Abstract

Image segmentation is a necessary task in computer vision and digital image processing applications, where foreground objects are to be separated from background. Many thresholding techniques are found in literature with their own limitations. The Gray level Spatial Correlation (GLSC) Histogram is used in entropic techniques to decide the threshold. In this paper we propose an improved GLSC Histogram, computed with varying similarity measure (\(\zeta \))
by considering local and global characteristics, because Yang Xiao et. al. used a constant 4 as
the similarity measure by considering the image local properties only, which does not suits for
all types of images and probability error is minimized by redistributing the missing probability
amount in floating precisions. For low contrast images contrast enhancement is assumed.
Experimental results demonstrate a quantitative improvement against existing techniques by
calculating the parameter efficiency η based on the misclassification error and variations in
various yielding towards ground truth threshold on two dimensional histogram of image.

Reference

- R. C. Gonzalez and R. E. Woods, Digital Image Processing. Reading, MA:
 Addison-Wesley, 1993.
- M. Sezgin and B. Sankur, “Survey over image thresholding techniques and quantitative
- T. Pun, “A new method for gray-level picture thresholding using the entropy of the
- P.K. Sahoo, and G. Arora., “A thresholding method based on two-dimensional Renyi’s
- Yang Xiao, Zhiguo Cao, Tianxu Zhang “Entropic thresholding based on gray level spatial
 correlation histogram”, IEEE trans. 19th international conf., pp. 1-4, ICPR-2008,

Index Terms

Computer Science
Image Processing
Key words

Entropy GLSC histogram threshold
image segmentation