Abstract

In this paper we present an effective clustering algorithm to generate codebook for vector quantization (VQ). Constant error is added every time to split the clusters in LBG, resulting in formation of clusters in one direction which is 1350 in 2-dimensional case. Because of this reason clustering is inefficient resulting in high MSE in LBG. To overcome this drawback of LBG proportionate error is added to change the cluster orientation in KPE. Though the cluster orientation in KPE is changed, its variation is limited to ± 450 over 1350. KEVR introduces new orientation every time to split the clusters. But in KEVR the error vector sequence is the binary representation of numbers, so the cluster orientation change slowly in every iteration. To overcome this drawback we propose the technique which uses Walsh sequence to rotate the error vector. The proposed technique (Kekre's error vector rotation using Walsh – KEVRW) is based on KEVR algorithm. The proposed methodology is tested on different training images for code books of sizes 128, 256, 512, 1024. Our result shows that KEVRW gives less MSE and high PSNR compared to LBG, KPE and KEVR.
New Clustering Algorithm for Vector Quantization using Walsh Sequence

References

- R. M. Gray, "Vector quantization", IEEE ASSP Mag, Apr. 1984
- Z. Li, and Z.-M. Lu, "Fast Codevector Search Scheme for 3D Mesh Model Vector
- H. B. Kekre and T. K. Sarode, "Centroid Based Fast Search Algorithm for Vector
Quantization", International Journal of Imaging (IJI), vol. 1, No. 08, pp. 73-83, Autumn 2008
- C. M. Huang and R. W. Harris, "A Comparison of Several Vector Quantization Codebook
- H. B. Kekre and T. K. Sarode, "New Clustering Algorithm for Vector Quantization using
Rotation of Error Vector", International Journal of Computer Science and Information
- H. B. Kekre and T. K. Sarode, "Clustering Algorithm for codebook Generation using
- H.B.Kekre and D. Mishra, "Density Distribution and Sector Mean with Zero-Sal and
Highest-Cal Components in Walsh transform Sectors as Feature Vectors for Image Retrieval",
International Journal of Computer Sience and Information Security (IJCSIS), vol.8, No. 4,
2010, ISSN 1947-5500
- J.L.Walsh, "A Closed Set of Orthogonal Functions", American Journal of Mathematics,
vol. 45, pp. 5-24, 1923.

Index Terms

Computer Science
Image Processing

Keywords

Codebook Code vector Encoding Walsh Function Codebook Generation Algorithm

Image Compression.