Abstract

Large numbers of input devices are available for human interaction with modern computer systems which are operated by hands and a few of them through gestures made using fingers and body movements. The advancements in assistive technology have proposed many concepts for controlling the input and mouse movements by detecting the basic eye movements of a user with the help of the eye tracking systems. We place our focus on the implementation of the computer mouse which is designed to detect the relative position of the cornea with respect to the initially calibrated centre and calculate the attributes like angle and speed at which the movement of mouse cursor has to be initiated. The basic Houghman circle detection algorithm is used to process the incoming video frames to detect the cornea which lies in the centre of the pupil and the position of the cornea is compared with respect to the calibrated centre point with the help of a square grid on which an algorithm is applied to calculate the speed and angle at which the mouse should move with respect to x axis.

References

- ANAELIS SESIN, MALEK ADJOUADI, MELVIN AYALA, ARMANDO BARRETO,
- Dongheng Li, David Winfield, Derrick J. Parkhurst "Starburst: A hybrid algorithm for video-based eye tracking combining feature-based and model-based approaches"
- Yuan-Pin Lin, 1 Yi-Ping Chao, 2 Chung-Chih Lin, and 1 Jyh-Horng Chen "Webcam Mouse Using Face and Eye Tracking in Various Illumination Environments" Proceedings of the 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference Shanghai, China, September 1-4, 2005
- Web Reference - Ref: http://www.technologyreview.in/computing/18254/
- S. Asteriadis, N. Nikolaidis, A. Hajdu, I. Pitas "An Eye Detection Algorithm Using Pixel to Edge Information"

Index Terms

Computer Science
Pattern Recognition

Keywords

Eye operated Mouse Houghman Circle Detection Grid MATLAB image processing
disabled
paralyzed