Abstract

The advancement of information technology has affected all walks of our life. And when we talk the use of information technology in a business environment, we cannot ignore the presence of a huge number of data base systems as its core. Data base technology has also grown from a simple file system to data navigation system, and over a last two to three decades
a majority of business institutions, organizations, industries etc. have adopted the
computerization process, and as a result have been flooded with data. Temporal database (a
database that require some aspect of time when organizing their information) often increases
with the time like information from reservation counters (flight, railways, buses, hotels), Bank
ATMs, shares price from stock market, insurance policies. So with the limited resources how to
manage and store these data, the only possible solution one can have is to just compress and
store it with in the available resources. The traditional approach of compression make use of
entropy encoding (compress without any regard to its content), whereas we can take advantage
of Differential and Delta coding compression as we do in text compression. Now days many
papers using loopy compression or lossless compressions which comes under both source
encoding and entropy encoding. This paper presents an attempt to apply this category of
compression method for a database file with some new approaches [9]. Approaches may be
different but final goal is how to compress a data to some efficient manner. The percentage of
compression level will become very high with these given approaches, it may go as high as
60% to 70% of compression [18]. The approaches are so simple that can be implemented in
even C or C++ also. So that programmer and user can understand so simple way. It does not
require special type of software. The attempt is so simple and may be used as a new
development of compression for database.

Reference

- Cleary, J.G and I.H Witten “Data Compression using Adaptive Coding and Partial String
 12, (Dec.), 1336-1342.
- Pujari. A. K “Data Mining Technique” (University Press).
 Education).
- Ziv, Jacob & A. Lempel “Compression of Individual Sequence via Variable Rate Coding”
- Holger Kruse, Amar Mukherjee, “Data Compression Using Text Encryption” FL 32816
 Page No. 1068-031497 Years 1997 IEEE Department of Computer Science University of
 Central Florida Orlando, 32816.
- Jianzhong Li and Hong Gao “Efficient Algorithms for On-line Analysis Processing On
 Compressed Data Warehouses” Harbin Institute of Technology, China.
 Based Upon String Matching” Fellow IEEE, IEEE TRANSACTIONS ON INFORMATION
 THEORY, VOL. 44, NO. 1, JANUARY 1998 0018-9448 1998 IEEE.
- Ming-Bo Lin, Member and Yung-Yi Chang, “A New Architecture of a Two-Stage Lossless
A Digital Compression Scheme using Delta and Differential Methods

Data Compression and Decompression Algorithm IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL, 17, NO, 9, SEPTEMBER 2009 1063-8210

Years 2009 IEEE.
- Thanos Makatos*, Yannis Klonatos, Manolis Marazakis, Michail D. Flouris, and Angelos Bilas*, “ZBD: Using Transparent Compression at the Block Level to Increase Storage Space Efficiency”, Foundation for Research and Technology – Hellas (FORTH), P.O. Box 2208, Heraklion, GR 71409, Greece, 978-07695-2/10, © 2010 IEEE.
- Ming-Bo Lin, Member, IEEE, and Yung-Yi Chang, “A New Architecture of a Two-Stage Lossless Data Compression and Decompression Algorithm”, 1063-8210, ©2009 IEEE.

Index Terms
Computer Science
Databases

Key words
Delta code
Differential Method
Temporal
Database