Abstract

As process technology shrinks, the adaptive leakage power compensation scheme will become more important in realizing high-performance and low-power applications. In order to minimize total active power consumption in digital circuits, one must take into account sub-threshold leakage currents that grow exponentially as technology scales. This describes to
predict how dynamic power and sub-threshold power must be balanced. The exclusive supply voltage control switching makes stable operations. The threshold voltage control successfully maintains a ratio of switching to leakage current and which represents the reduced power consumption. The goal of this paper is to: i) Maintains the optimized body bias conditions. ii) Maintains the best power-delay tradeoff. The results with a 180-nm CMOS device explain that the proposed architecture causes in the successful optimization of power.

Reference

Index Terms
<table>
<thead>
<tr>
<th>Computer Science</th>
<th>Digital Circuits</th>
</tr>
</thead>
</table>

Key words

- CMOS
- leakage current
- supply voltage control
- threshold voltage
- control
- switching current