Consider a single server retrial queueing system with loss and feedback under Pre-emptive priority service in which two types of customers arrive in a Poisson process with arrival rate λ_1 for low priority customers and λ_2 for high priority customers. These customers are identified as primary calls. The service times follow an exponential distribution with parameters μ_1 and μ_2 for both types of customers respectively. The retrial, loss and feedback are introduced for low priority customers only. Let k be the maximum number of waiting spaces for high priority customers in front of the service station. The high priorities customers will be governed by the Pre-emptive priority principle. The access from the orbit to the service facility is governed by the classical retrial policy. This model is solved by using Matrix geometric Technique. Numerical study have been done for Analysis of Mean number of low priority customers in the orbit (MNCO), Mean number of high priority customers in the queue (MPQL), Truncation level (OCUT), probability of server free and probabilities of server busy with low, high priority customers for various values of λ_1, λ_2, μ_1, μ_2, p, q, σ and k in elaborate manner and also various particular cases of this model have been discussed.
Reference

- Choi B.D and Y. Chang (1999), Single server retrial queues with priority calls, Mathematical and Computer Modeling, 30, No. 3-4 , pp 7-32
- Farahmand .K and T. Li (2009), Single server retrial queueing system with loss of customers, Advances and Applications, Vol 11, pp 185-197
- Kalyanaraman. R and B.Srinivasan (2004), A Retrial Queueing System with two Types of Calls and Geometric Loss, Information and Management Sciences, Volume 15, Number 4, pp. 75-88
- Lee. Y.W, (2005), The M/G/1 feedback retrial queue with two types of Customers, Bulletin of the Koeranian Mathematical Society, 42,875-887

Index Terms

Computer Science

Queuing Systems
Key words

Retrial queues
pre-emptive priority service
loss and feedback
Matrix Geometric Method
classical retrial policy