Abstract

With ever increasing power density and temperature variations within high density VLSI chips, it is very important to study the temperature effects on the devices in a compact way and to predict their scaling. In this paper, the sub-threshold leakage power analysis of the P3 and P4
SRAM cells has been carried out at a temperature range from -250C to +1250C. It has been observed that the sub-threshold leakage and the standby power dissipation increases with increase in temperature. However, due to the stacked pMOS design used in P4 and P3 SRAM cells, minimum sub-threshold leakage and standby leakage power is observed as compared to the conventional 6T design.

References

Index Terms

Computer Science Integrated Circuits
Analysis of the Effect of Temperature Variations on Sub-threshold Leakage Current in P3 and P4 SRAM Cells at Deep Sub-Micron CMOS Technology

Keywords

- Temperature Effect
- Sub-threshold Leakage
- Standby Leakage Power
- Conventional 6T SRAM Bit-cell
- PP-SRAM
- P4-SRAM
- P3-SRAM
- Stacking
Analysis of the Effect of Temperature Variations on Sub-threshold Leakage Current in P3 and P4 SRAM Cells at Deep Sub-Micron CMOS Technology