Abstract

Let $G = (V, E)$ be a simple graph. Let S be a maximum independent set of G. A subset T of S is called a forcing subset if T is contained in no other maximum independent subset in G. The independent forcing number of S denoted by $f_I(G, S)$ is the cardinality of a minimum forcing subset of S. The independent forcing number of G is the minimum of the independent forcing
Forcing Independent Spectrum in Graphs

number of S, where S is a maximum independent subset in G. The independent forcing spectrum of G denoted by SpecI(G) is defined as the set SpecI(G) = {k : there exists a maximum independent set S of G such that fI(G, S) = k}. In this paper, a study of SpecI(G) is made.

Reference

- P. Adams, M. Mahdian and E.S. Mahmoodian, On the forced matching member of graphs, preprint.
- M. E. Riddle, The minimum forcing number for the torus and hyper cube, preprint.
- F. Harary, Graph theory, Addison Wesley, Reading Mass (1972).

Index Terms

Computer Science Applied Mathematics

Key words

Forcing domination number of a graph Forcing spectrum of a graph
Forcing independent spectrum of a graph.