Applications (0975 – 8887)

Volume 187 – No.10, May 2025

28

higher-order cubes, though. On the 3x3x3 cube, DeepCubeA

performed well, but as the cube size increased, its accuracy

decreased. This implies that its capacity for generalization in

the absence of retraining is limited. The hybrid model showed

some generalization ability, albeit at the expense of

consistency, and reasonable accuracy across all cubes.

7.2 Speed
Kociemba's precomputed move tables and effective heuristic

search made it the fastest model for the 3x3x3 cube. Although

it grew non-linearly with increasing cube order, DeepCubeA

maintained comparatively quick solving times. Due to the

additional rounds and population assessments needed for

evolutionary approaches, the hybrid model was noticeably

slower, especially on larger cubes.

7.3 Efficiency
When it came to the number of moves, Kociemba was most

effective with the 3x3x3. Despite producing somewhat longer

solutions, DeepCubeA worked well, particularly as cube size

rose. Because it placed more emphasis on convergence to a

solution than on decreasing the number of movements, the

hybrid model had the most moves.

7.4 Generalization to Higher-Order Cubes
DeepCubeA demonstrated limited generalization to 4x4x4 and

5x5x5 variants after being trained just on the 3x3x3 cube.

Although it could provide solutions, its accuracy and move

efficiency drastically declined. Because of its flexible

optimization approach, the hybrid model demonstrated

improved adaptability to higher-order cubes although being

slower.

Kociemba was not included in this section of the examination

since it was algorithm-specific and could not be immediately

expanded to higher-order cubes without undergoing

considerable changes.

Table 7.1) Best Performing Model in Each Metric:

Metric Best Performing Model

Accuracy Kociemba

Speed DeepCubeA

Efficiency Kociemba

Scalability Hybrid Model

Resource Usage Kociemba

8. CONCLUSION
For the 3x3x3 cube, Kociemba's technique is still the most

accurate and efficient, but it cannot be scaled to more

complicated versions, as it lacks scalability. In contrast,

DeepCubeA performs exceptionally well on the cube for

which it was trained, but unless it is retrained or adjusted, its

generalization performance drastically declines for higher-

order cubes. The hybrid evolutionary approach compromises

speed and move optimality in exchange for flexibility and

modest accuracy across all cube sizes.

In the end, there isn't a single optimal AI model for solving

the Rubik's Cube in every dimension. Each strategy has its

own advantages: evolutionary methods offer adaptive

strategies appropriate for wider generalization, albeit at the

expense of efficiency; reinforcement learning models offer

potent learning capabilities within a bounded training set; and

heuristic models perform best in deterministic, well-defined

environments.

9. REFERENCES
[1] Agostinelli, F., McAleer, S., Shmakov, A., &Baldi, P.

(2019).

[2] Solving the Rubik's Cube with Deep Reinforcement

Learning and Search.

[3] Juntao Chen (2018).Different Algorithms to Solve a

Rubik’s Cube

[4] Mahindra Roshan, S.Rakesh, T.SriGnana Guru,

B.Rohith, J.Hemalatha. (2024).Towards efficiently

solving the rubik’s cube with deep reinforcement

learning and recursion

[5] Kociemba, Herbert. Cube Explorer (Windows program).

http://kociemba.org/cube.htm

[6] Korf, Richard E IJCAI-97.Finding Optimal Solutions to

Rubik’s Cube Using Pattern Databases.

[7] Emir Barucija, AmilaAkagic, Samir Ribic,

ZelijkoJuric.Two approaches in solving Rubik’s cube

with Hardware-Software Co-design

IJCATM : www.ijcaonline.org

http://kociemba.org/cube.htm

