Abstract

In Handwritten signatures analyzed for forgery have to undergo feature extraction process, due to varied samples in size rotation and intra-domain changes, invariance has to be achieved during feature extraction process; circular Hidden Markov Model with discrete radon transform approach of feature extraction provides invariance. On other hand Scale Invariant Feature Transform (SIFT) has inherent invariant feature extraction approach. This paper compares both approaches on common signature databases for False acceptance rate (FAR), False Rejection Rate (FRR) and Equal Error Rate (EER)

Reference

- National Check Fraud Center, National Check Fraud Center Report, 2000.
- A. L. Koerich and L. L. Lee, “Automatic extraction of filledin information from bankchecks based on prior knowledge about layout structure,” in Advances in Document Image Analysis: First Brazilian Symposium, vol. 1339 of Lecture Notes in Computer Science, pp. 322–333,
Curitiba, Brazil, November 1997

- F. Leclerc and R. Plamondon, “Automatic signature verification: the state of the art,
Invariant features comparison in hidden markov model and SIFT for offline handwritten signature database

Invariant features comparison in hidden markov model and SIFT for offline handwritten signature database

- G. Enrico, B. Manuele, L. Anderea, and T. Massimo, “On the use of SIFT features for face authentication,” In the proceedings of the 2006 Conference on Computer Vision and
Invariant features comparison in hidden markov model and SIFT for offline handwritten signature database

Index Terms

Computer Science
Security

Key words

Off-line
Signature forgery

Discrete Radon Transform (DRT)
Baum-Welch
Viterbi
Invariant features comparison in hidden markov model and SIFT for offline handwritten signature database