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ABSTRACT

This paper introduces a novel regularization method that leverages
segmentation of the forgetting profile for more robust modeling of
data aging in sliding window least squares estimation. Each segment
is designed to enforce specific desirable properties of the estima-
tor such as rapidity, desired condition number of the information
matrix, accuracy, numerical stability, etc. The forgetting profile is
structured in three segments, where the first segment enables rapid
estimation via fast exponential forgetting of recent data. The second
segment features a decline in the profile and marks the transition
to the third segment, which is characterized by slow exponential
forgetting aimed at reducing the condition number of the informa-
tion matrix using earlier measurements within the moving window.
Condition number reduction mitigates error propagation, thereby
enhancing accuracy and stability. This approach facilitates the incor-
poration of a priori information regarding signal characteristics (i.e.,
the expected behavior of the signal) into the estimator.

The main contribution of this paper is the framework for develop-
ment of a new family of recursive, computationally efficient algo-
rithms with low rank updates, based on a novel matrix inversion
lemma for moving windows and tailored to this regularization ap-
proach.

New algorithms significantly improve the approximation accuracy
of low resolution daily temperature measurements obtained at the
Stockholm Old Astronomical Observatory, thereby enhancing the
reliability of temperature predictions.
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1. FINITE & INFINITE WINDOWS: COMPARISONS
& CHALLENGES

Recursive Least Squares (RLS) algorithms with exponential for-
getting, [1]],[2] are often preferred in real time applications due to
their recursive structure and quadratic computational complexity, in
contrast to sliding window least squares estimation, which requires
repeated matrix inversions and has cubic complexity. Nevertheless,

estimation over the finite window with exponential forgetting offers
key advantages over classical RLS algorithms with infinite memory,
as outlined below:

(1) Faster Adaptation to Non-Stationary Environments. Real world
signals are often non-stationary due to changing parameters and
noise. Classical RLS algorithms with exponential forgetting retain
infinite memory, where old data is progressively downweighted
but never completely discarded, which can lead to slow parameter
convergence. In contrast, sliding window methods with exponen-
tial forgetting apply hard cutoff, enabling faster convergence and
improved tracking of rapid signal changes.

(2) Suppression of Long-Term Influence from Outliers and Past
Noise. In infinite memory RLS estimation, past outliers retain influ-
ence due to exponential weighting. Sliding window methods remove
them after fixed time, improving robustness and accuracy.

(3) Improved Numerical Stability. Infinite memory RLS algorithms
can accumulate errors and cause numerical instability over time.
Sliding window methods limit memory, reducing error buildup and
improving stability.

(4) Greater Flexibility in Memory Control. Sliding window meth-
ods allow separate tuning of window length and forgetting factor,
offering finer control over estimator responsiveness than classical
RLS algorithms, which depend only on forgetting factor.

(5) Reduction of Bias from Initial Conditions. Classical RLS algo-
rithms can retain bias from poor initial conditions. Sliding window
methods avoid this by discarding old data, ensuring estimates reflect
recent information.

(6) Facilitated Theoretical Analysis in Non-I1deal Conditions. Slid-
ing window methods simplify analysis by using fixed data horizon,
unlike classical RLS algorithms whose infinite memory complicates
evaluation in non-stationary settings.

The advantages of the sliding window approach, coupled with re-
cent advancements in computationally efficient recursive algorithms
exhibiting quadratic complexity, [3]] - [S]] render it as an increasingly
attractive alternative to classical RLS methods.

Nevertheless, the pursuit of improved estimation performance in
sliding window methods serves as a primary motivation for con-
tinued development, articulated below through a set of identified
challenges:

(1) Rapidity Costs. Rapid parameter estimation comes at the cost of
a high condition number of the information matrix, leading to large,
imbalanced variances and potential numerical instability. Short win-
dows and fast forgetting are required to track rapid changes in



the oscillating signals, but often fail to capture full cycles of low
frequency components. As a result, low frequency harmonics are
approximated by polynomials and become indistinguishable from
trends. This blending of harmonic and trend components enables
fast tracking but sacrifices resolution of low frequency harmonics.
Regressors in short windows tend to be collinear, making the in-
formation matrix ill-conditioned or rank-deficient. Low frequency
components, lacking full cycles have especially high variances of
the parameter errors.

New recursive algorithms are required that simultaneously priori-
tize fast estimation, enhanced numerical stability, lower condition
numbers, and uniform balance of the variances.

(2) Reduction of Computational and Memory Costs for New Al-
gorithms. New algorithms featuring the outlined properties and
quadratic complexity are needed to enable efficient parameter esti-
mation and inversion of the information matrix, reducing computa-
tional and memory costs.

[ll-conditioning of the information matrix mentioned above can be
addressed using various regularization strategies, such as adding
small diagonal elements, [6], approximating low frequency compo-
nents by polynomial models or selecting alternative basis functions
with improved numerical stability and some others, see for example
[7] and references therein. All these regularization methods entail
trade-offs, potentially degrading estimation performance.

2. SEGMENTATION OF THE FORGETTING
PROFILE

The most physically grounded and effective regularization method
involves design/segmentation of the forgetting profile in the sliding
window, where each segment assigns desired property to the estima-
tor, [8]]. Rapidity, the desired condition number of the information
matrix, accuracy, and numerical stability can be mentioned among
the desired properties. The proposed segmentation framework facil-
itates optimization of the trade-offs associated with the properties
of the estimator and supports the incorporation of prior knowledge
about the anticipated properties of the signal into the estimator.
Figure [I] illustrates a new method for segmenting the forgetting
profile, which is introduced in this paper. The rapidity of estimation
is guaranteed by fast exponential forgetting, see the red segment
(red solid line) in Figure[T] Such rapid forgetting across the entire
window (see red dashed line) implies ill-conditioning of the infor-
mation matrix. Reduction of the condition number is associated
with the blue line, which represents slow exponential forgetting.
Rapid estimation can not be achieved with blue forgetting profile,
but this profile mitigates ill-conditioning and improves robustness
and accuracy. The segmented profile introduces the drop in the red
line (which can be adjusted), followed by transition to the blue
segment/tail, where the profile diminishes more slowly due to a
higher forgetting factor. The condition number of the information
matrix is reduced using more distant data (due to the blue segment)
which implies lower variance of parameter estimates and improved
numerical stability, while the rapidity is achieved by fast forgetting
of recent measurements (due to the red segment).

3. RECURSIVE ESTIMATION FRAMEWORK FOR
THE SEGMENTED PROFILE

3.1 Matrix Inversion Lemma for Moving Window

Consider the following generalization of the matrix inversion lemma
for moving window described in [9] p. 280].

Lemma (batch update in moving window). Updates of the invertible
n X n matrix A, associated with d additions and r removals of
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the outer products of the vectors ; € R™ and y; € R™ can be
expressed in the following equivalent forms:

d r
A=B+Y zjz = yiy o)
j=1 j=1
updating downdating
A=B+QDQ" 2)
where Q = [x1 ©2 ... g Y1 Y2 -+ Yr| is the augmented re-

gressor matrix which contains regressor column vectors, D =
diagl, 1,...,1,—1,—1,..., —1] is the signature matrix, which
—— ——
d additions r removals
determines the sign structure of the low rank correction, d + r < n.
Subsequently, the inverse of A can be efficiently obtained through
the batch update by applying the Woodbury identity, [10, p. 350] to
the compact form (2) as follows:

A l—pl_pg! Q Ut QT B! 3)

where the update matrix U = D 4+ QT B~ Q is invertible and the
inverse B~ is known.

Corollary.  Rank two updates of the matrix A is the spe-
cial case of (I),(2) with d = r = 1, which can be presented in the
form (2) with the following regressor matrix @@ = [z1 y1] and the
signature matrix D = diag[1, —1], [3] - [5]].

The inverse A~' can also be computed iteratively using the
Sherman Morrison formula, applying it once per rank one update
and using each intermediate inverse in the subsequent step, [9],
[11]. However, this approach has several limitations: it is prone to
significant round off error accumulation, may destroy symmetry
and positive definiteness, and can encounter singular matrices
during intermediate steps, requiring additional assumptions about
invertibility. Furthermore, the method can be computationally
inefficient due to poor cache performance and repeated memory
access, and it offers limited opportunities for parallelization due to
the inherently sequential nature of the updates.

The inversion method presented in the lemma applies the cor-
rection in a single pass, thereby reducing the number of matrix
multiplications and mitigating the propagation of numerical
errors. It preserves matrix symmetry, improves the conditioning
of the resulting inverse, and is inherently more parallelizable.
In addition, the method exhibits enhanced memory efficiency,
making it particularly effective for deployment in high performance
computing architectures.

3.2 Recursive Estimation Algorithms with Low Rank
Updates

Assume that the measured oscillating signal y and its corresponding
model g, are represented as follows:

Uk = ©F Ou + & (Y]
Jr = ok Ok (5)

oF = [1 cos(qok) sin(qok) --- cos(qnk) sin(qnk)]

where 0. is the vector of unknown parameters, 0y, is the vector of
adjustable parameters calculated via minimization of the loss func-
tion @, y, is the harmonic regressor, qo, ...qr are the frequencies,
and & is white Gaussian zero mean noise uncorrelated with ¢y,
k=1,2,...



1 ")
EXPONENTIAL FORGETTING, 3=0.92,p=5
0.9 DROP, m = 20, A™? < gP 1
EXPONENTIAL FORGETTING, 3=\ =0.96
* 08— — |LL-CONDITIONING, /3 = A = 0.92
1N}
2071 /4 +1_1
[ ﬁ (p >
Qosr , ]
o ’
Q05 /’ 1
P4
= e m+1
[ A
- 0.4r
w
V]
X 03F 1
(@]
(TR

02 _ k—p-1 k ]

oib == " Pe=2"T ) Mg N g el
. ‘ ‘ j=ho(w-1) j=k=p

k-w+1 k-25 k-20 k-15 k-10 k-5 k

MOVING WINDOW

Fig. 1. The Figure shows the forgetting profile in the moving win-
dow of the size w segmented by red, green and blue lines (RGB
lines). The rapidity of estimation is guaranteed by rapid exponential
forgetting with small forgetting factor 8 = 0.92 associated with the
red line (red segment). Such rapid forgetting over the whole window
implies ill-conditioning of the information matrix, see red dashed
line. Reduction of the condition number is associated with the blue
line and the forgetting factor A = 0.96. The resulting profile is seg-
mented by the red segment, drop (with the magnitude determined
by a positive integer m) which is plotted with the green line and
blue segment with larger forgetting factor. Past data (associated with
blue segment) forms the basis for reduction of the condition number
of the information matrix and the variances of parameter estimates,
while rapidity is achieved by fast forgetting of recent measurements.
Segmented profile is associated with the cost function P, which
minimises estimation error e; = y; — 7 0.

The segmented profile presented in Figure[T]is associated with the
following loss function:

k—p—1

Po= Y

j=k—(w—1)

k
+ > B (s
N

=1 0)° (6)
J V4
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This function consists of two terms, where the first term

k

Z B (y; — np?@k)Q downweights rapidly recent p + 1
j=k—p
(p = 1,2,--- < w) measured points with the relatively small
forgetting factor 0 < 8 < 1, see Figure[l} Integer m > 0 deter-
mines the magnitude of the drop in the profile so that A™ ! < P

k—p—1
and the second term Z
j=k—(w—1)

weights older data with larger forgetting factor, 0 < A < 1.
Minimization of the loss function (&) results in the following rank

\k—p—itm (y; — %‘T@k)2 down-
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p + 3 updates of the information matrix:

Ac=XAAt1+ Qe D QF 7
Qr =
[ok VIB = Alpr—1- - VIA™ = BP|Apr—p—1 VATTU=Pp_,]
D= dla’g[la Slgn(ﬁ - A)? Tt Slgn(Am - ﬁp)7 71]
pt1

where the augmented regressor matrix (), contains scaled column
regressor vectors, k > w + 1. The recursive framework —@)
supports various types of segmentation parameterized by 8, A, m
and p, see Figure[I] Each profile yields a distinct sign structure of
the signature matrix D, which governs the addition and removal of
updates.

The RLS algorithms with low rank updates which are derived by
application of the matrix inversion lemma for moving window pre-
sented above can be written in the following form, [3], [5] :

1 _ _
=< [Tho1 —Tr1Qr S LQrTey I, Tw= ALt ©®)

A
O = Or—1 — Tt Qi S~ [Qk Or—1 — Uik )
S=AD+QF Tr_1Q

i =
[ye V1B = Myk—1 -+ VIA™ = BP| Ayg—p—1 VAMTW Py, _,]

where gy, is the augmented output.

The unbiasedness of the algorithm , (E[), E[0k] = 0. can be
formally derived using the framework presented in [5], assuming
a full-rank information matrix. The variance of the parameter es-
timation error is inversely proportional to the eigenvalues of the
information matrix. When the information matrix is ill-conditioned,
some directions in parameter space which correspond to small eigen-
values lead to large estimation variances along these directions. This
typically happens when the regressor signals are not sufficiently
excited over the window. In contrast, well-conditioned information
matrices result in more uniform and lower variance across all pa-
rameters.

Notice that applying an infinite window over a large number of
iterations can introduce bias, increase the variance of parameter
mismatch, and cause imbalance. These effects often arise due to
ill-conditioning, numerical error accumulation, sensitivity to mea-
surement noise, outliers, and unmodeled disturbances.

In contrast, segmented forgetting in the finite window alleviates ill-
conditioning and reduces bias, variance, and imbalance in parameter
estimation, thereby improving the robustness and performance of
the algorithms, see Section|[T}

4. TEMPERATURE FORECASTS

Temperature forecasts covering a period longer than one week are
essential for providing early insights into weather trends that facili-
tate effective planning and preparedness. Such forecasts contribute
to improved decision making across multiple sectors by offering a
comprehensive outlook on forthcoming climate conditions.

Using periodicity is essential for accurately predicting temperature
because temperature naturally follows repeating patterns such as
daily, weekly, and seasonal cycles. These cycles reflect natural phe-
nomena like the daily rise and fall of temperature, weekly patterns
influenced by human activity, and seasonal changes. These patterns
can be effectively identified using system identification techniques,
and leveraging periodicity in this manner can greatly enhance fore-
casting accuracy.
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Fig. 2. Comparison of the approximation performance of segmented and exponential forgetting profiles in moving window of the size
w = 400 is shown in this Figure. Daily temperature measurements are plotted with the blue line. The output of the RLS algorithm with rank
two updates and A = 0.99 is plotted with the black line. The output of RLS algorithm with segmented profile and rank four updates, designed
forp=1, 8 =0.89, A = 0.99, m = 250 (see Figurem) is plotted with the red line. Histograms of approximation errors are presented in
Figure[3] Estimates of the first harmonics are plotted with magenta and green lines for exponential and segmented profiles respectively.
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Fig. 3. The blue histogram shows the approximation error for the
exponential forgetting profile, and the red histogram shows it for
the segmented forgetting profile. Approximation performance is
significantly improved via segmentation of the profile.

Assume that the temperature time series is represented by equation
(@), incorporating the fundamental frequency associated with the
annual cycle, as well as sixteen higher order harmonics that capture
additional periodic components of shorter durations. The model of
the signal is presented in the form (3) with adjustable parameters
(B).[©). To validate the model, low resolution daily mean temperature
measurements from the Stockholm Old Astronomical Observatory,
are used.

Comparison of the approximation performance of segmented and
exponential forgetting profiles is shown in Figure |Z| and Figure El
The measured temperature, shown by the blue line in Figure 2] is

approximated using two RLS algorithms: one with rank two up-
dates (black line), and another with segmented forgetting and rank
four updates (red line). The histograms in Figure [3]illustrate that
the approximation performance is significantly improved by seg-
menting the forgetting profile. Moreover, the first harmonic, which
corresponds to the annual periodicity, is estimated more accurately,
directly impacting the long term temperature forecast presented in
Figure[d

The Figure ] presents the 30-day-ahead temperature forecast based
on the first harmonic component, accompanied by a three sigma
confidence interval, [13]]. The variance is also estimated within the
moving window. It has been demonstrated that the seasonal trend
can be accurately predicted using estimates of the first harmonic
obtained from low resolution temperature measurements. Nearly all
observed temperature measurements fall within the established con-
fidence intervals around the predicted values of the first harmonic,
confirming the reliability of the predictions.

5. CONCLUSIONS & OUTLOOK

The regularization method, aligned with segmentation of the for-
getting profile, showed strong potential in optimizing the trade-offs
between rapidity, desired condition number of the information ma-
trix, accuracy, and numerical stability. The main contribution of
this work is the integration of the segmented profile into a low rank
update recursive least squares framework. The development utilizes
the matrix inversion lemma tailored for moving window computa-
tions.

Design flexibility in the forgetting profile enabled more accurate
approximation of the frequency content in low resolution tempera-
ture measurements, thereby improving the reliability of temperature
predictions.

Finally, the recursive framework with low rank updates (developed
in this paper) facilitates the development and assessment of new,
more advanced segmentation strategies which are anticipated to
further improve estimation performance. Moreover, performance
can be further enhanced through the use of Newton-Schulz and
Richardson corrections, [3]], [14].
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Fig. 4. The Figure shows the 30-day-ahead temperature forecast based on prediction of the first harmonic and three sigma confidence interval
with estimation of the variance in moving window, [13]. It is shown that the seasonal trend can be very well predicted using estimate of the
first harmonic of low resolution daily temperature measurements. The prediction estimates the mean, maximum, and minimum temperature
values projected 30 days ahead. The accuracy of the prediction is assessed by checking if the actual temperature measurements lie within
the confidence intervals established around the predicted first harmonic values. Most observed temperature measurements fall within the
confidence intervals of the first harmonic predictions, confirming their reliability.
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