Let $G = (V, E)$ be a simple graph. Let S be a maximum independent set of G. A subset T of S is called a forcing subset if T is contained in no other maximum independent subset in G. The independent forcing number of S denoted by $fl(G, S)$ is the cardinality of a minimum forcing subset of S. The independent forcing number of G is the minimum of the independent forcing
Forcing Independent Spectrum in Graphs

number of S, where S is a maximum independent subset in G. The independent forcing spectrum of G denoted by $\text{SpecI}(G)$ is defined as the set $\text{SpecI}(G) = \{k : \text{there exists a maximum independent set } S \text{ of } G \text{ such that } f_{I}(G, S) = k\}$. In this paper, a study of $\text{SpecI}(G)$ is made.

Reference

- P.Adams, M.Mahdian and E.S. Mahmoodian, On the forced matching member of graphs, preprint".
- M.E.Riddle, The minimum forcing number for the forus and hyper cube, preprint.
- F.Harray, Graph theory, Addition Wesley, Reading Mass (1972).

Index Terms

Computer Science

Applied Mathematics

Key words

Forcing domination number of a graph

Forcing spectrum of a graph

Forcing independent spectrum of a graph.