In this paper, we present an optimal-bandwidth, min-process coordinated check pointing algorithm suitable for network failure prone applications in distributed systems. In the developed algorithm, during normal computation message transmission, dependency information among clusters is recorded in the corresponding cluster head processes. When a check pointing
procedure begins, the initiator from a cluster concurrently sends composite message to all the
cluster head processes which after extracting individual messages from it, further multicasts
individual messages to the corresponding currently active receiving processes in their
corresponding clusters thus resulting in reduced transmission delay and communication cost,
better bandwidth utilization and faster speed of execution. Quantitative analysis shows that
proposed algorithm works efficiently in terms of better response time and maximum bandwidth
utilization for applications running under critical conditions such as low bandwidth availability
and thereby resulting in frequent disconnections.

Reference

 Mechanism for Cluster Federation”, International Journal of Computer Science and Network
- J. Cao, Y. Chen, K. Zhang and Y. He, “Checkpointing in Hybrid Distributed Systems”,
- S. Monnet, C. Morin and R. Badrinath,”A Hierarchical Checkpointing Protocol for Parallel
 vol. 6, no. 5, May 2006.
 1035-1048, October 1996.
- G. Cao, and M. Singhal, “Mutable checkpoints: a new checkpointing approach for mobile
- K.M. Chandy, and L. Lamport, "Distributed Snapshots: Determining Global States of
 1985.
- P. Kumar, L. Kumar, R.K. Chauhan, and V.K. Gupta, “A non-intrusive minimum process
 synchronous checkpointing protocol for mobile distributed systems,” ICPWC 2005, IEEE
- L. M. Silva, and J.G. Silva, “Global checkpointing for Distributed Programs,” Proceedings
- B. Gupta, S. Rahimi, and Z. Liu, “A New Non-Blocking Synchronous Checkpointing
 Scheme for Distributed Systems,” Proceeding of 20th International Conference on Computers
 Timestamps,” Journal of Parallel and Distributed Computing, vol. 62, no. 12, pp. 1695-1728,

Index Terms

Computer Science
Distributed Systems

Key words

Optimal bandwidth cluster fed check point
non-blocking