Abstract

In this paper, a new architecture combining dynamic neural units and fuzzy logic approaches is proposed for a complex chemical process modeling. Such processes need a particular care where the designer constructs the neural network, the fuzzy and the fuzzy neural network models which are very useful in black box modeling. The proposed architecture is specified to
the pH chemical reactor due to its large existence in the real industrial life and it is a realistic
dynamic nonlinear system to demonstrate the feasibility and the performance of the founding
results using the fuzzy dynamic neural units. A comparison was made between four strategies,
the fuzzy modeling, the recurrent neural networks, the dynamic recurrent neural networks and
the fuzzy dynamic neural units.

Reference

 system models. IEEE Trans. on Neural Networks, 8, pp. 553–567.
- Narendra, K. S. and Parthasarathy, K. 1990. Identification and Control Of Dynamical
 Systems Using Neural Networks. IEEE Trans. on Neural Networks, 1 (1), 4-27.
- Patan, K. 2008. Artificial Neural Networks for the Modelling and Fault Diagnosis of
 Technical Processes. Springer-Verlag Berlin Heidelberg.
- Roffel, B. and Betlem, B. 2006. Process Dynamics and Control, Modeling for Control and
 Approach for Nonlinear Process Control’, Engineering Applications of Artificial Intelligence, 8(5),
 483-498.
 systems for modelling and controlling real systems a comparative study’, Engineering
 Applications of Artificial Intelligence, 17, 265–273.
 IEE Proceedings on Control Theory Applications, 142(6), 51-561.
 Computational Approach to Learning and Machine Intelligence. Prentice Hall.
 New Age International Publishers.
- Nelles, O. 2001. Nonlinear system identification from classical approaches to neural
 networks and fuzzy models. Springer-Verlag.
- Rutkowski, L. 2004. Flexible Neuro Fuzzy Systems Structures Learning and
 for fault diagnosis in technical protests. In: IEEE international conference systems man and
 Cybernetics SMC’94 USA, 2120–2125.
- Saad Saoud, L. and Khellaf, A. 2009. Identification and Control of a Nonlinear Chemical
 process Plant Using Dynamical Neural Units.’ Third International Conference on Electrical
 Engineering Design and technologies, Tunisia, October 31- November 2.
- N Bhat, N. and McAvoy, T.J. 1990. Use of neural nets for dynamic modeling and control
controllers for nonlinear process control’. Journal of Process Control, 14, 211–230,
nonlinear model predictive controller applied to a pH neutralization process. Computers and
Chemical Engineering, 29, 323–335.
on DO-pH measurements and ANN pattern recognition model for fed-batch. Biochemical
Engineering Journal, 30, 88–96.
predictive control (WMPC) to a pH neutralization experiment. IEEE Transactions On Control
control of a pH neutralization process. IEE Proceedings on Control Theory Applications, 151(3),
329 - 338.
Predictive Control of Chemical Processes with a Wiener Identification’. IEEE International
- McAvoy, T., Hsu E. and Lowenthal, S. 1972. Dynamics of pH in CSTRs. Industrial and
- Saad Saoud, L. and Khellaf, A. 2011. A Neural Network Based on an Inexpensive Eight
Record., New York, 96-104.
filter. IET Control Theory Applications,, 1(1), 58-64.
Scientific Research and Essays, 5(14), 1899-1902.
In Proc. IEEE CDC, 761-766, San Diego, CA, USA,
input-output TS fuzzy models. The IEEE World Congress on Computational Intelligence, Vol.1,
(4-9 May 1998), 657 – 662.
imprint of Elsevier Science.
Ph. D thesis, School of Engineering, Liverpool John Moores University,
Springer-Verlag, France (in French).
Modeling pH Neutralization Process using Fuzzy Dynamic Neural Units Approaches

Index Terms

Computer Science
Artificial Intelligence

Key words

pH process
Dynamic neural units
Nonlinear system

identification
Fuzzy modeling