Abstract

Today’s power consumption is the critical issue in MANET. Since, we have limited battery power to operate nodes. Due to the lack of power (Energy), the nodes “die out” from the network. Recently, power control in mobile ad hoc networks has been the focus of extensive research. Energy of nodes is consumed according to transmission power required by the radios.
In this paper, we develop a mechanism, Enhanced Transmission Power Control Mechanism (ETPCM) that minimizes the required transmission power consumption of radio during packet transmission. In this work, the transmission power is dynamically set according to the distance and the distance can be calculated by using a parameter Receiving Signal Strength Indicator (RSSI) between these nodes. IEEE 802.11b is a standard that specifies the physical layer and media access control designed for low-rate wireless local area networks (WLAN), it is used as radio at PHY layer (PHY802.11b) and protocol at MAC layer (MAC802.11), and it is generally used for MANET.

Reference

- Arindam Ghosh, Aboubaker Lasebae, Enver Ever “Performance Evaluation of Wireless IEEE 802.11(b) used for Ad-Hoc Networks in an ELearning Classroom Network”, Middlesex University, the Burroughs, Hendon, London NW4 4BT.
- Ryan Reed “Implementation of a BPSK Transceiver for use with the University of Kansas Agile Radio”, Bachelor of Science, University of Kansas, Lawrence, Kansas, 2004.
- Matthew B. Shoemake, “Wi-Fi (IEEE 802.11b) and Bluetooth Coexistence Issues and Solutions for the 2.4 GHz ISM Band”, PhD Thesis at University of California.
- Duong Hoang, Ronald A. Iltis, “Performance Evaluation of Multi-hop CSMA/CA Networks in Fading Environments”, Department of Electrical and Computer Engineering University of California, Santa Barbara, CA 93106-9560.
- Zhang Jianwu, Zhang Lu “Research on Distance Measurement Based on RSSI of
ZigBee” CCCM IEEE 2009.

Index Terms

Computer Science

Wireless

Key words

Transmission Power

RSSI

IEEE 802.11b

ETPCM