Abstract

On road vehicle detection is an essential part of the Intelligent Vehicles and it is an important problem in the area of intelligent transportation systems, driven assistance systems and self-guided vehicles. The proposed algorithms should detect out all cars in realtime. Related to the driving direction, the cars can be classified into two types. Cars drive in the same direction
as the intelligent vehicle and cars drive on the opposite direction of the intelligent vehicle. Due
to the distinct features of these two types, we can use a fast approach so-called association is a
modified version of the association approach [1] to detect both these directions. The proposed
method is achieved in two main steps. The first one detects all obstacles from images. The
second step is applied to each obstacle to verify if it is a vehicle or not by the mean of AdaBoost
classifier. The modified Association approach has been applied to different images data and the
results are satisfactory.

Reference

- K. Zebbara, M. El Ansari, A. Mazoul, “ A new vehicle detection method”, (IJACSA)
International Journal of Advanced Computer Science and Applications, Special Issue on
Artificial Intelligence 2011.
Classification for Autonomous Off-Road Navigation.
- R. Labayrade, D. Aubert, J. P. Tarel, "Real Time Obstacle Detection on Non Flat Road
Geometry through V-Disparity Representation", IEEE Intel- ligent Vehicules Symposium,
Versailles, June 2002.
- M. Bertozzi, A. Broggi - "GOLD: A parallel real-time stereo vision system for generic
obstacle and lane detection", IEEE Transaction on image processing, Vol. 7, N1, January
1998.
- T.A. Williamson - "A high-performance stereo vision system for obstacle detection ", Phd,
- G. Toulminet, A. Bensrhair, S. Mousset, A. Broggi, P. Mich, "Systeme de stereovision
pour la detection d'obstacles et de vehicule temps reel". In Procs. 18th Symposium
GRETSIIIO1 on Signal and Image Processing, Toulouse, France, September 2001
- Tuo-Zhong Yao, Zhi-Yu Xiang, Ji-Lin Liu 2009. Robust water hazard detection for
autonomous off-road navigation in Journal of Zhejiang UniversityScience.
adaptive model-based classification.
- R. Aufrere, F. Marmoiton, R. Chapuis, F. Collange, and J. Derutin (2000). Road detection
and vehicles tracking by vision for acc.
- R. Chapuis, F. Marmoiton and R. Aufrere (2000). Road detection and vehicles tracking by
vision for acc system in the velac vehicle.
- U. Franke and A. Joos (2000). Real-time stereo vision for urban traffic scene
understanding.
- D. Koller, T. Luong, and J. Malik (1994). Binocular stereopsis and lane marker flow for
vehicle navigation: lateral and longitudinal control.
- R. Labayade, D. Aubert, and J. Tarel (2002). Real time obstacle detection in stereo
vision on non flatroad geometry through v-disparity representation.
28(5):694–711, 2006. Member- Zehang Sun and Member-George Bebis. 2
- B. D. Lucas and T. Kanade. An iterative image registration technique with an application
to stereo vision. In Proc. of the 7th IJCAI, pages 674–679, Vancouver, Canada, 1981. 1, 2, 3
- M. Betke, E. Haritaoglu, and L. Davis. Real-time multiple vehicle detection and tracking
from a moving vehicle. 12(2):69–83, 2000. 2
On Road Vehicle Detection using Association Approach


Index Terms

Computer Science

Artificial Intelligence

Key words

Association

vehicle detection

Optical Flow

AdaBoost

Haar filter

Temporal matching