Abstract

Distributed computing systems are designed to solve computationally intensive problems with the help of convergence of computing resources scattered across the network. Distributed computing object middleware technologies have brought revolutionary concepts in the world of distributed computing and also made the building of distributed computing applications more efficient and nearer to real world. But the selection of most efficient distributed computing object middleware technology on the basis of different performance metrics is an important research issue. In this paper we are presenting the performance evaluation and comparison of distributed computing object middleware technologies which include Common Object Request Broker Architecture (CORBA), Internet Communication Engine (ICE), HORB, and TCP based Dot NET Remoting. Because these distributed computing object middleware technologies have not been evaluated and compared collectively on the basis of performance metrics which include overhead generation and round trip latency. The results that we have gathered showed that ICE is showing better performance in terms of overhead generation. And HORB has showed reduced round trip latency as compared to other middleware's.
Reference

- Distributed Programming with Ice, Michi Henning, Mark Spruiell; www.zeroc.com/ice.html
- Microsoft® .NET Remoting, Scott McLean, James Naftel, Kim Williams, Microsoft Press.
- Florian Mircea Boain Aan Rares, RMI VERSUS CORBA: A Message Transfer Speed Comparison, Stidia Univ. Babes-Bolyai, INFORMATICA, Volume XLIX, Number 1, 2004
- Matjaz B. Juric, Ivan Rozman, Alan P. Stevens, Marjan Hericko, Simon Nash, Java 2 Distributed Object Models Performance Analysis, Comparison and Optimization; 2000 IEEE

Index Terms

Computer Science Distributed Computing

Key words

Performance Evaluation Distributed Computing Object Middleware technology

CORBA HORB ICE Dot NET Remoting