The biological research in the field of information technology paves the exploitation of storing capabilities, parallelism and also in conservative cryptography which enhances the security features for data transmission. DNA is the gene information which encodes information of all living beings. Though the DNA computing has its application in the field of huge
information storage, massive parallel processing, low energy consumption which have been
proposed and proved by the researchers and soon the molecular computer can replace the
existing silicon computer and it exploits the world smallest computer. The combination of DNA
molecules can be interpreted as a result to give a solution to a specific problem. The DNA
strands can be replicated 500 times per second with greater accuracy. It can also be used in the
field of cryptography based upon the vast parallelism which is used to break the existing
cryptographic approach. This paper analysis an existing approach to the DNA computing
method and DNA based cryptographic approach which provides the clear idea and limitations of
existing research works.

Reference

- Leonard M. Adleman “Molecular Computation of solution to combinatorial problems”
 545, 1995
- J. D. Watson, F. H. C. Crick, “A structure for deoxy ribose nucleic acid”, Nature, vol. 25,
 pp. 737-738, 1953
- Taylor Clelland, “Hiding messages in DNA Microdots”. Nature Magazine vol.399,June
 1999
- D. Boneh, “Breaking DES using Molecular computer”, American Mathematical Society,
 pp 37-65, 1995
- A. Gehani, T. LaBean, and J. Reif, “DNA-Based Cryptography”, Lecture Notes in
- L.M Adleman “On Applying Molecular Computation to the Data Encryption Standard.”
 Journal of Computational Biology, 6 (1). pp. 53-63. 1999
 Based on DNA Computing,”IEEE International Workshop on Anti-counterfeiting Security,
- G. Z. Cui, “New Direction of Data Storage: DNA Molecular Storage Technology,”
- Souhila Sadeg “ An Encryption algorithm inspired from DNA” IEEE pp 344 - 349
 November 2010
- Sherif T. Amin, Magdy Saeb, Salah El-Gindi, "A DNA-based Implementation of YAEA
 Encryption Algorithm," IASTED International Conference on Computational Intelligence,2006
- Monica BORDA “DNA secret writing Techniques" IEEE conferences 2010
- LU MingXin, “Symmetric Key Cryptosystem With Dna Technology” Science China pp
 324-333,June 2007
- J Chen “A DNA-based, Bimolecular Cryptography Design"ISCAS'03.Proceedings2003
- LAI XueJia, LU MingXin “Asymmetric encryption and signature method with DNA
Analysis on DNA based Cryptography to Secure Data Transmission

<table>
<thead>
<tr>
<th>Index Terms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Computer Science</td>
</tr>
<tr>
<td>Security</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Key words</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNA</td>
</tr>
<tr>
<td>DNA Computing</td>
</tr>
<tr>
<td>DNA Cryptography</td>
</tr>
</tbody>
</table>