Abstract

The images usually bring different kinds of noise in the process of receiving, coding and transmission. In this paper the Curvelet transform is used for de-noising of image. Two digital implementations of the Curvelet transform (a multiscale transform) viz the Unequally Spaced Fast Fourier Transform (USFFT) and the Wrapping Algorithm are used to de-noise images.
The Curvelet Approach for Denoising in various Imaging Modalities using Different Shrinkage Rules

degraded by different types of noises such as Random, Gaussian, Salt and Pepper, Speckle and Poisson noise. This paper aims at the effect the Curvelet transform has in Curvelet shrinkage assuming different types of noise models. A signal to noise ratio as a measure of the quality of de-noising was preferred. The experimental results show that the conventional Curvelet shrinkage approach fails to remove Poisson noise in medical images.

Reference

- Isabel Rodrigues, Joao Sanches and Jose Bioucas-Dias. 2008. "Denoising of Medical Images corrupted by Poisson Noise” ICIP 2008: 1756-1759 ...
- Arnaud De Decker, John Aldo Lee and Michel Verlysen. 2009."Variants Stabilizing Transformation In Patch-Based Bilateral Filters for Poisson Noise Image Denoising” 2009 IEEE

Index Terms

Computer Science

Signal Processing
Key words
Curvelet transform Wrapping Transform
USFFT