Abstract

The traditional algorithm for sorting gives a bound of $O(n \log n)$ expected time without randomization and $O(n)$ with randomization. Recent researches have optimized lower bound for deterministic algorithms for integer sorting [1-3]. Andersson has given the idea of Exponential tree which can be used for sorting [4]. Andersson, Hagerup, Nilson and Raman have given an algorithm which sorts n integers in $O(n \log \log n)$ expected time but uses $O(m^{\frac{1}{2}})$ space [4, 5].
Andersson has given improved algorithm which sort n integers in O(n log log n) expected time and linear space but uses randomization [2, 4]. Yijie Han has improved further to sort n integers in O(n log log n) expected time and linear space but passes integers in a batch i.e. all integers at a time [6]. These algorithms are very complex to implement. In this paper we discussed a way to implement the exponential tree sorting and later compare results with traditional sorting technique.

Reference

- Y. Han, M. Thorup, Sorting integers in O(n \sqrt{\log \log n}) expected time and linear space, IEEE Symposium on Foundations of Computer Science (FOCS’02), 2002.
- Y. Han, Deterministic sorting in O(n log log n) time and linear space, 34th STOC, 2002.

Index Terms

Computer Science

Algorithms
Key words
Deterministic Algorithms Sorting Integer Sorting

Complexity

Space Requirement

Exponential Tree