Abstract

Biomedical signals carry signatures of physiological events. The part of the signal related to specific event is called epoch. Epilepsy is one of the important brain disorders which can be diagnosed and monitored is characterized by sudden recurrent and transient disturbances of mental function and movements of body which is caused from excessive discharge of brain cell groups. This excessive discharge is shown in EEG as epileptic spikes which are complementary source of information in diagnosis and localization of epilepsy. Artificial Neural networks have been provided an effective approach for a broad spectrum of applications for EEG signals because of its self-adaption and natural way to organize and implement the redundancy. It is well known that back-propagation networks are very suitable for pattern recognitions. The algorithm tested on 100 normal and abnormal datasets showed expected classification.

Reference

Automated Event Detection of Epileptic Spikes using Neural Networks

Lampur International Conference on Biomedical Engineering, Malaysia.
- "Neural Networks- A comprehensive foundation, 2nd Ed.", Simon Haykin, Prentice Hall, 1998
- Biomedical Signal Analysis: A Case-Study Approach, Rangaraj M Rangayyan.
- Introduction to Neural Networks, Ben Krose, Patrick Van der Smagt, Eighth edition, November 1996.

Index Terms

Computer Science
Biomedical Applications

Key words

Epoch

Epilepsy

EEG

Artificial Neural Networks

Back-Propagation