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ABSTRACT
Hand gestures are a powerful method of communication that serve
as a bridge between humans and computers, enabling intuitive in-
teraction. Hand Gesture Recognition (HGR) systems aim to support
this vision but face several challenges such as gesture irregular-
ity, illumination variation, background interference, and computa-
tional complexity. This study evaluates 252 peer-reviewed articles
published between 1995 and 2024, with a focus on input modali-
ties, algorithmic approaches, benchmark datasets, application do-
mains, and system-level challenges such as automation, scalability,
generalization, and real-time performance.The evolution of HGR
methods is categorized chronologically, beginning with early rule-
based models, progressing through classical machine learning tech-
niques such as SVM, KNN, and HMM, and advancing to deep
learning frameworks including CNNs, RNNs, LSTMs, 3D CNNs,
and Graph Convolutional Networks (GCNs). In recent years, hybrid
and pretrained architectures including LSTM+3DCNN, MAE+ST-
GCN, and Transformer-based models have been proposed to ad-
dress existing limitations and improve performance. Various in-
put modalities have been explored, including RGB image and
video data, depth sensors, skeletal tracking, IMU, and EMG sig-
nals. Widely adopted benchmark datasets include SHREC, DHG-
14/28, and NVGesture. A temporal classification framework is in-

troduced to segment the progression of HGR technologies across
decades. The study highlights key trends, technological advance-
ments, and unresolved challenges, offering insights that may guide
the development of accurate, efficient, and user-centric HGR sys-
tems, particularly in mobile and embedded computing contexts.
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1. INTRODUCTION
An interface is required to communicate between humans and ma-
chines and it should also be user-friendly. Speech and hand gestures
are the most common interface. People use several controlling de-
vices such as joysticks and remote controls to operate the machines.
Many application systems use these devices like software interface
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control, gaming, virtual environments, automatic television control,
smart home interactive control, and sign language interpretation
[1]. Humans generally communicate using hand gestures, and the
community of people with hearing impairments uses sign language,
a natural form of hand gesture communication [2]. The use of hand
gestures in communication is successful for humans, and efforts
are currently being made to replicate this effectiveness in computer
vision systems [3].
However, Hand Gesture Recognition (HGR) systems face chal-
lenges in achieving high accuracy because of background interfer-
ence. To address this problem, researchers studied to find out vari-
ous methods. Still, HGR systems face complexities in implementa-
tion in real-life applications. Therefore, a comprehensive analysis
of the HGR system is essential. In this paper, we reviewed more
than 250 articles, tracing the evolution of the HGR system across
different eras and highlighting their findings and challenges. In Fig-
ure 1, we have represented the total papers year-wise used in this
paper.

1.1 Context and Background
The interaction between humans and computers is one of the
most significant evolutions indicating that they adapt to each
other in different situations [4]. Human gesture recognition (HGR)
is used in human-robot interaction to build intuitive user inter-
faces [1, 5]. Many researchers tried implementing various mod-
els to improve human-computer interaction using hand gestures
[1]. The main steps in vision-based recognition include data acqui-
sition, hand region segmentation, feature extraction, and Gesture
classification[1].
In Figure 2, the general flowchart of a HGR system is shown. Sev-
eral sensors such as data gloves, leap motion, vision sensors, depth
sensors, etc. are available to develop a hand gesture recognition
(HGR) system [6]. These are used to acquire the dataset of multiple
modalities. Then the dataset is sent for appropriate pre-processing
and feature extraction. After selecting the best feature, we need a
classifier to classify the hand gesture correctly [7].

1.2 Research Motivation
Gesture recognition holds great possibilities for improving HCI,
with applications ranging from sign language recognition to vir-
tual reality [8]. Despite progress, challenges remain, particularly
in making systems work reliably in real-world conditions beyond
controlled environments [9]. Hand gesture recognition (HGR) is
an essential human-machine interface for several applications, such
as assistive technologies, smart home systems, virtual worlds, and
gaming [10, 11]. High accuracy and reliable performance are still
difficult to achieve, though, because of problems including back-
ground interference and a variety of hand behaviors. This study
reviews more than 200 publications and identifies important issues
to close the gap between theoretical developments and real-world
usability in HGR systems. To improve human-computer interac-
tion, the objective is to create HGR systems that are more precise,
flexible, and easy to use.

1.3 Research Contribution
This review paper provides a comprehensive analysis of the evolu-
tion and advancements in Hand Gesture Recognition (HGR) sys-
tems by reviewing over 200 research papers. The key contributions
of this work are as follows:

Systematic Review: We present a detailed year-wise review
of HGR-related studies, highlighting significant developments,
methodologies, and trends.
Framework Analysis: The framework for HGR systems of different
eras is discussed.
Technology Overview: Various sensors and modalities used for
HGR systems, including data gloves, vision sensors, and depth sen-
sors, are analyzed to provide insights into their strengths and limi-
tations.
Challenges and Gaps: We identify persistent challenges such as
background interference, variability in gestures, and real-world im-
plementation complexities, providing a foundation for future re-
search.

1.4 Research Question
Through this research, we have tried to identify this question below
RQ#1: How have HGR systems developed over time concerning its
datasets, input modalities, and techniques and how has this evolu-
tion taken place?
To answer this question (RQ#1), we have reviewed the number of
papers carefully and sorted their findings in tabular form in this
paper.

1.5 Structure of the Paper
The structure of the paper is as shown in figure 3. Section II investi-
gates the methodological review of early-stage methods, in section
III, we have discussed the traditional ML-related papers. In section
IV, we analyzed the deep learning era of HGR systems. In section
V, we presented the current methods and trends in the HGR sys-
tem. We proceeded in section VI to discuss the applications of the
HGR system. In section VII, we identified the challenges and their
potential solutions. Finally, we concluded our paper in section VIII.

2. EARLY STATE OF HGR (1995-2010)
The development of the hand gesture recognition (HGR) system
initially were relied on rule-based and handcrafted features [12]. In
most of the scenarios before 2010, rule-based systems and hand-
crafted feature extraction methods were commonly used. Addition-
ally, most of them were heavily dependent on predefined algorithms
and manual selection of features for the interpretation of gestures.
For Example, geometric features like finger lengths, angles, and
contours are extracted manually to distinguish features [13]. For
the segmentation of the HGR, computer vision techniques such as
edge detection, and background subtraction played a pivotal role
in isolating the hand region from the background [14]. Moreover,
data acquisition in this era was often done by using data globes
with sensors that captured the movement and position of the hand
gesture with poor accuracy [15] [16].
However, the dependence on such hardware made the systems more
bulky and less user-friendly. One of the main weaknesses of these
earlier works is that neither are they flexible nor powerful. Since,
the features were handpicked, the generalization performance of
the systems was not very good across different users, lighting con-
ditions, and backgrounds [17]. Moreover, the computational costs
associated with processing these handcrafted features in real-time
were too high, and hence the systems could hardly be applied in
realistic scenarios [18].
Despite these challenges, the foundational work in this era set the
stage for future advancements. Limitations of the rule-based and
handcrafted feature systems provided insights that set the stage for
more adaptive and learning-based approaches. The ground was be-
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Fig. 1. Number of year-wise publication used in our review paper.

Fig. 2. Flowchart of a Common HGR System.

ing laid at this point for integrating machine learning and, eventu-
ally deeper learning techniques in hand gesture recognition. Before
2010, most of the systems of hand gesture recognition were de-
pendent on manual feature extraction and a rule-based algorithm.
While these approaches had rather reasonable performance in con-
trolled conditions, they were not flexible or robust enough for wider
applicability, thus signifying the further need for more advanced
and adaptive techniques over the years [19].

2.1 Input modalities
Datasets are the key to developing and evaluating HGR systems.
They serve as benchmarks for testing algorithms, training machine
learning models, and validating the effectiveness of recognition
techniques. Over these years, a variety of datasets have been de-

veloped by researchers depending on targeted applications, rang-
ing from static gesture classification to dynamic sequence analy-
sis, including applications within SLR, virtual reality, and human-
computer interaction. These datasets vary in characteristics, start-
ing from the type of data, such as images, videos, or sensor read-
ings, to the number of gesture classes, variety in subjects, and the
number of samples [31]. Earlier datasets were quite limited in their
scope, usually containing small gesture classes and constrained di-
versity, which are good for a controlled experiment but not effective
for real-world applications. Recently, more effort has been put into
the development of more complete datasets with a wider range of
gestures, different subjects, and challenging environmental condi-
tions to better mimic real-world settings.
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Fig. 3. Structure of the Paper.

Table 1. Gesture Recognition Datasets and Their Limitations
Authors Year Dataset Name Dataset Type Subject Gesture Class Sample Limitation
Chen et al. [20] 2003 - Image - 20 - 1200 Does not use different classes

for HGR
Alon et al. [21] 2009 ASL Video 7 8 - 60 There is no sufficient training

dataset
Quattoni et al. [22] 2006 Hand Gesture Video - 6 5 - Participant and gesture size

were too small
Gupta et al. [23] 2001 ASL Image - 10 10 - Limited gesture size
Shengli Zhou et al. [24] 2009 Hand Gesture Image 30 - - 200 Relatively small sample size

for the training
Kolsch et al. [25] 2004 Hand Gesture Image 20 6 - 2300 Limited to diverse posture
Lee et al. [26] 2002 - - - - - 370 Lack of detailed dataset de-

scription
Ming-Hsuan Yang et al. [27] 2002 - Image 5 18 6 230 Small dataset size and limited

to specific gestures
Suk et al. [28] 2010 - Video 7 10 - 490 A small number of subjects

and gestures
Elmezain et al. [29] 2008 - Video 20 10 - 200 Limited to a small number of

gestures
Lee and Hong [30] 2010 - Image - 30 4 240 Lack of dataset diversity

Chen et al. [20] proposed an image-based dataset consisting of 20
classes of gestures, with 1200 samples. While it provided the ba-
sic foundation for gesture recognition, the lack of diversity in the
classes of gestures again made it inefficient for complex HGR sys-
tems. Alon et al.[21] used a video-based American Sign Language
dataset that consisted of gestures from 7 subjects across 8 classes.
However, this dataset had limited training samples, hence restrict-
ing scalability and performance in real-world applications. More-
over, Shengli Zhou et al.[24] presented an image-based dataset of
30 gesture classes and 200 samples. While relatively small in size,
this database, despite its modest diversity, was insufficient to train
HGR models. Kolsch et al.[25] proposed an image dataset that in-
cludes samples for 6 classes by 20 subjects and comprised a total
of 2300 samples. Its use for general applications has, however been
limited because this large-scale dataset possesses poor variation in
posture. Other datasets are more geared toward increasing variety

in the type of gestures and samples. Such is the case with the image-
based dataset presented by Ming-Hsuan Yang et al.[27], including
18 classes of gestures with a total of 230 samples, whereas Suk
et al. [28] and Elmezain et al.[29] presented video-based datasets
of 10 gesture classes but had limitations concerning subjects and
sample variation, which influences their generalizability. Though
these datasets indeed laid a very vital ground for research in gesture
recognition, their limitations in diversity, sample size, and subject
representation bring up the need for more inclusive and expansive
datasets. Larger, more diverse, and annotated datasets will be criti-
cal in moving HGR systems forward for practical applications.

2.2 Algorithmic Approach
2.2.1 Hidden Markov Model (HMM) for HGR. Hidden Markov
Models (HMMs) have proven highly effective for dynamic hand
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gesture recognition, primarily due to their ability to model sequen-
tial data [32]. These probabilistic models represent gestures as se-
quences of feature vectors extracted from video frames, making
them particularly suitable for analyzing temporal variations in hand
movements [33]. In this model, pre-processing techniques such as
skin color-based segmentation and morphological operations are
often used to isolate the hand regions and enhance the trajectories
of the image [34, 35]. Moreover, feature extraction methods also
range from Hu invariant moments, hand orientation, position, ve-
locity, shape, and 8-directional chain codes [36] [37] [38]. Speeded-
up robust Features have also been used because of their efficiency
in finding hand features accurately [33]. HMM method training
typically involves the Baum-Welch algorithm and often employs
a Left-Right Banded topology, which is well-suited for modeling
the progressive nature of gestures [33]. Furthermore, recognition
is done by algorithms such as Forward or Viterbi, which calcu-
late the likelihood of new gesture sequences matching the trained
models [34] [35]. In some cases, alternative approaches such as
state sequence analysis have been explored to minimize computa-
tional complexity [34]. Applications such as sign language recog-
nition, human-computer interaction, and virtual reality interfaces
demonstrate high accuracy in systems based on HMM. For exam-
ple, more than 90% recognition rates for isolated gestures were re-
ported by various researchers like Shrivastava et al. and Milu et al
[33] [36]. However, despite this success, there are still consider-
able challenges regarding complex and natural gesture recognition
in unconstrained environments and remains a very active field of
research.

2.2.2 Rule-based HGR. Rule-based models rely on predefined
rules and logical conditions to classify hand gestures based on ex-
tracted features such as hand shape, position, or motion patterns.
These systems are straightforward, interpretable, and computation-
ally efficient which makes them suitable for applications with sim-
ple and static gestures [46] [47]. A common approach in rule-based
systems involves mapping features to particular gestures by the use
of heuristics such as ”if-else” conditions or decision trees. For ex-
ample, a ”swipe left” gesture can be recognized by detecting hor-
izontal hand movement from right to left within a certain veloc-
ity range. Feature extraction covers not only static attributes, such
as the position of fingertips and hand shapes but also dynamic at-
tributes like the direction and speed of movement. Some feature-
advanced implementations make use of fuzzy logic for spatiotem-
poral gesture recognition, providing a greater degree of flexibility
by allowing more variations [48] [49]. Recognition accuracies have
been reported within a range from 80.5% to 98.5% for different
types of gestures, proving the efficiency of rule-based systems in
controlled conditions Despite their merits, rule-based models begin
to suffer with dynamic gestures, noise, or when the set of different
gestures is too big or complex to define and manage intricate rules.
Nevertheless, they are especially suited for cases where computa-
tional efficiency, interpret ability, and low dependence on training
data are desired. These models have found their successful applica-
tion in controlling home appliances, recognizing simple gestures,
and improving human-computer interaction [50] [51] [48].

3. MACHINE LEARNING ERA (2011-2015)
We looked at 35 articles between 2011 and 2015. Out of the 35
publications, we discovered that 24 were classified using the con-
ventional ML model, 1 using deep learning [67], and 5 using hybrid
models. We received 21 papers with vision-based input modalities,
6 with sensor-based input modalities, and 3 with multimodal input

modalities. Furthermore, we discovered that the majority of arti-
cles published during this period of time concentrated on creating
applications that include robotic control, natural interactions in vir-
tual and augmented reality settings, sign language recognition, and
game control. The studies will be categorized in this part according
to their datasets, applications, algorithmic techniques, input modal-
ities, and restrictions. In addition, attempts are made to visualize the
different model factors.

3.1 Methodological Approaches
The term ”Traditional ML” describes a group of algorithms that
create prediction models for classification, regression, clustering,
and other tasks using manually designed features and structured
data. These strategies include k-nearest neighbors, support vector
machines, decision trees, and linear regression. Traditional ma-
chine learning relies significantly on domain expertise for feature
extraction and works effectively with smaller datasets. In contrast
to deep learning, which automatically discovers patterns from raw
data. When structured data is involved model interpret-ability is a
top concern. It works especially well.
In the machine learning era, most of the papers used tradition
machine learning models for classification and vision-based input
modalities, and some of the papers built hybrid models by com-
bining traditional ML methods. [68] This paper used three HMM
for the hand coordinates, accelerations, and angles grouped and fed
into three HMM classifier gestures to produce a classification. In
the table-7 included hybrid models and their respective results. [69]
used RGB and depth video for training and classification it used
SVM that improved accuracy significantly. [70] utilizes an inertial
sensor and depth sensor for input and for classification it utilized
HMM that achieved an accuracy of 93%. In the table-5, table-6
mentioned various factor of dataset that have been used along with
traditional machine learning methods. Table 6 differs from table-5
by input modalities. Table 6 utilized sensor-based input modality
where table-5 used vision-based modality. Some of the algorithmic
approaches of the machine learning era will be discussed in this
section.

3.2 Key Algorithms and Findings
3.2.1 Support Vector Machines (SVM). SVM is most widely
used algorithm for classification. It is a supervised learning algo-
rithm that works by finding the optimal hyperplane that best sepa-
rates the data points into different classes[71, 72]. This paper used
PCA for feature extraction and then SVM for classification and they
achieved an accuracy of 99.6%. The paper [73][19] used SVM for
classification and they gained 98.24% accuracy.

3.2.2 Hidden Markov Models (HMM). A Hidden Markov Model
is a graph-based model [75]. It works by converting gestures into
sequential symbols. This model is frequently used for classifica-
tion problems. Separate HMMs are trained for each gesture, class,
or sequence using the corresponding training data and then Com-
pute the likelihood of the given observation sequence for all trained
HMMs. after that select the HMM (gesture/class) with the highest
likelihood as the result [76, 77]. In this study, several papers used
this model and got impressive results such as Pradeep and Nevatia
et al[78] used the HMM classifier and got 100% accuracy for mov-
ing gestures. Xiaoyan Wang, Ming Xia, et al [79] used a hidden
markov model and they achieved 98% accuracy. [80] and [81] also
utilized HMM and got pretty good accuracy.
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Table 2. Summary of HMM-based Gesture Recognition and their Performance
Authors Year Input Type Dataset Type Method Accuracy

Chen et al. [20] 2003 Image - HMM 85%
Chen et al. [37] 2007 Image - AdaBoost 90%
Alon et al. [21] 2008 Video ASL CDPP 79%

Murakami et al. [38] 1991 - - RNN 94%
Schlomer et al. [39] 2008 Image - HMM 90%
Quattoni et al. [22] 2006 Image - HCRF 85.25%

Shengli Zhou et al. [24] 2009 Image - HMM 92.86%
Kjeldsen et al. [40] 1996 - - CPN, HMM 93.63%
Waldherr et al. [41] 2000 - - Neural Network (NN) 97%
Kolsch et al. [25] - Image ASL HMM, ML 95.42%
Starner et al. [42] 1996 - - HMMs 91.90%
Vogler et al. [43] 2001 Image ASL PaHMMs 93.27%
Starner et al. [42] 1998 Image ASL HMM 92%

Suk et al. [28] 2010 Image - DBN 84%
Elmezain et al. [29] 2008 Image - HMM 95.7%

Gaus et al. [44] 2012 Image MSL HMM 83%
Elmezain et al. [45] 2009 Image Digit Sign HMM 94%
Mahmoud et al. [46] 2010 Image Arabic Digit HMM 95.87%

Liu et al. [47] 2004 Image English Alphabet HMM 90%

Table 3. Summary of Rule-based Gesture Recognition and their Performance
Authors Year Input Type Dataset Type Method Classifier Accuracy
Hachaj et al. [52] 2013 Image Static Pose Rule-based GDL 80.5%
Riad et al. [53] 2014 Image ArSL Rule-based Geometric 95.3%
Craven et al. [54] 1997 Image - Rule-based - 82.7%
McGlaun et al. [55] 2004 Image - Rule-based - 93.7%
Ren et al. [56] 2013 Image Hand Gesture Rule-based FEMD 93.2%
Leon-Garza et al. [57] 2022 - - Rule-based - 96.4%
Cui et al. [58] 2000 Image Hand Sign Rule-based - 93.2%
Bauer et al. [59] 2000 Video German Sign Lan-

guage
Rule-based - 91.7%

Hachaj et al. [60] 2012 Image Movement Sequences Rule-based GDL 80.5%
Hachaj et al. [61] 2014 Image Body Poses Rule-based GDL 85.6%
McGlaun et al. [62] 2004 Video Head Gestures Rule-based Template-matching 93.7%
Bedregal et al. [63] 2006 Data Glove LIBRAS Fuzzy Rule-based Fuzzy Logic 92.5%
Lech et al. [64] 2012 Camera Dynamic Hand Ges-

tures
Fuzzy Rule-based Fuzzy Logic 89.3%

Chen et al. [65] 2000 Image Hand Gestures Rule-based Decision Tree 85.7%
Rautaray et al. [66] 2005 Camera Hand Gestures Rule-based Fixed Threshold 90.1%
Ohn-Bar et al. [19] 2004 Video Automotive Interfaces Rule-based Geometric Features 88.9%

3.3 Datasets and Applications
One essential component for training a model is a dataset. It has a
significant impact on both model accuracy and reduction [77]. The
accuracy of models can be affected by several variables, including
the number of samples, sample data fluctuation, dataset type, data
preparation, and more [82]. Key dataset attributes utilized in the
machine learning era are listed in Tables 5 and 6. The majority of
the research in this time was on hand gesture detection based on
vision-based input modalities. In the input system, we discovered
three papers that exploited multi-modality. [69]. RGB and depth
video data were combined in a vision-based input, and inertial and
depth sensors were combined in sensor-based inputs [70] and [68].

3.4 Limitations
The papers adopt a standard machine learning approach in this
period. A small number of articles used multimodalities in the

datasets, while the majority used SVM, HMM, and Adabost for
classification. Few samples were used in the majority of the dataset
to train the models. Additionally, the dataset lacked diversity.

4. DEEP LEARNING ERA (2016-2021)
From 2016 to 2021, researchers started using deep learning-based
models to recognize hand gestures effectively. In this era, they fo-
cused on CNNs, RNNs, and LSTM models to generalize the HGR
system. Traditional ML algorithms face limitations in feature ex-
traction and handling large datasets. DL addresses those challenges
by extracting features and improving efficiency. CNNs use dropout
and convolutional layers to avoid overfitting, create feature detec-
tors, and use receptive fields for weight [107]. Again, sometimes
we need human muscle tension data to analyze. In this case, EMG
can be used to interpret data, and RNN with CNNs is used for the
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Table 4. Comparison of Traditional Machine Learning and Deep Learning
Feature Traditional ML Deep Learning Limitation/Advantage
Feature Extraction Manual Automated DL reduces human effort but requires do-

main expertise for ML
Data Requirement Small to Medium Large DL needs extensive data; ML works with

limited samples
Interpretability High Low ML models are transparent; DL acts as a

”black box”
Complexity Simple Algorithms Complex Architectures DL demands high computational re-

sources
Data Type Structured (Tabular) Unstructured (Images, Text) DL excels with raw, high-dimensional

data

Fig. 4. SVM model architecture [74].

recognition [108]. In this section, we will discuss the input modali-
ties, dataset, methodology, applications, and challenges of this era.

4.1 Datasets
Datasets are crucial to evaluate the model’s performance. So, in
our research, we tried to find the benchmark datasets used mostly
in traditional machine learning and deep learning eras. Most re-
searchers used publicly available datasets to test their system ar-
chitecture. ASL and Chalearn 2016 are the two most used datasets.
Other used datasets include the National University of Singapore
(NUS) Dataset [109], Chinese Sign Language (CSL) Dataset [110],
InterSegHands Dataset [111], DHG-14/28 [112] etc. Table 1 repre-
sents the comprehensive discussion of datasets used in this era.

4.2 Input Modalities
The input modality is important for hand gesture recognition as it
defines the data type used in any model. It has a direct connec-
tion with a system’s accuracy and applications. The main modali-
ties many researchers used are RGB-based, Skeleton, Depth, Au-
dio, EMG, EEG, and Fusion data. In Table 1, we have discussed
the datasets of multiple modalities and their brief description.

4.3 Methodological Approaches
The introduction of Machine Learning (ML) and Deep Learning
(DL) technologies has led to noticeable improvements in Hand
Gesture Recognition (HGR) systems [122, 123]. These models
have transformed the recognition and interpretation of gestures, al-
lowing for extremely reliable and accurate systems that can be used
in various fields, including virtual reality, assistive technologies,
human-computer interaction, and sign language recognition [124].
This section will discuss the methodological approaches used in
this era.

4.3.1 Traditional ML Approach. X. Zhang et al. developed a new
HMM algorithm combined with DTW to improve the efficiency
and accuracy of dynamic hand gesture recognition [125]. Yi Li et
al. [126] discussed an integrated dynamic hand gesture recognition
model based on the improved DTW (Dynamic Time Warping) al-
gorithm that has a significant impact on the efficiency of dynamic
trajectory analysis. They preprocessed the video, extracted charac-
teristics, and then normalized them into a sequence template as part
of their technique [126]. The gesture recognition result met the cat-
egory with the least deviation from the template after the generated
sequence was compared to templates in the training set. Neverthe-
less, the DDW method struggles with big data sets and intricate
movements and does not use statistical methods during training.

7



International Journal of Computer Applications (0975 - 8887)
Volume 187 - No.2, May 2025

Table 5. Comprehensive Analysis of Hand Gesture Recognition Studies
Author Dataset Name Type Classes Samples Feature Extraction Classifier Accuracy

Mandeep Kaur Ahuja et
al. [83]

- Static 5 80 PCA Template matching 91.25

Dipak Kumar Ghosh et
al. [71]

Danish/International
Hand Alphabet
Dataset

Static 25 1000 LCS + Block-based SVM 99.50

Alaa Barkoky et al. [84] Persian Sign Lan-
guage (PSL)

Static - 300 - Thinning methods 96.62

Hui Li et al. [85] Kinect custom dataset Static 6 - HOG AdaBoost 93.50

Ran Wang et al. [86] - Dynamic 5 600 - Geometric algorithms 90.30

M. M. Gharasuie et al.
[87]

- Dynamic
(video)

10 600 - Hidden Markov Models
(HMMs)

99.17

Hsiang Yueh Lai et al.
[88]

- Dynamic 9 330 - Convex hull method 95.10

Alisha Pradhan et al.
[89]

Real-time + static ges-
ture system

- - - - Convex hull algorithm -

Heba M. Gamal et al.
[90]

Cambridge Hand Ges-
ture Dataset

Static 4 70 Fourier descriptors SVM, KNN, Euclidean 62.5–98.75

Srinivas Ganapathyraju
[91]

Webcam-based real-
time input

Dynamic 4 - - Convex hull algorithm -

Xianghua Li et al. [92] - Static 5 500 Zhang-Suen thinning Geometric features 82.93

Zhong Yang et al. [93] - - 18 1800 - HMM 96.67

Lalit K. Phadtare et al.
[94]

HamNoSys Dataset Static - 40 - Shape Context + Plane Fit -

D.K. Vishwakarma et al.
[95]

Marcel-Triesch
Dataset

- - - - - 97.47

Lukas Prasuhn et al. [96] American Sign Lan-
guage (ASL)

Static 19 1425 HOG L2 Distance + Brute Force -

Rajat Shrivastava [97] - Dynamic
(video)

5 - Hu moments + orientation HMM -

Bhumika Pathak et al.
[98]

- Dynamic 22 - Key frame extraction MSVM -

Table 6. Traditional ML for Classification and Sensor-Based Input Modalities

Author Dataset Name Type Classes Samples Feature Extraction Classifier

H. Seyedarabi et al. [99] - Dynamic 10 - - Hidden Markov Models
(HMMs)

S. Dai et al. [73] - Static 36 3600 - Support Vector Machines
(SVM)

Y. Wang et al. [100] - Dynamic 5 - - Linear Discriminant Func-
tions

S. Dai et al. [101] - Static 16 1600 - Bayesian Neural Network
(BNN)

B. Luo et al. [102] - Dynamic 36 300 - Support Vector Machines
(SVM)

4.3.2 CNN-Based Models. As ML-based models could not show
better performance due to some limitations, researchers tend to
use CNN-based architectures for better performance and efficiency.
Adithya V. et al. [109] proposed a CNN model to recognize static
hand gestures. They used RGB images and utilized the fully con-
nected layers to classify the gesture properly, ending with an accu-

racy of more than 94% [128]. Osama Mazhar at al. utilized RGB
vision and dynamic gestures dataset to evaluate their model per-
formance [129]. Figure 6 Shows the typical architecture of a CNN
model, and on figure 7. represents the working procedure of a CNN
model.
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Table 7. Hybrid Model for Classification and Vision-Based Input Modalities

Author Dataset Name Dataset Type Classes Samples Feature Extraction Classification Accuracy

S. Imran et al. [103] - Static - 50 - SVM-based classifi-
cation

95

M. Rahmati et al.
[104]

- Dynamic (Video) 12 - HOG Fuzzy SVM + Dy-
namic Bayesian Net-
works (DBN)

90

R. Kapoor et al. [105] ASL Static 18 - - Self-Organizing Maps
(SOMs)

92

C. Yang et al. [106] - Dynamic - - Histogram of Oriented
Gradients (HOG)

AdaBoost + Hid-
den Markov Models
(HMMs)

-

Fig. 5. Block Diagram of ML Approach [127].

Fig. 6. Typical Architecture of CNN [128].

4.3.3 RNN-based Models. Recurrent Neural Network (RNN) is
a deep learning architecture that can be trained to process sequen-
tial data such as words, sentences, and time series into specific se-
quential data output [130]. It mimics the human brain performing
sequential data transformations such as translating text from one
language to another. Philipp Koch at al. proposed an RNN architec-
ture based on accelerometer data since accelerometers may also be
readily included in mobile devices. This tiny network performs far
better than state-of-the-art hand gesture detection techniques that
depend on multi-modal data, according to experiments conducted
on three datasets [131, 130]. Many researchers use RNN with CNN
or LSTM to get better performance which we will discuss in the fu-
sion model part.

Fig. 7. The schematic representation of the CNN model for hand posture
recognition [128].

4.3.4 Fusion-Based Models. Kenneth Lai et al. proposed a model
combining convolutional neural networks (CNN) and recurrent
neural networks (RNN) to automate hand gesture detection using
depth and skeletal data [112, 130]. CNN extracts significant spa-
tial information from depth pictures, while RNN identifies move-
ment patterns for individual joints. They achieved an accuracy of
85.46%. To discover hand muscle signals that may be utilized to
operate drones, Ray Antonius at al. proposed a CNN-RNN neural
network technique. Myo, an 8-channel EMG device, and 14,000
datasets of nine distinct movements are used in the procedure [108].
Using a drone kit to test the trained models on a drone, the average
positive detection rate for each gesture was 96.60%. This high posi-
tive recognition rate may pave the way for wearable technology that
allows for real-time human control. To learn both short-term and
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Table 8. Brief Description of Datasets of Multiple Modalities from 2016–2021
Modality Type Dataset Name Year Type No. of Subjects No. of Classes Total Samples

RGB Image OUHAND 2016 ASL 23 10 3000

RGB Image NTU Datasets 2018 Digits 10 10 1000

RGB Image ASL-10 2020 SL 22 10 2800

RGB Image MUD 2021 ASL - 36 2520

RGB Image HGR 1 2021 ASL 12 25 899

RGB Image Marcel 2021 ASL - 6 5531

RGB Image NUS II 2021 ASL 40 10 2000

RGB Video ChaLearn LAP IsoGD [113] 2016 Hand Gesture 21 249 47933

RGB Video DVS Gesture [114] 2016 Hand Gesture 29 11 1342

RGB Video NVGesture [115] 2016 Hand Gesture - 25 1532

RGB Video IsoGD 2017 Multiple - 13 47933

RGB Video CSL-Daily [116] 2021 Chinese 10 2000 20654

RGB Video SIGNUM [117] 2021 German 25 1230 15075

RGB Video BOBSL [118] 2021 British 85 395 47551

RGB Video LSFB [119] 2021 French, Belgian 100 6883 85132

Skeleton Data ASLLVD [120] 2019 ASL - - 9748

Skeleton Data [120] 2019 General - - 2800

Skeleton Data MSRA [120] 2019 General - - 76500

Skeleton Data PSL 2020 Pakistani - - 2700

Skeleton Data AUTSL [121] 2020 Turkey - - 38336

EMG Data DB1 2019 HGR 27 - -

EMG Data DB2 2014 HGR 40 - -

EMG Data DB3 2014 HGR 11 - -

EMG Data DB4 2020 HGR 10 - -

EMG Data DB5 2021 HGR 10 - -

EMG Data DB6 2019 HGR 10 - -

EMG Data DB7 2016 HGR 22 - -

EMG Data DB8 2020 HGR 12 - -

EMG Data DB9 2018 HGR 77 - -

EMG Data DB10 2017 HGR 45 - -

EMG Data Arm Band 2019 HGR 6 - -

EMG Data EMG High Density 2021 HGR 41 - 256

long-term characteristics from video inputs, Wenjin Zhang et al.
[132] introduced a unique deep-learning network for hand gesture
identification that integrates various modules. The network divides
the input video into groups of frames, chooses frames at random,
and extracts features using a convolutional neural network [133].
evaluated on well-known hand gesture datasets, the model yields
competitive results and demonstrates resilience when evaluated on
an enlarged dataset with a greater variety of hand movements [134].
In recent years, LSTMs have demonstrated exceptional perfor-
mance in a few domains of sequence data processing. Researchers
have started using LSTMs with CNN and RNN architectures. Fig-
ure 4 shows the block diagram of an LSTM.

5. CURRENT TRENDS IN HGR (2022–PRESENT)
Hand Gesture Recognition has seen rapid advancements in recent
years, driven by innovations in machine learning, multimodal inte-
gration, and lightweight model architectures [163].

5.1 Different Architecture of Current HGR system
5.1.1 Transformer Models. Transformers, such as Vision Trans-
formers (ViT) and Graph Vision Transformers (GViT), have been
widely adopted for modeling complex hand gesture sequences.
Their self-attention mechanism captures spatial and temporal de-
pendencies, enabling higher accuracy in dynamic gesture recog-
nition. Recent models like GestFormer incorporate Multiscale
Wavelet Pooling to enhance efficiency [164, 165].
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Table 9. Summary of Methodology Used from 2016–2021
Input Modality Author Year Dataset Feature Model Classifier Accuracy (%)

RGB Image Wenjin Tao et al. [135] 2018 ASL CNN CNN 84.80

RGB Image C. Bhuvaneshwari et al.
[136]

2019 ASL, Indian SL LSTM Fully Connected Layer -

RGB Image Nada B. Ibrahim et al.
[137]

2018 Arabic SL - HMM 97.00

RGB Image Shin-ichi Ito et al. 2020 Japanese SL CNN MVSM 94.30

RGB Image [109] 2020 ASL CNN Softmax 99.96

Video Oliveira et al. [138] 2018 Iris SL PCA PCA 95.00

Video Jing-Hao Sun et al.
[139]

2018 SKIG C3D+LSTM Softmax 98.60

Video Lionel Pigou et al.
[140]

2018 Montalbano RNN Softmax 67.71

Video Du Jiang et al. [141] 2019 ChaLearn LAP IsoGD ResC3D Softmax 50.93

Video Prachi Sharma et al.
[142]

2020 ChaLearn LAP IsoGD C3D+Pyramid Softmax 49.20

Video Qing Gao et al. [143] 2020 ASL 2S-CNN Softmax 92.00

Video Zhimin Gao et al. [144] 2020 SKIG R3DCNN+RNN Softmax 100.00

Video Kayo Yin et al. [145] 2020 PHOENIX14-T,
ASLG-PC12

STMC-Transformer Bi-LSTM, CTC 96.60

Video Zhenxing Zhou et al.
[116]

2021 Kinetics-400, HSL HOG (3+2+1)D CNN 94.60

Skeleton Image De Smedt et al. [146] 2016 ASL HOG Fisher Kernel, SVM 86.86

Skeleton Image De et al. [147] 2016 DHGD SoCJ + HoHD +
HoWR

Softmax 80.00

Skeleton Image Boulahia [148] 2017 DHGD Boulahia Softmax 80.48

Skeleton Image Liu et al. [149] 2017 ASL LSTM LSTM 96.30

Skeleton Image Konstantinidis et al.
[150]

2018 Argentinian SL VGG-19 Network CNN, RNN, LSTM 98.09

Skeleton Image Juan C. Nunez et al.
[151]

2018 DHGD CNN+LSTM Softmax 74.19

Skeleton Image Yan et al. [152] 2018 DHGD STA-GCN Softmax 87.10

Skeleton Image Ma et al. [153] 2018 DHGD NIUKF-LSTM Softmax 80.44

Skeleton Image W. Wei et al. [154] 2019 AUSTL Multi-Stream GCN CNN 99.00

Skeleton Image Hengyang Si et al.
[155]

2019 Shrec CNN+LSTM Softmax 89.52

Skeleton Image Jiang et al. [156] 2021 Turkish SL SSTCN CNN, LSTM 98.53

Skeleton Image Jiang et al. [157] 2021 Chinese SL SL-GCN, SSTCN,
3DCNN

GEM 99.81

Skeleton Image Rastgoo et al. [158] 2021 Persian SL 3DCNN 2DCNN, 3DCNN,
LSTM

99.80

EMG Data Zhang et al. [159] 2019 American SL RNN RNN 89.60

EMG Data Cote-Allard et al. [160] 2019 American SL CNN CNN 97.81

EMG Data Wei et al. [161] 2019 American SL CNN DL 90.00

EMG Data Lee et al. [162] 2021 American SL RMS, VAR, MAV,
SSC, ZC, WL

ANN 94.00

5.1.2 Real-Time Systems. Lightweight architectures, such as
FGDSNet and HGR-Lite, have been developed for edge devices,
ensuring high accuracy and minimal latency. These models priori-

tize computational efficiency without compromising performance,
making them suitable for real-time applications in robotics and
gaming [166, 167].
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5.1.3 Multimodal Fusion. Combining multiple data modalities,
including RGB, depth, and skeletal data, has significantly im-
proved the robustness of HGR systems. Models like MF-HAN inte-
grate these inputs through hierarchical self-attention mechanisms,
achieving superior performance even in challenging environments
[168, 169].Integrating RGB, depth, and sensor data has enhanced
the robustness of gesture recognition systems [168, 169]. MoviNet,
a two-stream architecture for wrist-worn cameras, achieved an im-
pressive 98.48% accuracy in cross-subject evaluations [170].

5.1.4 Deep Learning Architectures. Deep learning remains the
backbone of HGR research. Novel CNN-based models such as
CMLG-Net [171] and lightweight CNNs for thermal video-based
gestures [172] have demonstrated exceptional accuracy and robust-
ness, achieving 97% in challenging datasets. Transformer-based
architectures like MVTN have shown exceptional performance in
handling hand variations, achieving a 98.61% accuracy rate [173].

5.1.5 EMG-Based Models. Shin et al. [174] introduced a multi-
stream approach for sEMG signal recognition, achieving 94.31%
(DB1) and 98.96% (DB9) on Ninapro datasets, significantly im-
proving gesture recognition in prosthetics and robotics [174]. Other
works explored diverse domain feature enhancement for EMG-
based gesture recognition, reaching 97.43% accuracy with KNN
[175].

5.1.6 Hybrid Systems. Hybrid approaches combining vision-
based and sensor-based data have gained prominence. Examples in-
clude multimodal fusion in gesture recognition [176], transformer-
based hybrid systems such as TY-Net [177], and CNN-LSTM
frameworks for dynamic gestures [166, 178].

5.2 Specialized Applications
Thermal video recognition, as explored by Birkeland et al., high-
lights the potential for field testing in hard-of-hearing communities
[172]. Novel methodologies like sterile training techniques with
radar systems improve static gesture recognition rates up to 95%
[179].

5.3 Input Modalities
The input modalities for hand gesture recognition systems play a
crucial role in determining their robustness, adaptability, and per-
formance. HGR systems can be broadly categorized into three types
based on their input data sources:

5.3.1 Vision-Based Input. Vision-based systems utilize cameras
to capture RGB or depth images of hand gestures. These systems
excel at capturing spatial details and are widely used in gaming and
virtual reality applications. However, they face challenges in low-
light conditions and complex backgrounds [180, 176].

5.3.2 Sensor-Based Input. Sensor-based systems use wearable
devices such as electromyography (EMG) sensors, force sensors,
or inertial measurement units (IMUs) to capture gesture data. These
systems are highly accurate for fine-grained gestures but require
users to wear specialized hardware [181, 182].

5.3.3 Multimodal Input. Multimodal systems combine visual
and sensor-based data to enhance accuracy and adaptability. By
leveraging complementary strengths, they address the limitations
of single-modality systems. Examples include integrating RGB
and depth data or combining EMG signals with visual inputs
[168, 183].

Table 10. Comparison of Input Modalities in HGR Systems

Input Modality Advantages Challenges

Vision-Based High spatial res-
olution; no hard-
ware dependency.

Sensitive to
lighting and back-
ground variations.

Sensor-Based Accurate for fine-
grained gestures;
wearable and
portable.

Requires special-
ized hardware;
user-dependent
variability.

Multi-modal Robust perfor-
mance across
conditions; im-
proved accuracy.

Higher computa-
tional complexity;
integration chal-
lenges.

5.4 Algorithmic Approaches
Hand Gesture Recognition (HGR) has seen the application of di-
verse algorithmic approaches, ranging from traditional machine
learning techniques to cutting-edge deep learning and hybrid mod-
els [184]. Each approach offers unique benefits and limitations, as
discussed below.

5.5 Traditional Machine Learning
Traditional ML methods, such as Support Vector Machines
(SVMs), K-nearest neighbors (KNNs), and Random Forests, have
been widely used in early HGR systems [185]. These methods rely
on handcrafted feature extraction and work well for small-scale
datasets. However, they often struggle to generalize in complex,
real-world scenarios [186, 187].
Advantages:

—Simple and computationally efficient [186].
—Performs well on small datasets [187].

Challenges:

—Limited scalability for large-scale datasets [186].
—Reliance on manual feature engineering [187].

5.6 Deep Learning
Deep learning approaches leverage neural networks, such as Con-
volutional Neural Networks (CNNs), Recurrent Neural Networks
(RNNs), and Transformers, to automatically learn features from
raw data [188]. This paradigm shift has significantly improved the
accuracy and generalization of HGR systems [165, 189].
Advantages:

—High accuracy and scalability [189].
—Automated feature extraction [166].

Challenges:

—Computationally intensive [165].
—Requires large annotated datasets [189].

5.6.1 Hybrid Models. Hybrid models combine traditional ML
and deep learning techniques to achieve the best of both worlds
[190]. For instance, hybrid architectures may use ML-based classi-
fiers on deep features extracted by CNNs or use multimodal fusion
techniques for improved robustness [176, 191].
Advantages:

—Improved robustness and accuracy [191].
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Table 11. Feature Extraction and Classifier Techniques in HGR

Study Feature Extraction Classifier Highlights

Birkeland et al. [172] Lightweight CNN Softmax Real-time thermal gesture recognition for healthcare applications.

Shin et al. [174] Multi-Stream CNN Features Multi-Class SVM 98.96% accuracy on Ninapro DB9.

Nguyen et al. [170] MoviNet Architecture Dual-Stream Fusion 98.48% accuracy in dynamic gestures with wrist-worn cameras.

Garg et al. [173] Transformer Features Transformer Encoder High accuracy in video gesture recognition.

Zhang et al. [171] Local-Global CNN Custom Classifier Robust hand gesture authentication with low error rates.

Fig. 8. The Workflow of Traditional Machine Learning

—Capable of handling multimodal inputs [176].

Challenges:

—Higher complexity in design and training [176].
—Increased computational requirements [191].

5.7 Algorithm Usage in HGR
Various algorithms have been employed in Hand Gesture Recog-
nition (HGR) systems across traditional machine learning, deep

learning, and hybrid approaches. Table 12 provides an overview of
the most commonly used algorithms in these categories, along with
their approximate usage percentages as reported in the literature.

5.8 Comprehensive Dataset Analysis
The choice of dataset significantly influences the performance and
generalizability of hand gesture recognition systems. Benchmark
datasets provide the foundation for training and evaluating hand
gesture recognition (HGR) models. However, their characteristics,
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Table 12. Algorithm Usage in Hand Gesture Recognition Approaches

Approach Algorithm Usage (%)

Traditional ML SVM [186] 15%

Random Forest [192, 182] 10%

KNN [175, 193] 8%

Neural Networks (NN) [194] Unspecified

Deep Learning CNN [166, 181, 172] 30%

RNN [189] 12%

Transformer [165, 177] 18%

VGG [195] Unspecified

Hybrid Models CNN-LSTM [178] 10%

DeReFNet [196] Unspecified

Multimodal Fusion [176, 197] 7%

CNN-SVM [191] 5%

Other Graph Convolutional Networks (GCN) [198, 199] 5%

Attention-Based Networks [200, 199] 10%

GCN + MHSA [199] Unspecified

Table 13. Comparison of Algorithmic Approaches in Hand Gesture Recognition

Approach Advantages Challenges Best Use Case

Traditional ML Computationally efficient; works
well on small datasets.

Limited scalability; requires man-
ual feature engineering.

Simple gestures in controlled envi-
ronments [186, 187].

Deep Learning High accuracy; automated feature
extraction.

Computationally expensive; re-
quires large datasets.

Complex gestures in dynamic envi-
ronments [166, 189].

Hybrid Models Combines strengths of ML and DL;
handles multimodal inputs.

Higher design complexity; in-
creased computational cost.

Multimodal gestures in real-world
scenarios [176, 191].

Fig. 9. Working Procedure of Traditional Machine Learning for HGR [186].

limitations, and inherent gaps significantly impact system perfor-
mance. This section provides an updated analysis of key datasets,

focusing on their characteristics, limitations, and benchmark met-
rics such as accuracy and loss.
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Fig. 10. The Workflow of Hybrid Model for HGR System[191].

5.9 Key Characteristics and Gaps
The development of robust and accurate Hand Gesture Recognition
(HGR) systems heavily relies on the datasets used for training and
evaluation [201]. Each dataset exhibits unique characteristics that
align with specific algorithmic needs while exposing critical gaps
that limit the generalization and scalability of HGR models.

—Transformer Models Vision Transformers (ViT) and Graph Vi-
sion Transformers (GViT) have become prominent in the HGR
domain due to their ability to model complex gesture sequences

effectively. These models leverage self-attention mechanisms to
capture spatial and temporal dependencies, which are essential
for recognizing dynamic gestures. However, their performance
is constrained by the limited size and diversity of available
datasets. Most datasets used in transformer-based HGR systems
consist of predefined gestures performed in controlled environ-
ments, leading to challenges in adapting to real-world scenar-
ios where gestures vary significantly across individuals, lighting,
and backgrounds [164, 165]. Additionally, the computational re-
quirements of these models can pose barriers to their deployment
in real-time systems.
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—Real-Time Systems Lightweight architectures, such as
FGDSNet and HGR-Lite, focus on achieving high accuracy
with minimal computational overhead, making them ideal
for resource-constrained devices. These models are highly
optimized for applications such as robotics and gaming, where
latency is critical. Despite their advantages, a significant gap
exists in the availability of real-time annotated datasets. Current
datasets often fail to account for dynamic environments and
natural variations in user behavior, such as speed, occlusion, and
background clutter. Moreover, real-time systems face difficulties
in scaling to diverse user populations, as the majority of datasets
are limited to a specific demographic or small sample size
[167, 183].

—Multimodal Fusion The integration of multiple data modali-
ties, including RGB images, depth maps, and sensor data (e.g.,
EMG, IMU), has proven effective in enhancing the robustness
and adaptability of HGR systems. Multimodal fusion addresses
the limitations of single-modality systems by leveraging com-
plementary information from diverse data sources. For instance,
combining visual data with sensor-based inputs can improve
recognition in scenarios with poor lighting or occlusions. How-
ever, multimodal datasets often lack standardized benchmarks
and consistent annotation practices, making it difficult to com-
pare the performance of different approaches [202]. Further-
more, the computational complexity associated with processing
multiple modalities can hinder real-time deployment [168, 169].
There is also a need for datasets that include more complex ges-
tures and interactions to reflect real-world applications, such as
assistive technologies and augmented reality systems.

—Ethical and Privacy Concerns While not directly related to the
technical characteristics of datasets, ethical and privacy consid-
erations play a significant role in the development and usage of
HGR datasets [203]. Many datasets involve video recordings of
individuals, raising concerns about consent, anonymity, and data
security. Addressing these issues is crucial to ensure the ethi-
cal deployment of HGR systems in applications such as surveil-
lance, healthcare, and personal assistance.

—Dataset Diversity and Scalability: A recurring challenge across
all dataset categories is the lack of diversity in gesture types,
user demographics, and environmental conditions. Most existing
datasets are limited in terms of geographic and cultural represen-
tation, gesture complexity, and interaction scenarios. Expanding
the diversity of datasets to include gestures from different cul-
tures, age groups, and contexts will significantly enhance the
generalization of HGR systems.

—Real-World Applicability: Finally, a critical gap lies in the
limited testing of HGR systems in real-world conditions. Most
datasets are collected in controlled environments, which do not
reflect the challenges encountered in practical applications, such
as varying lighting, occlusions, and noise. Developing datasets
that replicate real-world scenarios is essential to improve the ro-
bustness and reliability of HGR systems [204].

5.10 Feature Extraction and Classifier
Feature extraction and classification are two critical components of
Hand Gesture Recognition (HGR) systems [205]. The performance
of HGR models heavily depends on the ability to extract meaning-
ful features and accurately classify gestures [133]. This subsection
highlights common techniques and their applications in HGR.

5.10.0.1 Feature Extraction. Feature extraction transforms
raw input data into a compact and informative representation, en-

abling models to focus on the most relevant aspects of hand ges-
tures [206]. Commonly used methods include:

—CNN-based Features Convolutional Neural Networks (CNNs)
are widely used for extracting spatial features from RGB and
depth images, offering high accuracy for static and dynamic ges-
tures [166, 207].

—Attention Mechanisms: Hierarchical and self-attention mecha-
nisms enhance feature extraction by focusing on key regions and
temporal dependencies [168].

—Hybrid Techniques Techniques such as combining spatial and
temporal features (e.g., CNN-LSTM hybrids) improve recogni-
tion for complex gestures involving motion [208, 181].

—Handcrafted Features: Traditional methods like Local Binary
Patterns (LBP) and Haar wavelets are efficient for small datasets
but lack scalability for real-world applications [209].

5.10.0.2 Classifier. The classifier is responsible for mapping
extracted features to predefined gesture classes. Different classifi-
cation techniques are used based on the dataset and application:

—Softmax Classifier Common in deep learning models, softmax
is effective for multi-class classification tasks [181].

—Support Vector Machine (SVM): Often paired with hand-
crafted features or CNN-extracted features, SVMs are robust for
binary and multi-class classification [210].

—Bayesian Classifiers: These probabilistic models are effective in
fusing multimodal data and improving classification robustness
[191].

—Custom Architectures: Novel classifiers such as Associative
Memory and Gated Attention Networks have shown promise in
improving performance for specific applications [183, 167].

5.11 Dataset Accuracy, Loss, and Gaps
Evaluating the performance of Hand Gesture Recognition (HGR)
models requires robust datasets with clearly defined metrics such
as accuracy, loss, and identified gaps. This subsection provides a
detailed analysis of benchmark datasets, highlighting their accu-
racy, loss values, the best-performing models, and the critical gaps
that limit their utility in real-world applications.

—Accuracy: Accuracy is a key metric for assessing the effective-
ness of HGR models [252]. Higher accuracy indicates better
alignment between model predictions and actual gestures. For
instance, NVGesture achieved an impressive accuracy of 98.1%
using the GestFormer model, demonstrating its suitability for dy-
namic gesture recognition in controlled environments [165].

—Loss: Loss measures the model’s error during training and evalu-
ation. Lower loss values signify better optimization of the model.
For example, the SHREC17 dataset reported a loss of 0.045 with
the ViT model, highlighting its ability to learn complex spatial
and temporal dependencies [164].

—Gaps: Despite advancements, several datasets exhibit limita-
tions, such as insufficient gesture diversity, lack of real-world
annotations, and challenges in handling dynamic or fine-grained
gestures. Addressing these gaps is crucial for enhancing the gen-
eralizability of HGR systems.
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Table 14. Feature Extraction and Classifier Details from Selected Studies from 2022–Present (Part 1)

Author(s) Year Feature Extraction Classifier

Barona Lopez et al. [166] 2024 CNN-LSTM Post-Processing Algorithm

Sharma et al. [211] 2024 Quantized CNN Softmax

Balaji and Prusty [168] 2024 Hierarchical Self-Attention Multimodal Fusion

Zhang et al. [181] 2023 Multi-Attention Mechanisms Softmax

Farid et al. [210] 2024 SSD-CNN with Deep Masks SVM

Tang et al. [212] 2024 3D Printable Sensor Features Graph Neural Network (GNN)

Shin et al. [208] 2024 Temporal and Spatial Features CNN-TCN Hybrid

Wang et al. [213] 2024 Virtual Dimension Increase Separability Feature Vector (SFV)

Awaluddin et al. [164] 2024 Hybrid Image Augmentation CNN

Garg et al. [165] 2024 Multiscale Wavelet Pooling Transformer

Sen et al. [214] 2024 Optimized YOLOv5 Features Bayesian Classifier

Bhaumik et al. [169] 2023 Spatial Feature Attention Custom Deep Network

Sarma et al. [180] 2023 Attention-based Semantic Segmentation VGG16 and C3D

Mahmud et al. [176] 2023 Quantized Depth and Skeleton CRNN

Sunanda et al. [209] 2024 Haar Wavelet Transform + LBP Modified AlexNet

Zhou et al. [167] 2024 Cosine Similarity Attention FGDSNet

Fadel et al. [183] 2024 Multi-Connect Architecture Associative Memory

Mohammadi et al. [215] 2023 RGB Image Processing YOLOv4

Bamani et al. [216] 2024 HQ-Net for Long-Range Features Graph Vision Transformer

Kumar and Saini [186] 2024 Pixel-Based Features SVM (RBF Kernel)

Sundaram et al. [217] 2024 Multivariate EMG Signal Processing Ensemble Bagged Tree (EBT)

Shaaban et al. [218] 2023 Spiking Convolutional Features SCNN

Han et al. [191] 2024 YOLOv5 Features + Bayesian Fusion Bayesian Classifier

Jawalkar et al. [187] 2024 Segmentation + ANN ANN

Tsai et al. [219] 2024 Depthwise Separable Convolution Softmax

Padmakala et al. [220] 2024 DCNN with Hyperparameter Tuning Adaptive Habitat Optimizer

Zholshiyeva et al. [189] 2024 MediaPipe Key Points CNN-LSTM

Zhang et al. [182] 2024 Colocated EMG-pFMG Features Random Forest

Uke and Zade [221] 2023 Hybrid 3D Cuboid-SURF Features SVM and RF

Zhang et al. [171] 2024 Cross-Modality Local-Global Analysis CNN

Miah et al. [175] 2024 Diverse Domain Feature Enhancement ETC, KNN

Birkeland et al. [172] 2024 Lightweight CNN CNN

Bimbraw et al. [222] 2024 3D Convolutional Neural Networks Modified (2+1)D CNN

Shin et al. [174] 2024 Multi-Stream Time-Varying Features Deep Learning Architecture

Garg et al. [173] 2024 Multiscale Video Transformer Transformer

Misal [223] 2024 Convolutional Neural Network TensorFlow-Based CNN

Yaseen et al. [178] 2024 MediaPipe, Inceptionv3 CNN + LSTM

Sahoo et al. [1] 2022 Fine-Tuned CNN CNN

Jiang et al. [197] 2022 Multimodal (sEMG, IMU Signals) CNN-RNN, CNN-Res, LSTM-Res

Gao et al. [224] 2022 3D Hand Pose Estimation 3DCNN + ConvLSTM

Al-Hammadi et al. [198] 2022 Spatial Attention-Based 3D GCN MediaPipe Landmark Detection

Smith et al. [179] 2023 Sterile Training Techniques CNN

Alonazi et al. [225] 2023 Neural Gas and Locomotion Mapping Deep Belief Network (DBN)

Park et al. [226] 2023 Impulse Radio Ultra-Wideband Features CNN

17



International Journal of Computer Applications (0975 - 8887)

Volume 187 - No.2, May 2025

Table 15. Feature Extraction and Classifier Details from Selected Studies from 2022–Present (Part 2)

Author(s) Year Feature Extraction Classifier

Li et al. [200] 2023 Triple Attention Network (DeepTPA-Net) ResNet50

Zhang et al. [227] 2023 Lightweight Attention Structure LHGR-Net

Ansar et al. [192] 2023 Convex Hull Landmarks CNN

Nguyen et al. [170] 2023 Wrist-Worn Camera with MoviNet Two-Stream MoviNet

Dozdor et al. [177] 2023 YOLO Transformer for Gesture Recognition TY-Net

Savas et al. [228] 2023 Transfer Learning + Deep Ensemble CNN Ensemble

Jafari et al. [229] 2023 2D Parallel SpatioTemporal Pyramid Pooling 2DPSTPP-Net

Dang et al. [230] 2022 Keypoints and Hand Bounding Boxes Two-Pipeline Architecture

Pan et al. [231] 2019 Received Signal Strength (RSS) 1D-CNN

Miah et al. [199] 2024 SLIC Superpixels + Attention CNNs GCN + MHSA

Chang et al. [232] 2023 Region of Interest (ROI) Segmentation CNN

Shin et al. [233] 2024 Temporal, Spatial, Multistream Features TCN + LSTM + CNN

Pathan et al. [234] 2023 Image and Hand Landmarks Multi-Headed CNN

Yu et al. [235] 2022 Optical Flow and Keyframe Features 2D-CNN + Feature Fusion

Li et al. [236] 2022 Hand Gesture Features Inception v3 + Migration Learning

Kaur et al. [237] 2022 Dynamic Gesture Data Features CNN, LSTM, RNN, MLP

Arwoko et al. [238] 2022 Normalized Keypoint Vectors DNN

Muchtar et al. [239] 2022 Optical Flow and Frame Features Two-Stream Faster R-CNN

Suryateja et al. [193] 2022 Hand Landmark Positions KNN

Wang et al. [240] 2023 Range and Doppler Features ResNet101

Beneke et al. [241] 2024 Range-Doppler Radar Features Brownian Reservoir + SVM

Zhao et al. [242] 2023 ICEEMDAN sEMG Signals Slow-Fusion CNN

Mesdaghi et al. [243] 2024 Real-Time Hand Landmark Detection DNN

Kushwaha et al. [244] 2023 Hand Landmark Features AlexNet

Roumiassa et al. [245] 2022 Textural and Structural Features SVM, RBF NN

Sharma et al. [246] 2022 EMD and VMD for Non-Stationary Signals EMD + VMD Techniques

Ikne et al. [247] 2024 Skeleton-Based Representations MAE + STGCN

Al-Zebari et al. [248] 2022 Vision Transformers for Static Gestures ViT

Sahoo et al. [196] 2023 Dual-Stream Dense Residual Fusion + FCM Dual-Stream CNN

Schuessler et al. [194] 2024 Synthetic Radar Images Neural Network (NN)

Pinto Jr. et al. [249] 2023 Color Segmentation + Morph Ops CNN

Khalaf et al. [250] 2022 Data Mining Algorithms Clustering + Classification

Fadhil et al. [195] 2023 Feature Maps (VGG-16, VGG-19) Fine-Tuned VGG-16/19

Leon et al. [251] 2022 RGB and Depth Video Streams Lightweight CNN

6. APPLICATIONS OF HGR SYSTEMS
Hand Gesture Recognition (HGR) systems find applications across
a wide range of domains, from healthcare to human-robot interac-
tion [174]. Recent advancements have further enhanced the adapt-
ability and accuracy of these systems.

—Sign Language Translation: HGR systems have significantly
advanced sign language interpretation for individuals with hear-
ing impairments. Systems leveraging CNN and RNN architec-
tures achieve high accuracy for static and sequential gestures
[180, 215, 187].
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Table 16. Comprehensive Comparison of Hand Gesture Recognition Datasets from 2022–Present

Dataset Type Gestures Subjects/Size Data Modalities Limitations

SHREC17 Multimodal 14/28 gestures 280K samples Depth, Skeleton, RGB Limited gesture classes; ambiguity
in fine-grained gestures

DHG Multimodal 14 coarse, 28 fine-
grained

2.8K sequences Depth, Skeleton Difficulty with fine-grained gestures

HaGRID Visual 18 static gestures 554K images RGB Background bias; limited to single-
hand gestures

EMG-EPN-612 Sensor-based 5 static gestures 612 subjects EMG Sensor placement variability

Ninapro DB1/DB9 Sensor-based 52/40 gestures DB1: 27, DB9: 77 EMG, PMG High data loss; struggles with dy-
namic gestures

Custom Dataset RGB-based 10 dynamic gestures 347K samples RGB Limited real-world condition diver-
sity

NVGesture Vision-based 10 dynamic gestures 7.5K videos Infrared, RGB Low-light and gesture variability
challenges

Briareo Visual 35 gesture classes Large-scale Infrared, RGB Gesture class imbalance; lacks real-
time adaptation

WiGes Multimodal 12 dynamic gestures 5.4K samples RGB, Optical Flow Segmented input requirement; high
compute load

ASL Dataset Visual 87K images 5 subjects RGB Static-only; limited diversity

HCI Gesture Multimodal 20 gestures 120K samples RGB, Depth, IMU No standard protocol; gesture limi-
tation

GesturePod Sensor-based 15 gestures 300 sequences IMU, EMG Requires hardware; difficulty in
fine-grained recognition

Wi-Fi CSI Radio-
Frequency

10 gestures 1.2K samples CSI External interference; lower com-
plex accuracy

Digital Hand Gesture RGB-based 50 gestures 25 subjects RGB Static-only; limited gesture set di-
versity

Montalbano Vision-based 20 dynamic gestures 40K sequences RGB Poor lighting diversity; no multi-
modal use

SHAPE / HANDS /
OUHANDS

Visual Various gestures Varying sizes RGB Images Degrades in low light or distance

ASL Finger Spelling Visual 24 signs 500+ per sign (4 users) RGB Images Hand landmark dependency

VIVA Dataset Visual 19 dynamic gestures Real driving RGB Images No real-time support; poor segmen-
tation

NTU Hand Gesture Visual 10 gestures (0–9) 1,000 images RGB Images Occlusion and static limitations

LSA64 / Argentinian
LSA64

Visual (Multi-
lingual)

64 gestures Diverse subjects RGB Images High complexity for real-time usage

Myo Dataset EMG-based 7 static gestures 17 participants EMG Signals Not validated for dynamic input

IPN Hand Dataset Visual 14 gestures Variable participants RGB, Depth Occlusion handling issues

KSL-77 / KSL-20 /
ASL-10 / ASL-20

Visual (Multi-
lingual)

10–77 gestures Benchmark sets RGB Images Limited adaptability and back-
ground diversity

BSL / JSL Visual (Multi-
lingual)

British / Japanese Sign
Gestures

Lab-based RGB Images Poor generalization to real-world

JT-ASL / MU-ASL Visual Static ASL gestures Benchmark sets RGB Images Lacks dynamic samples; limited
variation

NUS II Visual Static hand postures Benchmark set RGB Images No testing under real-world condi-
tions

ASL-FS-colour Visual Finger spelling Benchmark set RGB Images Poor generalization to unseen signs
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Table 17. Dataset Accuracy, Loss, and Identified Gaps in Benchmark Datasets for HGR (Part 1)

Dataset Accuracy (%) Loss Best Model Key Gaps

SHREC17 93.8 0.045 ViT [164] Limited gesture diversity; ambiguity in fine-grained gestures

DHG 91.2 0.068 GViT [165] Difficulties with complex fine-grained gestures

HaGRID 96.5 0.035 CNN-LSTM [166] Background bias; restricted to static gestures

EMG-EPN-612 90.5 0.080 CNN-SVM [191] Physiological variability in EMG signals

Ninapro DB1/DB9 94.3 / 98.9 0.052 / 0.021 Hybrid CNN-TCN [181] High data loss; struggles with dynamic gestures

Custom Dataset 89.3 0.091 FGDSNet [167] Limited environmental diversity; lacks real-world annota-
tions

NVGesture 98.1 0.018 GestFormer [165] Challenges in low-light conditions; lacks temporal annota-
tions

Briareo 96.3 0.030 ViT [164] Imbalance in fine-grained gesture classes; lacks scalability

ASL Dataset 99.98 0.010 2DPSTPP-Net [229] Lacks real-time dynamic gesture recognition

HCI Gesture Dataset 96.3 0.022 Lightweight CNN [172] Controlled environments only; sensor integration challenges

GesturePod 94.5 0.032 Multimodal CNN-RNN [197] Needs hardware integration; struggles in complex scenarios

Wi-Fi CSI Dataset 88.3 0.064 RF-CNN [192] Sensitive to interference; poor in complex environments

Digital Hand Gesture 90.7 0.052 Transformer [177] Limited diversity; scaling dynamic gestures difficult

MultiStream Dataset 92.4 0.048 ConvLSTM + 3DCNN [224] Needs pre-segmented videos; high compute cost

Thermal Gesture Dataset 97.0 0.038 Lightweight CNN [172] Limited real-world deployment diversity

CapgMyo DB-a 98.6 0.012 DeepTPA-Net [200] Environmentally limited

NinaPro DB9 98.9 0.021 Multi-Stream Time-Varying
Model [174]

Scaling dynamic gesture analysis

WiGes Dataset 96.2 0.030 Two-Stream MoviNet [170] Unsegmented video scalability and dual-stream complexity

HANDS 94.0 Cross-Entropy Two-Pipeline Architecture
[230]

Degrades under poor lighting and long distances

OUHANDS 98.0 Cross-Entropy Two-Pipeline Architecture
[230]

Gesture detection under diverse conditions

SHAPE 94.0 / 96.0 Cross-Entropy Two-Pipeline Architecture
[230]

Poor lighting or distance sensitivity

ASL Finger Spelling 98.98 Validation Loss Multi-Headed CNN [234] Landmark extraction dependency

VIVA Dataset 87.0 Not Mentioned Hybrid CNN-Optical Flow
[235]

Static-only recognition; lacks dynamic support

NTU Hand Gesture 96.4 Not Mentioned ViT [248] Occlusion challenges; static gesture limitation

LSA64 Dataset 92.37 Not Mentioned GCN + MHSA [199] High complexity for real-time use

Myo Dataset 97.91 Std. Deviation Slow-Fusion CNN [242] Not validated for dynamic/real-time gestures

IPN Hand Dataset 92.8 Not Mentioned MAE + STGCN [247] Struggles with occlusion

—Virtual and Augmented Reality: Gesture-based controls en-
hance immersive experiences in VR and AR environments.
Lightweight models like FGDSNet ensure real-time perfor-
mance [167, 210].

—Healthcare and Prosthetics: EMG-based HGR systems provide
intuitive control for prosthetic devices and assistive technologies,
enabling better mobility and user interaction [166, 217, 182].

—Robotics and Human-Robot Interaction (HRI): Ultra-range
gesture recognition systems using vision-based techniques en-

able precise robotic control, improving interaction even at a dis-
tance [214, 216].

—Gaming and Smart Devices: Gesture recognition enhances user
experiences by enabling intuitive controls for gaming systems
and smart devices. Real-time and lightweight architectures are
pivotal for such applications [167, 211].
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Table 18. Dataset Accuracy, Loss, and Identified Gaps in Benchmark Datasets for HGR (Part 2)

Dataset Accuracy (%) Loss Best Model Key Gaps

SHREC17 Dataset 94.1 Not Mentioned ViT [248] No explicit temporal modeling for dynamic gestures

KSL-77 99.33 Not Mentioned GCN + MHSA [199] High computational complexity for real-time applications

KSL-20 100.0 Not Mentioned GCN + MHSA [199] Limited adaptability to diverse backgrounds

ASL-10 99.46 Not Mentioned Multi-Headed CNN [234] Sensitive to lighting and background changes

ASL-20 99.60 Not Mentioned Multi-Headed CNN [234] Limited diversity in participants

BSL 96.88 Not Mentioned GCN + MHSA [199] Lab-restricted; lacks real-world diversity

JSL 92.37 Not Mentioned GCN + MHSA [199] Weak generalization to real-world scenarios

Argentinian LSA64 92.37 Not Mentioned GCN + MHSA [199] High complexity for real-time use

Wi-Fi CSI Dataset 93.03 Not Mentioned RF-CNN [192] Sensitive to external interference and noise

JT-ASL 99.58 Not Mentioned DeReFNet [196] Limited gesture variability; lacks contextual diversity

MU-ASL 96.14 Not Mentioned DeReFNet [196] Static-only; lacks real-world generalization

NUS 96.70 Not Mentioned DeReFNet [196] Missing dynamic gesture tests; limited realism

ASL-FS-colour 91.24 Not Mentioned DeReFNet [196] Fails with unseen gestures

ArASL 96.51 Cross-Entropy VGG-16 [195] High intra-class similarity; low cross-domain performance

VideoBased RGB 99.48 Not Mentioned Lightweight CNN [251] Pre-segmented only; lacks multi-user scenarios

VideoBased Depth 99.18 Not Mentioned Lightweight CNN [251] Poor scalability in complex, multi-person settings

Fig. 11. Distribution of Dataset Accuracy, Loss, and Key Gaps

7. CHALLENGES AND POTENTIAL SOLUTIONS
Hand Gesture Recognition (HGR) systems face several challenges
that hinder their widespread adoption and effectiveness. Address-
ing these challenges requires innovative solutions and comprehen-
sive strategies.
Challenges:

—Dataset Limitations: Insufficient diversity in gesture types,
lack of real-world testing environments, and limited multimodal
datasets [168, 219].

Fig. 12. Applications of HGR Systems and Their Focus Percentage.

—Real-Time Constraints: High latency and computational re-
source demands in dynamic and resource-constrained environ-
ments [167].

—Ethical Issues: Concerns over data privacy, surveillance ethics,
and fairness in model training and deployment [219].

—User Variability: Physiological differences across users affect
the reliability and accuracy of EMG-based systems [166].

—Environmental Challenges: Variations in lighting, occlusions,
and complex backgrounds degrade the performance of vision-
based systems [210].

Potential Solutions:
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Table 19. Applications of HGR Systems with Focus Percentage

Application Description Focus (%)

Sign Language Transla-
tion

High accuracy for static and dy-
namic gestures using CNN and
RNN architectures.

25%

Virtual and Augmented
Reality

Real-time gesture recognition
for immersive experiences in
AR/VR environments.

20%

Healthcare and Prosthetics Intuitive EMG-based gesture
controls for assistive devices and
prosthetics.

30%

Robotics and HRI Vision-based systems for precise
robotic control and long-range
interaction.

15%

Gaming and Smart De-
vices

Gesture recognition for intuitive
gaming and smart device con-
trols.

10%

Table 20. Challenges and Potential Solutions for HGR Systems

Challenge Potential Solution

Dataset Limitations Generate synthetic datasets and include di-
verse gestures to improve robustness [217,
168].

Real-Time Constraints Deploy lightweight architectures, model op-
timization, and edge computing techniques
[167].

Ethical Issues Establish data privacy policies and ethi-
cal guidelines for secure model deployment
[219].

User Variability Use adaptive learning and user-specific cali-
bration methods to improve model reliability
[166].

Environmental Challenges Apply multimodal fusion and preprocessing
to handle lighting and background variations
[168, 210].

—Generating synthetic datasets with diverse gestures to improve
model training and generalization [217].

—Developing lightweight architectures and model compression
techniques to ensure real-time processing on edge devices [167].

—Establishing ethical frameworks and policies for the secure and
fair use of gesture data [219].

—Incorporating user-specific calibration and adaptive learning
techniques to handle user variability [166].

—Enhancing robustness through multimodal fusion and advanced
preprocessing techniques to address environmental challenges
[168].

8. CONCLUSION
This review has attempted to analyze the progress of Hand Ges-
ture Recognition (HGR) systems in different eras, reflecting the
evolution of these systems over time. In a relatively short period,
HGR achieved significant milestones. To understand the evolution
of HGR models, we studied over 250 academic articles published

between 1995 and 2024. HGR systems were rather primitive early
on, often employing rule-based systems or Hidden Markov Models
(HMMs) as their basic framework. Over time, these systems ad-
vanced into deep learning and machine learning-based approaches.
To increase the accuracy of gesture recognition, modern HGR sys-
tems include sophisticated designs such as 3D Convolutional Neu-
ral Networks (3D CNNs), Long Short-Term Memory (LSTM) net-
works, Recurrent Neural Networks (RNNs), and other hybrid sys-
tems. Despite significant developments in HGR technology, there
are many issues in connecting research results with their practical
adoption. HGR can enable easy communication and smooth inte-
gration with machines if these obstacles can be removed. This study
identifies important research gaps and suggests some ways to fill
them. Future studies should concentrate on closing these gaps to
make HGR an essential part of computer-human interaction.

9. FUTURE SCOPE IN HGR SYSTEMS
Generalization and Real-Time Accuracy: One of the key future
challenges is achieving high accuracy with low latency in real-time
hand gesture recognition (HGR) systems under varied conditions
such as diverse lighting, cluttered backgrounds, and across a
wide range of user profiles. Addressing variations in hand sizes,
gestures, and motion speeds requires developing user-independent
and generalizable models that do not require frequent recalibration
or user-specific fine-tuning.

Collaborative and Multimodal Model Integration: Future
research should focus on collaborative model architectures, where
separate specialized models (e.g., for RGB, EMG, depth, and
skeletal inputs) can be modularly trained and integrated through
attention mechanisms, ensemble learning, or shared latent spaces.
This modular approach will allow for greater adaptability and reuse
across tasks and datasets. Federated learning and cross-domain
transfer learning also present opportunities for collaborative
training without centralized data, helping preserve privacy while
improving generalization.

Lightweight and Scalable Architectures: The adoption of
transformer-based models, few-shot learning, and self-supervised
techniques holds promise for reducing the dependency on large
annotated datasets. These approaches can enable effective learning
even in low-data scenarios, making HGR systems more efficient
and scalable for edge deployments such as smartphones, AR
glasses, and embedded systems.

Multimodal Contextual Awareness: By fusing data from multiple
modalities—RGB, depth, EMG, and IMU—future systems can
improve robustness and context sensitivity, leading to more reli-
able gesture interpretation in complex environments. Real-world
applications such as healthcare, AR/VR, and assistive robotics will
benefit from these context-rich multimodal HGR frameworks.

User-Centric Design and Ergonomics: Enhancing user comfort
and intuitiveness remains a critical goal. Systems must prioritize
ergonomics, adaptability, and inclusivity, especially for prolonged
use in interactive or immersive environments. Gesture systems
should minimize physical strain, be easy to calibrate, and support
natural interaction styles across demographics, enabling seamless
adoption in healthcare, sign language interpretation, and smart en-
vironments.
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