Abstract

Grid is a form distributed computing mainly to virtualize and utilize geographically distributed idle resources. A grid is a distributed computational and storage environment often composed of heterogeneous autonomously managed subsystems. As a result varying resource availability becomes common place, often resulting in loss and delay of executing jobs. To ensure good performance fault tolerance should be taken into account. Here we address the fault tolerance in terms of resource failure. Commonly utilized techniques to achieve fault tolerance is periodic checkpointing, which periodically saves the jobs state. But an inappropriate checkpointing interval leads to delay in the job execution, and reduces the throughput. Hence in the proposed work, the strategy used to achieve fault tolerance is by dynamically adapting the checkpoints based on current status and history of failure information of the resource, which is maintained in the Information server. The Last failure time and Mean failure time based algorithm dynamically modifies the frequency of checkpoint interval, hence increases the throughput by reducing the unnecessary checkpoint overhead. In case of resource failure, the proposed Fault Index Based Rescheduling (FIBR) algorithm reschedules the job from the failed resource to some other available resource with the least Fault-index.
value and executes the job from the last saved checkpoint. This ensures the job to be executed
within the deadline with increased throughput and helps in making the grid environment trust
worthy.

Reference

- Chtepen, M.; Claeys, F.H.A.; Dhoedt, B.; De Turck, F.; Demeester, P.; Vanrolleghem,
P.A. Adaptive Task CHECKPOINTING and Replication: Toward Efficient Fault-Tolerant Grids
Page(s):180 – 190 Digital Object Identifier 10.1109/TPDS.2008.93
- Daniel Nurmi, Rich Wolski, Chris Grzegorczyk, Graziano Obertelli, Sunil Soman, Lamia
architecture Linking Your Programs To Useful Systems.UCSB computer science technical
report number 2008-2010
- Favarim, F.; da Silva Fraga, J.; Lung Lau Cheuk; Correia, M. .GRIDTS: A New Approach
Page(s):187–194 Digital ObjectIdentifier 10.1109/NCA.2007.27
- Fangpeng Dong and Selim G. Akl January 2006 Scheduling Algorithms for Grid
Computing:State of the Art and Open Problems. Technical Report No. 2006-504 School of
Computing, Queen’s University Kingston, Ontario
- Foster,I.; Yong Zhao; Raicu,I.; Lu,S; Grid computing and Grid computing 360-degree
pages:1-10.
- Lars-Olof Burchard, C´esar A. F. De Rose, Hans Ulrich Heiss, Barry Linnert and J´org
Schneider. VRM: A Failure-Aware Grid Resource Management System. Proc. of the 17th Intl:
IEEE. 2005
- Mohammad Tanvir Huda, Heinz W. Schmidt and Ian D. Peake. An Agent Oriented
Proactive Fault tolerant Framework for Grid Computing. First International Conference on
e-Science and Grid Computing (e-Science’05).IEEE. 2005
- R. Medeiros, W. Cirne, F. Brasilheiro and J. Sauve, .Faults in Grids: Why are they so bad
and What can be done abut it? in the proceedings of the Fourth Intl: Workshop on Grid
Computing (GRID’03), 2003.
- Nazir, B.; Khan, T.Fault Tolerant Job Scheduling in Computational Grid. Emerging
Technologies, 2006. ICET apos;06. International Conference on Volume , Issue, 13-14
Nov.2006 Page(s):708–713 Digital Object Identifier 10.1109/ICET.2006.335930
2008
- Jang-uk In,Paul Avery, Richard Cavanaugh. SPHINIX:A fault tolerant system for
scheduling in dynamic environments,proceedings of the 19th IEEE international parallel and
distributed processing symposium.
- www.gridbus.org/gridsim/

Index Terms

Computer Science

Parallel Computing

Key words

Grid Computing

Fault-Tolerance

Checkpointing