Abstract

This paper presents the idea of using sal cal density distribution in complex Walsh transform sectors to generate the feature vector for content based image retrieval. This paper compares the performance of 8, 12, and 16 sectors of Walsh Transform. The density distribution of real (sal) and imaginary (cal) values of Walsh sectors in all three color planes are considered to design the feature vector. The algorithm proposed here is worked over database of 270 images spread over 11 different classes. The Euclidean distance is used as similarity measure. Overall Average precision and recall is calculated for the performance evaluation and comparison of 8, 12 & 16 Walsh sectors. The overall average of cross over points of precision and recall is of all methods are compared.

Reference

- Anil Jain, Arun Ross, Salil Prabhakar, “Fingerprint matching using minutiae and texture
Density Distribution in Walsh Transform Sectors as Feature Vectors for Image Retrieval

- Kato, T., “Database architecture for content-based image retrieval in Image Storage and
- John Berry and David A. Stoney “The history and development of fingerprinting,” in
 published in proceedings of National/Asia pacific conference on Information communication and
 technology(NCICT 10) 5TH & 6TH March 2010.SVKM’S NMIMS MUMBAI
- H.B.Kekre, Dhirendra Mishra, “Content Based Image Retrieval using Weighted
 Hamming Distance Image hash Value” published in the proceedings of international
 conference on contours of computing technology pp. 305-309 (Thinkquest2010) 13th & 14th
 March 2010.
 Color Images” published in International Journal of Computer Science and Engineering
 (IJCSE) Vol. 02,No.02,2010,pp.368-372 ISSN 0975-3397 available online at
 feature vector generation” published in International Journal of Engineering and
 Technology(IJET) Vol. 02, No. 02, 2010, 49-54 ISSN 0975-4024 available online at
 http://www.enggjournals.com/ijet/doc/IJET10-02-02-06.pdf
- Arun Ross, Anil Jain, James Reisman, “A hybrid fingerprint matcher,” Int'l conference on
 Pattern Recognition (ICPR), Aug 2002.
 Features from DCT on VQ Codevectors obtained by Kekre’s Fast Codebook Generation”,
 ICGST International Journal on Graphics, Vision and Image Processing (GVIP),
 Available online at http://www.icgst.com/gvip
- H.B.Kekre, Sudeep D. Thepade, “Using YUV Color Space to Hoist the Performance of
 Block Truncation Coding for Image Retrieval”, IEEE International Advanced Computing
 Conference 2009 (IACC’09), Thapar University, Patiala, INDIA, 6-7 March 2009.
- H.B.Kekre, Sudeep D. Thepade, “Image Retrieval using Augmented Block Truncation
 Coding Techniques”, ACM International Conference on Advances in Computing,
 Rodrigo College of Engg., Mumbai. Available online at ACM portal.
- H.B.Kekre, Tanuja K. Sarode, Sudeep D. Thepade, “DCT Applied to Column mean and
 Row Mean Vectors of Image for Fingerprint Identification”, International Conference on
 Technology, Pune.
- H.B.Kekre, sudeep thepade,archana athawale,anant shah,prathamsh velekar,suraj
 shirke, “walsh transform over row mean column mean using image fragmentation and energy
 compaction for image retrieval”,International journal of computer science and engineering
 (IJCSE),Vol.2.No.1,S2010,47-54.

Index Terms

Computer Science
Biometric Security

Key words

CBIR
Walsh Transform

Euclidian Distance

Precision

Recall